Academic literature on the topic 'Polymers-applications'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Polymers-applications.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Polymers-applications"
Priya, V. Sri Vajra, Hare Krishna Roy, N. jyothi, and N. Lakshmi Prasanthi. "Polymers in Drug Delivery Technology, Types of Polymers and Applications." Scholars Academic Journal of Pharmacy 5, no. 7 (July 2016): 305–8. http://dx.doi.org/10.21276/sajp.2016.5.7.7.
Full textCemka, Zuzanna, Paweł Szarlej, Edyta Piłat, Przemysław Gnatowski, Maciej Sienkiewicz, and Justyna Kucińska-Lipka. "Hydrogels Based on Natural Polymers for Cardiac Applications." Chemistry & Chemical Technology 16, no. 4 (December 22, 2022): 564–72. http://dx.doi.org/10.23939/chcht16.04.564.
Full textHazar Yoruç, Afife Binnaz, and Volkan Uğraşkan. "Green Polymers and Applications." Afyon Kocatepe University Journal of Sciences and Engineering 17, no. 1 (March 1, 2017): 318–37. http://dx.doi.org/10.5578/fmbd.53940.
Full textKobayashi, Yukio. "Applications of conductive polymers." Kobunshi 37, no. 7 (1988): 534–37. http://dx.doi.org/10.1295/kobunshi.37.534.
Full textAdhikari, Basudam, and Sarmishtha Majumdar. "Polymers in sensor applications." Progress in Polymer Science 29, no. 7 (July 2004): 699–766. http://dx.doi.org/10.1016/j.progpolymsci.2004.03.002.
Full textZheng, Liuchun, Harihara S. Sundaram, Zhiyong Wei, Chuncheng Li, and Zhefan Yuan. "Applications of zwitterionic polymers." Reactive and Functional Polymers 118 (September 2017): 51–61. http://dx.doi.org/10.1016/j.reactfunctpolym.2017.07.006.
Full textWnek, Gary. "Conducting polymers: Special applications." Journal of Solid State Chemistry 74, no. 2 (June 1988): 438. http://dx.doi.org/10.1016/0022-4596(88)90378-7.
Full textWright, W. W. "Polymers in aerospace applications." Materials & Design 12, no. 4 (August 1991): 222–27. http://dx.doi.org/10.1016/0261-3069(91)90169-5.
Full textSOBCZAK, MARCIN, EWA OLEDZKA, WACLAW L. KOLODZIEJSKI, and RAFAL KUZMICZ. "Polymers for pharmaceutical applications." Polimery 52, no. 06 (June 2007): 411–20. http://dx.doi.org/10.14314/polimery.2007.411.
Full textSimanek, Eric. "Polymers for Biomedical Applications." Molecular Pharmaceutics 7, no. 4 (August 2, 2010): 921. http://dx.doi.org/10.1021/mp100213f.
Full textDissertations / Theses on the topic "Polymers-applications"
Patil, Satish Amrutrao. "Ladder polymers for photonic applications." [S.l.] : [s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=972447490.
Full textLochab, Bimlesh. "Polymers for electro-optic applications." Thesis, University of Oxford, 2006. http://ora.ox.ac.uk/objects/uuid:34ac7813-b315-415c-ac8a-eac269c23432.
Full textKishi, Mariko. "Synthetic polymers for ophthalmic applications." Thesis, Aston University, 1987. http://publications.aston.ac.uk/9721/.
Full textBogdanowicz, Krzysztof Artur. "Liquid Crystalline Polymers for Smart Applications." Doctoral thesis, Universitat Rovira i Virgili, 2015. http://hdl.handle.net/10803/321835.
Full textActualmente, PCL que incorporan elementos activos en la estructura (p.e., grupos de foto-sensibles, dendrones, etc.) conducen a un material selectivamente sensible. Se informa de que los polímeros se pueden aplicar en varios sistemas p.e. como materiales con memoria de forma, sensores o pantallas foto-ópticas. Nuestros estudios se centran en dos aplicaciones diferentes: microcápsulas fotosensibles para sistemas de entrega controlada y las membranas autoensambladas conductoras de protones para la fotosíntesis artificial. La versatilidad y las propiedades anisotrópicas de PCL, los hacen como candidatos ideales para numerosos aplicaciones inteligentes. Para obtener sistemas con liberación foto-activa, una familia de copolímeros, que contiene alfa-estilbeno y diferentes espaciadores se han diseñado y sintetizado. Alfa-estilbeno es un mesogéno foto-activo. Las microcápsulas basadas de alfa-metilestilbeno, con vainillina en núcleo, estaban preparados. Experimento de liberación con y sin fotoirradiación demostró la eficacia de este sistema. CLP de estructura adecuada para auto-ensamblaje en una estructura columnar que podría ser efectivo en el transporte de protones selectivo. Alineación homeotrópica de columnas en una membrana polimérica permite conseguir conductividad de protones. Objetivo de nuestro trabajo fue: lograr estructuras organizadas utilizando poliaminas modificadas con un mesógeno dendrítico en posición lateral; preparación de membranas orientadas usando estos materiales poliméricos; evaluar la eficacia de las membranas hacia el transporte de protones. Se prepararon membranas híbridas de cerámica/poliamina. El material mostró alta conductividad de protones selectiva y transporte agua-independiente.
Liquid Crystalline Polymers (LCPs) possess properties which are a combination of crystalline solids and fluids. Currently, LCPs which incorporate active elements into the structure (i.e. photo-sensitive groups, dendrons, etc.) lead to selectively sensitive material. It is reported, that those polymers can be applied in a variety of systems i.e. as memory-shape materials, sensors or photo-optical displays. Our studies are focused on two different applications: photosensitive microcapsules for controlled delivery systems and self-assembly proton-conducting membranes for artificial photosynthesis. The extreme versatility and the characteristic anisotropic properties of LCPs, make them the ideal candidates for numerous smart applications. To achieve systems with photo-triggered release, a family of copolymers which contained alpha-methylstilbene and different spacers were designed and synthesized. Alpha-methylstilbene is a well-known photo-active mesogenic group. Microcapsules based on alpha-methylstilbene containing vanillin as a core were prepared. Release experiment in the presence and the absence of photoirradiation proved the effectiveness of this system. LC polymers of proper structure self-assembly into a columnar structure which could be effective in selective proton transport. Homeotropic alignment of columns in a polymeric membrane allows to achieve proton-conductivity. Aim of our work was: achieving organized structures using polyamine modified with a dendritic mesogen in side position; preparing oriented membranes based on this polymeric materials;assessing the effectiveness of the prepared membranes toward proton transport. Hybrid ceramic/polyamine membranes were prepared. The new material showed high selective proton conductivity and water independent transport.
Inal, Sahika. "Responsive polymers for optical sensing applications." Phd thesis, Universität Potsdam, 2013. http://opus.kobv.de/ubp/volltexte/2014/7080/.
Full textAls Reaktion auf bestimmte äußere Stimuli ändern bestimmte wasserlösliche Polymere reversibel ihren physikalischen Zustand. Dieser Vorgang kann mithilfe von Fluorophoren, die in die Polymerstrukturen eingebaut werden und deren Fluoreszenzeigenschaften vom Polymer¬zustand abhängen, detektiert werden. Diese Idee ist der Ausgangspunkt der vorliegenden Arbeit, die sich damit beschäftigt, wie äußerlich induzierte Änderungen der Löslichkeit solcher Polymere mit kovalent gebundenen Fluorophoren in Wasser in ein deutlich messbares Fluoreszenzsignal übersetzt werden können. Dazu werden photophysikalische Phänomene wie Fluoreszenz-Resonanz¬energie¬transfer und Solvatochromie ausgenutzt. In Kombination mit einem responsiven Polymergerüst wird es möglich, verschiedene Stimuli wie Lösungs¬temperatur oder Ionenstärke, oder auch Assoziation-Dissoziation Reaktionen mit anderen Makromolekülen oder biochemische Bindungs¬reaktionen über die Änderung von Fluorezenz¬farbe bzw. –Intensität autonom mit bloßem Auge zu detektieren. Unter anderem wurde ein wässriger ratiometrischer Temperatur- und Salzsensor entwickelt, der auf der komplexen supramolekularen Struktur eines thermoresponsiven Copolymers und eines thiophenbasierten konjugierten Polyelektrolyts beruht. Die Anbindung solvato¬chromer Fluorophore erlaubte den empfindlichen Nachweis einer Temperatur¬änderung oder des Vorhandenseins von Analyten. Komplexere Phänomene wie das kompetitive Anbinden von Analyten ließen sich hochempfindlich steuern und auslesen, indem gleichzeitig die Sensitivität dieser Polymeren gegenüber der Temperatur und spezifischen Antikörpern ausgenutzt wurde. Überraschenderweise wiesen die hier untersuchten thermoresponsiven Polymere wie poly-N-isopropylacrylamid (pNIPAm) oder poly-Oligoethylenglykolmethacrylate (pOEGMA) große Unterschiede bzgl. ihrer responsiven optischen Eigenschaften auf. Dies erforderte eine ausführliche Charakterisierung des Fluoreszenz- und Aggregationsverhaltens, unter- und oberhalb des Phasenübergangs, im Bezug auf die chemische Struktur. Ein Ergebnis war, dass alle drei Polymertypen sehr ähnliche temperaturabhängige makroskopische Absorptionseigenschaften aufweisen, während sich die Eigenschaften auf molekularer Ebene, wie der Hydratisierungsgrad oder die intermolekulare Polymerkettenaggregation, bei diesen Polymeren sehr unterschiedlich. Diese Arbeit zeigt damit anhand zweier sehr etablierter thermoresponsiver Polymere, nämlich pNIPAm und pOEGMA, das die chemische Struktur entscheidend für den Einsatz dieser Polymere in fluoreszenzbasierten Sensoren ist. Diese Ergebnisse haben große Bedeutung für die gezielte Entwicklung von Polymermaterialien für fluoreszenzbasierte Assays.
Wang, Jinfang. "Xanthine-imprinted polymers for decaffeination applications." Thesis, University of Strathclyde, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.431777.
Full textSpampinato, Nicoletta. "Ferroelectric polymers for organic electronic applications." Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0392/document.
Full textOrganic electronics represent a realistic alternative to conventional silicon-based technologies through the design, synthesis and implementation of functional organic materials into light and flexible devices. Organic materials, such as small molecules or organic polymers, are advantageous for their low-cost, flexibility and easy processing. Thanks to the economical and timesaving advantages, organic electronics have emerged as an innovative field with application in energy, environment, health, information and communication technologies.Organic electronics originates from the discovery of polymers with semiconducting functionalities. However, one should not neglect another class of outstanding polymers, the ferroelectric polymers. The electroactive nature of ferroelectric polymers, which are also pyroelectric and piezoelectric, combined with the intrinsic advantages of polymers have designated them as constituent elements of a widespread range of organic electronic devices. The most well-known family of ferroelectric polymers is that of poly(vinylidene fluoride), P(VDF), and its copolymers with trifluoroethylene, P(VDF-co-TrFE). Energy harvesting, data storage and sensing, main applications of organic electronics, can potentially all be realised using these exceptional functional materials.Since ferroelectricity is a structure-dependent property an insight into the interrelations between structure and final ferroelectric properties is indispensable in order to improve existing applications of ferroelectric polymers in organic electronics and to promote the introduction of P(VDF-co-TrFE) in new application fields. P(VDF-co-TrFE) as semi-crystalline polymer possess crystalline properties which are sensitive to thermal treatment. Since only the crystalline regions contribute to ferroelectric switching and not the amorphous ones, the degree of crystallinity is a key factor to modulate the ferroelectric properties. Moreover, crystallites orientation as well as the presence of defects within the crystallites are crucial parameters playing an important role in defining the final performance of the devices in which P(VDF-co-TrFE) is incorporated.Herein stands the aim of this thesis: reach an exhaustive understanding of processing-structure-function relationships that will serve as tool to modulate ferroelectric devices performances.Going one step further, the potential applications of P(VDF-co-TrFE) in organic electronics are explored by investigating it in: (1) medical piezoelectric catheter sensors for measuring cardiac function and eventually for detecting cardiac disease and (2) electronic devices in which P(VDF-co-TrFE) is blended with the semiconducting polymer poly(3-hexylthiophene), P3HT. The latter has already been applied in non-volatile ferroelectric memory diodes and the potential use in organic photovoltaics is explored
Kuroda, Kenichi 1972. "Thermally responsive polymers and their applications." Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/29641.
Full textVita.
Includes bibliographical references.
This thesis focuses on development of polymeric materials that can alter their functions according to temperature changes. We chose poly(N-isopropylacrylamide) (polyNIPA) as a platform, which phase-separates from water upon heating. The thermally responsive properties and applications of polyNIPA are introduced in Chapter One. In Chapter Two, we described the synthesis of polyNIPA gels with an imidazole comomoer and examined copper ion adsorption by the swollen (room temperature) and shrunken gels (60⁰C). The data analysis using a Langmuir adsorption isotherm indicates that the imidazole groups form 2:1 and 4:1 complexes with a copper ion in the swollen and shrunken gels, respectively, which suggests that thermal gel swelling and shrinking control the formation of multivalent Cu complexes by changing the distance among imidazole groups. In Chapters Three to Six, the synthesis of polyNIPA-conjugated polymer block copolymers and their applications are described. Non-ionic water-soluble poly(phenylene-ethynylene)s (PPEs) (Chapter Three) were used as conjugated polymer segments in the block copolymers. In a route to synthesis of the block copolymers, atom transfer radical polymerization (ATRP) and nitroxide-mediated radical polymerization (NMRP) of NIPA were developed. Incorporation of ATRP or NMRP initiators to the polymer ends of PPEs and the following polymerizations of NIPA were expected to provide tri-block copolymers with precise structures. The ATRP method produced pure polyNIPA with monodisperse and defined molecular weights (Chapter Four). However, endcapping of PPEs with an ATRP initiator ((α-chloroamide) was not successful due to its instability to PPE polymerization conditions (Chapter Five).
(cont.) On the other hand, PPEs could be endcapped with a NMRP initiator (a tert-butyl nitroxide derivative), and the following NMRP of NIPA provided the tri-block copolymers (Chapter Six), phase-separate from aqueous solutions upon heating due to the polyNIPA aggregation. In Chapter Six, we examined fluorescence resonance energy transfer (FRET) between a PPE-polyNIPA block copolymer and Rhodamine B (RhB) bound to polyNIPA. The RhB emission from the polymer precipitates produced by thermally induced phase-separation from the aqueous mixtures increased relative to that from the solutions, which indicates that thermal precipitation brought the PPE and RhB within the F6rster radius of each other and induced FRET between the PPE and RhB.
by Kenichi Kuroda.
Ph.D.
Maine, Elicia M. A. (Margaret Anne). "Future of polymers in automotive applications." Thesis, Massachusetts Institute of Technology, 1997. http://hdl.handle.net/1721.1/10509.
Full textSvensson, Mikael. "Conducting redox polymers for battery applications." Thesis, Uppsala universitet, Strukturkemi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-415137.
Full textBooks on the topic "Polymers-applications"
Seymour, Raymond B., and Herman F. Mark, eds. Applications of Polymers. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4684-5448-2.
Full text1912-, Seymour Raymond Benedict, Mark H. F. 1895-, Battista O. A. 1917-, and Phillips Petroleum Company, eds. Applications of polymers. New York: Plenum Press, 1988.
Find full textChanda, Manas. Industrial Polymers, Specialty Polymers, and Their Applications. London: Taylor and Francis, 2008.
Find full textBritton, C. F. Polymers in marine applications. Oxford: Pergamon Press, 1990.
Find full textMahapatro, Anil, and Ankur S. Kulshrestha, eds. Polymers for Biomedical Applications. Washington, DC: American Chemical Society, 2008. http://dx.doi.org/10.1021/bk-2008-0977.
Full textScrosati, Bruno, ed. Applications of Electroactive Polymers. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1568-1.
Full textGutiérrez, Tomy J., ed. Polymers for Food Applications. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94625-2.
Full textScrosati, Bruno. Applications of Electroactive Polymers. Dordrecht: Springer Netherlands, 1993.
Find full textBruno, Scrosati, ed. Applications of electroactive polymers. London: Chapman & Hall, 1993.
Find full textPolymers for packaging applications. Toronto: Apple Academic Press, 2015.
Find full textBook chapters on the topic "Polymers-applications"
Pittman, Charles U., and Charles E. Carraher. "Applications of Organometallic Polymers." In Applications of Polymers, 113–24. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4684-5448-2_15.
Full textLange, Wendy. "Polymers in Automobile Applications." In Plastics and the Environment, 727–46. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2004. http://dx.doi.org/10.1002/0471721557.ch17.
Full textGanachari, Sharanabasava V. "Polymers for Energy Applications." In Handbook of Ecomaterials, 1–17. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-48281-1_194-1.
Full textJoy, Nidhin, Geethy P. Gopalan, Joby Eldho, and Raju Francis. "Conducting Polymers: Biomedical Applications." In Biomedical Applications of Polymeric Materials and Composites, 37–89. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527690916.ch3.
Full textGEBELEIN, CHARLES G. "Medical Applications of Polymers." In ACS Symposium Series, 535–56. Washington, D.C.: American Chemical Society, 1985. http://dx.doi.org/10.1021/bk-1985-0285.ch023.
Full textKulshrestha, Ankur S., and Anil Mahapatro. "Polymers for Biomedical Applications." In ACS Symposium Series, 1–7. Washington, DC: American Chemical Society, 2008. http://dx.doi.org/10.1021/bk-2008-0977.ch001.
Full textGanachari, Sharanabasava V. "Polymers for Energy Applications." In Handbook of Ecomaterials, 3011–27. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-68255-6_194.
Full textInzelt, György. "Applications of Conducting Polymers." In Monographs in Electrochemistry, 245–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27621-7_7.
Full textArunprasath, K., M. Vijayakumar, Pon Janani Sugumaran, P. Amuthakkannan, V. Manikandan, and V. Arumugaprabu. "Polymers for structural applications." In Materials for Lightweight Constructions, 39–60. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003252108-3.
Full textSeymour, Raymond B. "Conductive Polymers." In Applications of Polymers, 69–71. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4684-5448-2_11.
Full textConference papers on the topic "Polymers-applications"
Poga, Constantina, and Robert Andrew Norwood. "Reliable polymers for OADM applications." In Organic Thin Films. Washington, D.C.: OSA, 1999. http://dx.doi.org/10.1364/otf.1999.suc2.
Full textRyles, R. G., and J. V. Cicchiello. "New Polymers for EOR Applications." In SPE Enhanced Oil Recovery Symposium. Society of Petroleum Engineers, 1986. http://dx.doi.org/10.2118/14947-ms.
Full textLippert, Thomas, Marc Hauer, Claude R. Phipps, and Alexander J. Wokaun. "Polymers designed for laser applications: fundamentals and applications." In International Symposium on High-Power Laser Ablation 2002, edited by Claude R. Phipps. SPIE, 2002. http://dx.doi.org/10.1117/12.482044.
Full textPawlowski, Kristin, Tyler St.Clair, Amber McReynolds, Cheol Park, Zoubeida Ounaies, Emilie Siochi, and Joycelyn Harrison. "Electrospun Electroactive Polymers for Actuator Applications." In 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2003. http://dx.doi.org/10.2514/6.2003-1768.
Full textSinyukov, Alexander M., Megan R. Leahy, and L. Michael Hayden. "Electro-optic polymers for THz applications." In Optics East, edited by M. Saif Islam and Achyut K. Dutta. SPIE, 2004. http://dx.doi.org/10.1117/12.573839.
Full textBauer, F. "High pressure applications of ferroelectric polymers." In High-pressure science and technology—1993. AIP, 1994. http://dx.doi.org/10.1063/1.46161.
Full textFoshee, James J., Suning Tang, Jennifer K. Colegrove, and Kevin J. Zhang. "Photonic polymers and their optoelectronic applications." In Integrated Optoelectronics Devices, edited by Louay A. Eldada, Andrew R. Pirich, Paul L. Repak, Ray T. Chen, and Joseph C. Chon. SPIE, 2003. http://dx.doi.org/10.1117/12.479789.
Full textKuhn, H. H., A. D. Child, and W. C. Kimbrell. "Toward real applications of conductive polymers." In International Conference on Science and Technology of Synthetic Metals. IEEE, 1994. http://dx.doi.org/10.1109/stsm.1994.835662.
Full textChipara, Mircea, Jeffrey Zaleski, Bogdan Dragnea, Emma Shansky, Tiberiu-Dan Onuta, and Magdalena Dorina Chipara. "Self-Healing Polymers for Space Applications." In 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
14th AIAA/ASME/AHS Adaptive Structures Conference
7th. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-1946.
MEADOR, MARY, JAMES GAIER, BRIAN GOOD, G. SHARP, and MICHAEL MEADOR. "Electrically conducting polymers for aerospace applications." In Conference on Advanced SEI Technologies. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1991. http://dx.doi.org/10.2514/6.1991-3432.
Full textReports on the topic "Polymers-applications"
Gottesfeld, S. Conducting polymers: Synthesis and industrial applications. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/494121.
Full textGottesfeld, S. Conducting polymers: Synthesis and industrial applications. Office of Scientific and Technical Information (OSTI), May 1995. http://dx.doi.org/10.2172/105129.
Full textZhang, Qiming. Electroactive Polymers for Smart Skin Applications. Fort Belvoir, VA: Defense Technical Information Center, November 2001. http://dx.doi.org/10.21236/ada390644.
Full textZhang, Qiming. Electroactive Polymers for Smart Skin Applications. Fort Belvoir, VA: Defense Technical Information Center, June 2000. http://dx.doi.org/10.21236/ada378481.
Full textMather, Patrick T. New Polymers and Processes for Space Applications. Fort Belvoir, VA: Defense Technical Information Center, November 2003. http://dx.doi.org/10.21236/ada418326.
Full textGurchinoff, Stephen, Duane Fish, and Brian Stern. High Performance Polymers for Small Engine Applications. Warrendale, PA: SAE International, October 2013. http://dx.doi.org/10.4271/2013-32-9012.
Full textOrlicki, Joshua A., Xianyan Wang, Matthew S. Bratcher, Robert E. Jensen, Lynne A. Samuelson, and Steven H. McKnight. Modified Hyperbranched Polymers for Fluorescence Sensing Applications. Fort Belvoir, VA: Defense Technical Information Center, June 2012. http://dx.doi.org/10.21236/ada568734.
Full textCzanderna, A. W. Polymers as advanced materials for desiccant applications. Office of Scientific and Technical Information (OSTI), December 1990. http://dx.doi.org/10.2172/5774745.
Full textCzanderna, A. W. Polymers as Advanced Materials for Desiccant Applications: 1987. Office of Scientific and Technical Information (OSTI), December 1988. http://dx.doi.org/10.2172/913314.
Full textCzanderna, A. W., and H. H. Neidlinger. Polymers as advanced materials for desiccant applications, 1988. Office of Scientific and Technical Information (OSTI), September 1990. http://dx.doi.org/10.2172/6822580.
Full text