Journal articles on the topic 'Polymetallic massive sulphide'

To see the other types of publications on this topic, follow the link: Polymetallic massive sulphide.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 16 journal articles for your research on the topic 'Polymetallic massive sulphide.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Seravkin, I. B., and A. M. Kosarev. "South Urals and Rudny Altai: a comparative paleovolcanic and metallogenic analysis." Геология рудных месторождений 61, no. 2 (May 8, 2019): 3–22. http://dx.doi.org/10.31857/s0016-77706123-22.

Full text
Abstract:
A comparative paleovolcanic and metallogenic analysis of two massive-sulphide-bearing regions, the Southern Urals and Ore Altai, located in different parts of the Ural-Mongolian folded belt, was performed. Comparison of the geodynamic evolution of these areas, the formation and facies composition of the ore-bearing strata and types of massive-sulphide deposits has led to the conclusion that the regions are similar only in the most general terms. Fundamental differences in the structure and composition of the crust of the regions led to differences in the profile of island-arc magmatism: basaltoid in the Southern Urals and rhyolitoid in Ore Altai. This, in its turn, determined the predominant composition of massive-sulphide mineralization: copper-zinc in the first of the regions and polymetallic — in the second. Opposite tendencies in the evolution of volcanism are also characteristic: homodromic in the Southern Urals and antidromic in the Ore Altai, which resulted in a different position of the types of massive-sulphide deposits in the ore districts: the bottom-up change of copper — massive-sulphide deposits by the massive-sulphide -polymetallic in the Southern Urals and barite polymetallic by massive-sulphide polymetallic and copper- massive-sulphide in the Ore Altai. Significant differences are also in the lateral distribution patterns of mineralization: a more pronounced control of mineralization by paleovolcanic structures of the central type in the Southern Urals and the frequent position of mineralization in intermediate and remote facies of volcanism in the Ore Altai, which is reflected in the prevalence of volcanic sections in the Urals and the majority of the volcanic sections and the larger majority of the volcanic rocks in the Ore Altai, which is reflected in the prevalence of volcanic rocks in the Urals and the majority of the volcanic sections and in the Ore Altai most of the volcanic minerals and the larger majority of the mineral rocks (20–80%) in the strata containing mineralization in the Ore Altai.
APA, Harvard, Vancouver, ISO, and other styles
2

Santagulda, F., and M. D. Hannington. "Characteristics of gold mineralization in volcanogenic massive sulphide deposits of the Notre Dame Bay area, central Newfoundland." Canadian Journal of Earth Sciences 33, no. 2 (February 1, 1996): 316–34. http://dx.doi.org/10.1139/e96-024.

Full text
Abstract:
A reconnaissance study of 19 volcanogenic massive sulphide deposits in the Notre Dame Bay area indicates Au concentrations of up to 30 ppm (Betts Cove), and elevated gold contents (>1 ppm Au) have been found in samples from 10 additional past producers and developed prospects. Systematic trends in the occurrence of gold are observed in two principal sulphide assemblages: polymetallic, pyrite–sphalerite–chalcopyrite–galena ± arsenopyrite assemblages (type I) and pyrite–chalcopyrite ± sphalerite ± pyrrhotite assemblages (type II). Type I assemblages occur in deposits with dominantly felsic host rocks, whereas type II assemblages are restricted to deposits in mafic-dominated ophiolite sequences. Free gold grains were observed in samples from eight different deposits in both type I and type II assemblages. X-ray emission spectra and electron microprobe analyses of the gold indicate that most grains are electrum, although a Au-bearing telluride occurs at Point Leamington. Ion microprobe analyses indicate that as much as 50% of bulk gold may be present as "invisible gold" locked in pyrite or arsenopyrite (up to 140 ppm Au at Point Leamington). Well-preserved primary depositional features in gold-bearing sulphides from several deposits suggest that the gold in type I assemblages is syngenetic. A strong correlation between gold and a polymetallic suite of Zn, Ag, Pb, As, and Sb, similar to that observed in Kuroko-type massive sulphides and in modern seafloor sulphides, supports a primary origin for gold in type I assemblages. In type II assemblages primary depositional features have been largely destroyed by deformation and annealing of sulphide grains. Gold is locally enriched in Zn-rich sulphides, and sulphides containing abundant pyrrhotite have the lowest gold contents. However, consistent geochemical associations with other elements are not observed, and this may reflect the strong remobilization of gold during structural deformation. The abundant free gold in some type II assemblages is a product of recrystallization during deformation and was derived locally from primary gold originally present in the host sulphides.
APA, Harvard, Vancouver, ISO, and other styles
3

Trottier, Jacques, Alex C. Brown, and Michel Gauthier. "An Ordovician rift environment for the Memphremagog polymetallic massive sulphide deposit, Appalachian Ophiolite Belt, Quebec." Canadian Journal of Earth Sciences 28, no. 12 (December 1, 1991): 1887–904. http://dx.doi.org/10.1139/e91-171.

Full text
Abstract:
The Memphremagog polymetallic massive sulphide deposit occurs at the contact between a pillowed volcanic sequence and a detrital sedimentary sequence consisting principally of shale and greywacke. The deposit, situated about 100 km east of Montréal in the Appalachians of southeastern Quebec, is composed of massive sulphide breccia. Major minerals include pyrrhotite, pyrite, sphalerite, galena, chalcopyrite, and calcite, with minor amounts of arsenopyrite, freibergite ((Cu,Ag,Fe)12Sb4S13), meneghinite (CuPb13Sb7S24), gudmundite (FeSbS), and kersteritic stannite (Cu2(Fe,Zn)SnS4). The mineral assemblage, metal content, and primary textures are comparable to modern sea-floor sulphide mounds enclosed by thick sedimentary sequences deposited in basins such as the Guaymas Basin in the Gulf of California.Although the footwall basalt unit is interstratified with the St-Daniel Formation of the Ophiolite Belt, it possesses a transitional geochemical signature of alkaline affinity that is uncharacteristic of ophiolitic basalts. We propose that this volcanic unit was emplaced within a transtensional basin of a rifted fore-arc system that formed during the Taconic orogeny as a result of diachronous oblique collision of an island- arc system (Ascot–Weedon?) with the North American continent. During magmatic activity, a hydrothermal system was imprinted on the volcanics and underlying sediments. Subsequent hydrothermal fluid emanations led to the formation of the Memphremagog sulphide deposit, which is quite distinct from sulphide deposits generally found within ophiolite belts.
APA, Harvard, Vancouver, ISO, and other styles
4

Wang, Yan, Zhongwei Wu, Xiaoming Sun, Xiguang Deng, Yao Guan, Li Xu, Yi Huang, and Kaijun Cao. "He–Ar–S Isotopic Compositions of Polymetallic Sulphides from Hydrothermal Vent Fields along the Ultraslow-Spreading Southwest Indian Ridge and Their Geological Implications." Minerals 8, no. 11 (November 7, 2018): 512. http://dx.doi.org/10.3390/min8110512.

Full text
Abstract:
Noble gases have become a powerful tool to constrain the origin and evolution of ore-forming fluids in seafloor hydrothermal systems. The aim of this study was to apply these tracers to understand the genesis of newly discovered polymetallic sulphide deposits along the ultraslow-spreading Southwest Indian Ridge (SWIR). The helium, argon, and sulphur isotope compositions of metal sulphide minerals were measured for a number of active/inactive vent fields in the Indian Ocean. The helium concentrations and isotopic ratios in these ore samples are variable (4He: 0.09–2.42 × 10−8 cm3STP∙g−1; 3He: 0.06–3.28 × 10−13 cm3STP∙g−1; 3He/4He: 1.12–9.67 Ra) and generally greater than the modern atmosphere, but significantly lower than those in massive sulphides from the fast-spreading East Pacific Rise (EPR), especially for three Cu–Fe-rich samples from the ultramafic-hosted Tianzuo and Kairei vent fields. On the contrary, most of the SWIR sulphide deposits have somewhat higher 40Ar/36Ar ratios of trapped fluids (ranging from 290.6 to 303.4) when compared to the EPR ore samples. Moreover, the majority of sulphide minerals from the Indian Ocean have much higher δ34S values (3.0‰–9.8‰, ~5.9 on average, n = 49) than other basaltic-hosted active hydrothermal systems on the EPR. Overall, these He–Ar–S results are well within the range of seafloor massive sulphide deposits at global sediment-starved mid-ocean ridges (MORs), lying between those of air-saturated water (ASW) and mid-ocean ridge basalt (MORB) end members. Therefore, our study suggests that the helium was derived mainly from the MORB mantle by degassing during the high-temperature stage of hydrothermal activity, as well as from a mixture of vent fluids with variable amounts of ambient seawater during either earlier or late-stage low-temperature hydrothermal episodes, whereas the argon in ore-forming fluids trapped within sulphide minerals was predominantly derived from deep-sea water. Additionally, relatively high δ34S values exhibit a great estimated proportion (up to nearly 40%) of seawater-derived components. In summary, sub-seafloor extensive fluid circulation, pervasive low-temperature alteration, shallow seawater entrainment, and mixing processes, may make a larger contribution to the SWIR hydrothermal ore-forming systems, compared to fast-spreading centres.
APA, Harvard, Vancouver, ISO, and other styles
5

Huang, Yi, Zhongwei Wu, Xiaoming Sun, Yan Wang, Guiyong Shi, Wei Zhai, and Yao Guan. "He-Ar Isotopes and Trace Gas Compositions of Fluid Inclusions in Massive Sulphides from the Yushui Copper-Polymetallic Deposit, South China: Metallogenic Implications." Minerals 9, no. 5 (April 29, 2019): 258. http://dx.doi.org/10.3390/min9050258.

Full text
Abstract:
The Yushui ore deposit, located in the middle section of the Yong’an-Meixian Hercynian depression, is a medium-sized Cu-polymetallic massive sulphide deposit in Eastern Guangdong Province, South China. This deposit is characterized by unusually high copper grade (up to 50–60 wt. % Cu). Other metallic elements, such as lead, zinc and silver, are also economically important in the Yushui ore bodies. The aim of this study was to apply N2–Ar–He systematics, together with organic gases (light-hydrocarbon tracers), to constrain the origin and evolution of ore-forming fluids. The helium-argon isotopes and trace gas compositions of fluid inclusions trapped within metal sulphide minerals were measured for a number of bonanza ores from the Yushui deposit. The noble gas concentrations in the studied samples vary over one to two orders of magnitude (4He: 2.27–160.00 × 10−5 cm3 STP g−1; 3He: 0.53–34.88 × 10−12 cm3 STP g−1; 40Ar: 6.28–37.82 × 10−7 cm3 STP g−1; 36Ar: 1.25–10.40 × 10−9 cm3 STP g−1). Our data show a narrow range of 3He/4He ratios from 0.006 to 0.056 Ra (~0.026 Ra on average, n = 8), which are considerably lower than the modern atmospheric end-member value; whereas the 40Ar/36Ar ratios (ranging from 333.76 to 501.68, with an average of 397.53) are significantly greater than that of air-saturated water. Most of the bornite samples have somewhat higher 3He/4He ratios of trapped fluids when compared to chalcopyrite. Overall, these He-Ar results are well within the range of crustal reservoir, thus implying a predominantly crustal source (originated from Caledonian basement) for ore-forming solutions, with little contribution from mantle-derived fluids. Analysis of the N2–Ar–He composition in Cu-rich sulphides indicates that the Yushui ore-forming fluids were probably derived from formation water (or basinal hot brines). Moreover, organic gas species identified in sulphide-hosted fluid inclusions are mainly composed of C1–C4 alkanes, while the concentrations of unsaturated olefins and aromatic hydrocarbons are very low. In particular, most chalcopyrite samples with relatively low 3He/4He ratios (0.006–0.016 Ra) and 40Ar*/4He values (0.0002–0.0012) are generally characterized by very high CO2/CH4 ratios (~60–102). All these suggest that main-stage Cu-Ag metallogenic processes might have not been affected by high-temperature magmatic activities or superimposed by strong metamorphic overprinting, although some chalcopyrite-rich ores appear to be influenced by later stage hydrothermal processes. In summary, neither magmatic input nor convecting seawater has played an important role in the formation of Yushui copper-polymetallic deposit. The massive sulphide ore bodies were products of water–rock interaction between metal-bearing basinal brines and the host sedimentary strata.
APA, Harvard, Vancouver, ISO, and other styles
6

Agnew, Michael W., Ross R. Large, and Stuart W. Bull. "Lewis Ponds, a hybrid carbonate and volcanic-hosted polymetallic massive sulphide deposit, New South Wales, Australia." Mineralium Deposita 39, no. 8 (February 3, 2005): 822–44. http://dx.doi.org/10.1007/s00126-004-0456-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

De la Nuez Colon, D., and M. Santa Cruz Pacheco. "Gold and gold-bearing volcanogenic massive sulphide deposits of the Central Cuba." Proceedings of higher educational establishments. Geology and Exploration, no. 3 (February 28, 2021): 27–37. http://dx.doi.org/10.32454/0016-7762-2020-63-3-27-37.

Full text
Abstract:
Background. Volcanogenic massive sulphide deposits (VMS) are the most important sources of Cu and Zn; they account for a large share of the world production of Pb, Ag, Au, Se, Te, Bi and Sb, as well as small amounts of many other metals. The polymetallic VMS deposits of economic value of varying degrees are known in the rocks of the Los Pasos Cretaceous Formation, Cuba.Aim. To show the potential of the Cretaceous volcanic deposits of Central Cuba for gold, silver, copper, zinc and lead deposit prospecting.Materials and methods. The study characterises the San Fernando, Independencia, Antonio, Los Cerros VMS deposits and the Boca del Toro and El Sol ore occurrences located in the Los Pasos Formation. The similarities and differences in the mineral and elemental composition and structures of the ores of these objects are described, which underlie the assessment of their economic importance.Results. The latitudinal zoning of VMS and noble metal mineralisation of the Central Cuban ore region is outlined. In the west, copper-VMS deposits with accompanying gold ore objects prevail. In the east, copper-zinc VMS deposits with barite and gold-silver objects are widespread.Conclusions. It is necessary to assume the different erosional sections corresponding to the blocks of the Cretaceous volcanic arc of Central Cuba, which is larger in the west and smaller in the east. Proceeding from the presence of veinlet gold ores, their confinement to tectonic zones and the lack of correlation between noble and chalcophile metals at the San Fernando deposit, as well as significantly different gold-silver ratios in the considered ore objects, it could be assumed that some of the gold-silver ores were formed after VMS. The obtained Au/Ag ratios are close to the ores of the high sulphidation type (high sulphide ores) from similar ore regions of Venezuela and the Kur-il island arc. In this regard, one can expect hidden gold deposits in the west and gold-silver deposits in the east of the studied area.
APA, Harvard, Vancouver, ISO, and other styles
8

Marcoux, Eric, Abdelhay Belkabir, Harold L. Gibson, David Lentz, and Gilles Ruffet. "Draa Sfar, Morocco: A Visean (331 Ma) pyrrhotite-rich, polymetallic volcanogenic massive sulphide deposit in a Hercynian sediment-dominant terrane." Ore Geology Reviews 33, no. 3-4 (June 2008): 307–28. http://dx.doi.org/10.1016/j.oregeorev.2007.03.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Slack, John F., Frederick M. Beck, Dwight C. Bradley, Myles M. Felch, Robert G. Marvinney, and Amber T. H. Whittaker. "Potential for critical mineral deposits in Maine, USA." Atlantic Geoscience 58 (June 28, 2022): 155–91. http://dx.doi.org/10.4138/atlgeo.2022.007.

Full text
Abstract:
An analysis of the potential for deposits of critical minerals and elements in Maine presented here includes data and discussions for antimony, beryllium, cesium, chromium, cobalt, graphite, lithium, manganese, niobium, platinum group elements, rhenium, rare earth elements, tin, tantalum, tellurium, titanium, uranium, vanadium, tungsten, and zirconium. Deposits are divided into two groups based on geological settings and common ore-deposit terminology. One group consists of known deposits (sediment-hosted manganese, volcanogenic massive sulphide, porphyry copper-molybdenum, mafic- and ultramafic-hosted nickel-copper [-cobalt-platinum group elements], pegmatitic lithium-cesium-tantalum) that are in most cases relatively large, well-documented, and have been explored extensively in the past. The second, and much larger group of different minerals and elements, comprises small deposits, prospects, and occurrences that are minimally explored or unexplored. The qualitative assessment used in this study relies on three key criteria: (1) the presence of known deposits, prospects, or mineral occurrences; (2) favourable geologic settings for having certain deposit types based on current ore deposit models; and (3) geochemical anomalies in rocks or stream sediments, including panned concentrates. Among 20 different deposit types considered herein, a high resource potential is assigned only to three: (1) sediment-hosted manganese, (2) mafic- and ultramafic-hosted nickel-copper(-cobalt-platinum group elements), and (3) pegmatitic lithium-cesium-tantalum. Moderate potential is assigned to 11 other deposit types, including: (1) porphyry copper-molybdenum (-rhenium, selenium, tellurium, bismuth, platinum group elements); (2) chromium in ophiolites; (3) platinum group elements in ophiolitic ultramafic rocks; (4) granite-hosted uranium-thorium; (5) tin in granitic plutons and veins; (6) niobium, tantalum, and rare earth elements in alkaline intrusions; (7) tungsten and bismuth in polymetallic veins; (8) vanadium in black shales; (9) antimony in orogenic veins and replacements; (10) tellurium in epithermal deposits; and (11) uranium in peat.
APA, Harvard, Vancouver, ISO, and other styles
10

Filipek, Wiktor, and Krzysztof Broda. "Experimental Research on the Concept of Using an Autonomous Transport Module for Transport From the Seabed." New Trends in Production Engineering 1, no. 1 (October 1, 2018): 267–75. http://dx.doi.org/10.2478/ntpe-2018-0033.

Full text
Abstract:
Abstract The great interest in the exploitation of sea deposits has in recent years resulted in the creation of many consortia conducting research on various methods of mining and transport to the surface. Exploitation of the shelf areas of crude oil and gas as well as solid minerals is successfully carried out in many places around the world using various methods. More and more often, however, we want to obtain natural resources found at great depths such as polymetallic nodules and massive polymetallic sulphides. This puts much greater demands on scientists and engineers. Unfortunately, solutions developed so far are characterized by high energy consumption. For several years, the authors have been researching new concepts of transport from the seabed. In previous years the authors presented theoretical research results of using a new method involving the use of pyrotechnic materials as a source of energy in transport from the seabed from large depths and experimental ones with the use of potassium nitrate and ammonium nitrate in a controlled pyrotechnic reaction and they compared three conceptions of transport of dredge spoil from the point of view of energy demand. This publication presents the results of the continuation of research, this time on the concept of building an autonomous transport module and its operating principles. The construction of the laboratory stand and the way of conducting experiments are discussed. The results of experimental research are presented, which confirm the possibility of using the discussed concept in transport from the seabed.
APA, Harvard, Vancouver, ISO, and other styles
11

Filipek, Wiktor, and Krzysztof Broda. "Theoretical Research on the Gas Phase Density Change in Processes Occurring During Work of the Transport Module Intended for Transport From the Seabed." New Trends in Production Engineering 1, no. 1 (October 1, 2018): 597–604. http://dx.doi.org/10.2478/ntpe-2018-0075.

Full text
Abstract:
Abstract In recent years, we have observed a great interest in the exploitation of marine deposits by various methods of mining and transport to the surface. However, obtaining natural resources deposited at greater depths such as polymetallic nodules and seafloor massive sulphides – SMS creates a lot of challenges for both scientists and engineers. The solutions developed so far, unfortunately, have so far been characterized by high energy consumption. For several years the authors have been conducting theoretical and experimental research on new concepts of seabed to surface transport. The results of them have been presented in previous publications. This publication presents the results of the continuation of research on the concept of construction and operation of an autonomous transport module (submitted for printing). It focuses on a theoretical analysis of the change in gas phase density in the processes occurring during operation of the transport module intended for transport from the seabed. For this purpose, a reduced form of the van der Waals equation was used in the form of a third-degree equation for parameters interested from the point of view of the transport module.
APA, Harvard, Vancouver, ISO, and other styles
12

Seijmonsbergen, Arie Christoffel, Sanne Valentijn, Lisan Westerhof, and Kenneth Frank Rijsdijk. "Exploring Ocean Floor Geodiversity in Relation to Mineral Resources in the Southwest Pacific Ocean." Resources 11, no. 7 (June 27, 2022): 60. http://dx.doi.org/10.3390/resources11070060.

Full text
Abstract:
The future extraction of mineral resources may irreversibly damage ocean floor geodiversity in the Southwest Pacific Ocean. Therefore, understanding of the spatial distribution of ocean floor geodiversity in relation to mineral resources is important. For that purpose, we first developed a geodiversity index map of the western Pacific Ocean including spatial information of openly available digital layers of four components: seafloor geomorphology, sediment thickness, bathymetry and seafloor roughness. Second, we analysed how these components contributed to the geodiversity index. Finally, correlations between three mineral resources (seafloor massive sulphides, polymetallic nodules and cobalt-rich crusts) and the geodiversity index, its components, and the ocean floor age were calculated. The results showed that the ocean floor environment and the time necessary for the formation of the three mineral resources were predominantly related to the bathymetry component and the age of the ocean floor, and to a lesser extent to the seafloor roughness, geomorphology and sediment thickness components. We conclude that the ocean floor geodiversity index and its components contribute to an improved understanding of the spatial distribution of abiotic seafloor diversity and can be optimized by using higher resolution data. We suggest that ocean floor geodiversity could be considered in future resource extraction to support responsible mining and help limit environmental damage.
APA, Harvard, Vancouver, ISO, and other styles
13

Álvaro, J. Javier, Lars E. Holmer, Yanan Shen, Leonid E. Popov, Mansoureh Ghobadi Pour, Zhifei Zhang, Zhiliang Zhang, Per Ahlberg, Heikki Bauert, and Laura González-Acebrón. "Submarine metalliferous carbonate mounds in the Cambrian of the Baltoscandian Basin induced by vent networks and water column stratification." Scientific Reports 12, no. 1 (May 19, 2022). http://dx.doi.org/10.1038/s41598-022-12379-y.

Full text
Abstract:
AbstractTwo massive precipitation events of polymetallic ore deposits, encrusted by a mixture of authigenic carbonates, are documented from the Cambrian of the semi-enclosed Baltoscandian Basin. δ34S (‒9.33 to ‒2.08‰) and δ33S (‒4.75 to ‒1.06‰) values from the basal sulphide breccias, sourced from contemporaneous Pb–Zn–Fe-bearing vein stockworks, reflect sulphide derived from both microbial and abiotic sulphate reduction. Submarine metalliferous deposits were triggered by non-buoyant hydrothermal plumes: plumes of buoyant fluid were trapped by water column stratification because their buoyancy with respect to the environment reversed, fluids became heavier than their surroundings and gravitational forces brought them to a halt, spreading out laterally from originating vents and resulting in the lateral dispersion of effluents and sulphide particle settling. Subsequently, polymetallic exhalites were sealed by carbonate crusts displaying three generations of ikaite-to-aragonite palisade crystals, now recrystallized to calcite and subsidiary vaterite. Th of fluid inclusions in early calcite crystals, ranging from 65 to 78 ºC, provide minimum entrapment temperatures for carbonate precipitation and early recrystallization. δ13Ccarb (‒1.1 to + 1.6‰) and δ18Ocarb (‒7.6 to ‒6.5‰) values are higher than those preserved in contemporaneous glendonite concretions (‒8.5 to ‒4.7‰ and ‒12.4 to ‒9.1‰, respectively) embedded in kerogenous shales, the latter related to thermal degradation of organic matter. Hydrothermal discharges graded from highly reduced, acidic, metalliferous, and hot (~ 150 ºC) to slightly alkaline, calcium-rich and warm (< 100 ºC), controlling the precipitation of authigenic carbonates.
APA, Harvard, Vancouver, ISO, and other styles
14

Morato, Telmo, Manuela Juliano, Christopher K. Pham, Marina Carreiro-Silva, Inês Martins, and Ana Colaço. "Modelling the Dispersion of Seafloor Massive Sulphide Mining Plumes in the Mid Atlantic Ridge Around the Azores." Frontiers in Marine Science 9 (July 20, 2022). http://dx.doi.org/10.3389/fmars.2022.910940.

Full text
Abstract:
It is increasingly recognised that deep-sea mining of seafloor massive sulphides (SMS) could become an important source of mineral resources. These operations will remove the targeted substrate and produce potentially toxic plumes from in situ seabed excavation and from the return water pumped back down to the seafloor. However, the spatial extent of the impact of deep-sea mining is still uncertain because few field experiments and models of plume dispersion have been conducted. In this study, we used three-dimensional hydrodynamic models of the Azores region together with a theoretical commercial mining operation of polymetallic SMS to simulate the potential dispersal of plumes originating from different phases of mining operations, and to assess the magnitude of potential impacts. Although the model simulations presented here were subject to many caveats, they did reveal some important patterns. The model projected marked differences among sites making generalisations about plume-dispersal patterns in mid-ocean ridges difficult. Nevertheless, the models predicted large horizontal and vertical plume-dispersals above the thresholds adopted. Persistent plumes (temporal frequency &gt;50%, i.e., 6 months out of 12 months) were projected to disperse an average linear distance of 10 to 20 km, cover an area of 17 to 150 km2, and extend more than 800 m in the water column. In fact, the model projected that plumes may disperse beyond the licensed mining areas, reach the flanks and summits of nearby topographic features, and extend into the bathypelagic, mesopelagic, and epipelagic environments. Modelled plume-dispersal overlaps with the predicted distribution of cold-water corals and with existing fishing activities. These potential impacts would be of particular concern in regions such as the Azores, where local populations are highly dependent on the sea for their livelihoods. The findings of this study are an important initial step towards understanding the nature and magnitude of deep-sea mining impacts in space and time.
APA, Harvard, Vancouver, ISO, and other styles
15

Yang, Fuquan, Bin Zhang, Chengdong Yang, Qiang Li, and Yongqiang Wang. "Geology and geochronology of the volcanogenic massive sulphide polymetallic deposits in Altay Orogenic Belt, Xinjiang, Northwest China: examples from the Kelan Basin." International Geology Review, April 30, 2020, 1–16. http://dx.doi.org/10.1080/00206814.2020.1756001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

González, Francisco J., Teresa Medialdea, Henrik Schiellerup, Irene Zananiri, Pedro Ferreira, Luis Somoza, Xavier Monteys, et al. "MINDeSEA – Exploring Seabed Mineral Deposits in European Seas, Metallogeny and Geological Potential for Stategic and Critical Raw Materials." Geological Society, London, Special Publications 526, no. 1 (October 21, 2022). http://dx.doi.org/10.1144/sp526-2022-150.

Full text
Abstract:
Abstract This study summarizes the compilation and cartographic works of seabed mineral deposit types in pan-European seas developed under the GeoERA-MINDeSEA project. In total , 692 occurrences and 1194 individual mineral samples of volcanogenic massive sulphides and hydrothermal mineralisation; ferromanganese crusts; phosphorites; marine placer deposits; polymetallic nodules and their associated strategic and critical elements (CRM) are characterised. The GeoERA-MINDeSEA project has been built based on extensive studies carried out previously, which include geophysical surveys, sampling stations, underwater photography and ROV surveys, and mineralogical, geochemical and isotopic studies. The study currently develops pan-European and national databases, and expand the strategic and CRM knowledge through a compilation of mineral potential and metallogenic studies of CRM resources in European seas. GeoERA-MINDeSEA portal, for the first time, publish harmonised marine mineral resource information, case studies and maps; identify potential areas for responsible resource exploration and extraction; strategic management and Marine Spatial Planning. The study is also providing recommendations for future target areas, studies and standards to be used across Europe as part of this project.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography