Academic literature on the topic 'Polymers-applications'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Polymers-applications.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Polymers-applications"

1

Priya, V. Sri Vajra, Hare Krishna Roy, N. jyothi, and N. Lakshmi Prasanthi. "Polymers in Drug Delivery Technology, Types of Polymers and Applications." Scholars Academic Journal of Pharmacy 5, no. 7 (July 2016): 305–8. http://dx.doi.org/10.21276/sajp.2016.5.7.7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cemka, Zuzanna, Paweł Szarlej, Edyta Piłat, Przemysław Gnatowski, Maciej Sienkiewicz, and Justyna Kucińska-Lipka. "Hydrogels Based on Natural Polymers for Cardiac Applications." Chemistry & Chemical Technology 16, no. 4 (December 22, 2022): 564–72. http://dx.doi.org/10.23939/chcht16.04.564.

Full text
Abstract:
In this work agar- and borax-based hydrogels with and without the addition of poly(vinyl alcohol) (PVA) at different concentrations were synthesized. Hydrogels were modified by the same amount of acetylsalicylic acid (ASA) which exhibits antithrombotic properties. The effect of modification by ASA on the properties of hydrogels was analyzed.
APA, Harvard, Vancouver, ISO, and other styles
3

Hazar Yoruç, Afife Binnaz, and Volkan Uğraşkan. "Green Polymers and Applications." Afyon Kocatepe University Journal of Sciences and Engineering 17, no. 1 (March 1, 2017): 318–37. http://dx.doi.org/10.5578/fmbd.53940.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kobayashi, Yukio. "Applications of conductive polymers." Kobunshi 37, no. 7 (1988): 534–37. http://dx.doi.org/10.1295/kobunshi.37.534.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Adhikari, Basudam, and Sarmishtha Majumdar. "Polymers in sensor applications." Progress in Polymer Science 29, no. 7 (July 2004): 699–766. http://dx.doi.org/10.1016/j.progpolymsci.2004.03.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zheng, Liuchun, Harihara S. Sundaram, Zhiyong Wei, Chuncheng Li, and Zhefan Yuan. "Applications of zwitterionic polymers." Reactive and Functional Polymers 118 (September 2017): 51–61. http://dx.doi.org/10.1016/j.reactfunctpolym.2017.07.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wnek, Gary. "Conducting polymers: Special applications." Journal of Solid State Chemistry 74, no. 2 (June 1988): 438. http://dx.doi.org/10.1016/0022-4596(88)90378-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wright, W. W. "Polymers in aerospace applications." Materials & Design 12, no. 4 (August 1991): 222–27. http://dx.doi.org/10.1016/0261-3069(91)90169-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

SOBCZAK, MARCIN, EWA OLEDZKA, WACLAW L. KOLODZIEJSKI, and RAFAL KUZMICZ. "Polymers for pharmaceutical applications." Polimery 52, no. 06 (June 2007): 411–20. http://dx.doi.org/10.14314/polimery.2007.411.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Simanek, Eric. "Polymers for Biomedical Applications." Molecular Pharmaceutics 7, no. 4 (August 2, 2010): 921. http://dx.doi.org/10.1021/mp100213f.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Polymers-applications"

1

Patil, Satish Amrutrao. "Ladder polymers for photonic applications." [S.l.] : [s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=972447490.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lochab, Bimlesh. "Polymers for electro-optic applications." Thesis, University of Oxford, 2006. http://ora.ox.ac.uk/objects/uuid:34ac7813-b315-415c-ac8a-eac269c23432.

Full text
Abstract:
Polymer based photovoltaic cells are being intensively investigated. In such cells three key processes need to occur; namely light absorption, charge separation of the exciton, and transport of the separated charges to the electrodes. Light absorption is reliant on the optical density of the polymer. In general charge separation is achieved by blending an electron acceptor with the polymer film. However, blending materials gives rise to potentially unreliable manufacturing and lifetime issues. This thesis describes the preparation of poly(l,4-phenylenevinylene) derivatives containing dipoles in which the process of charge separation can be achieved intramolecularly. The dipole was created with the use of electron donating alkoxy groups attached to the polymer backbone, and electron withdrawing nitro group attached to the fluorenyl side chains. These groups are believed to facilitate the dissociation of the photogenerated exciton, and potentially stabilise the holes and electrons that are formed when the exciton is separated. The fluorenyl side chains were attached to the polymer backbone via biphenyl or vinyl linkages. The polymers were primarily formed using the Gilch method and the conjugated polymers were obtained either via a soluble precursor route or directly from the monomer. The photophysical properties were studied for polymers with the fluorenyl side-chains as they were found to be more easily formed and stable. For poly[2-(7-nitro-9,9-dipropylfluorenyl)-5-(2'- ethylhexyloxy)-l,4-phenylenevinylene] it was found that the photoluminescence quantum yield dropped by a factor of eight relative to the polymer without the nitro group. It was further elucidated that this was due to the exciton being separated. Solar cells containing the polymers from this study showed modest performance.
APA, Harvard, Vancouver, ISO, and other styles
3

Kishi, Mariko. "Synthetic polymers for ophthalmic applications." Thesis, Aston University, 1987. http://publications.aston.ac.uk/9721/.

Full text
Abstract:
The contact lens represents a well-established important class of biomaterials. This thesis brings together the literature, mostly Japanese and American patents, concerned with an important group of polymers, `rigid gas permeable contact lens materials'. A comparison is made of similarities in the underlying chemical themes, centring on the use of variants of highly branched siloxy compounds with polymerizable methacrylate groups. There is a need for standard techniques to assess laboratory behaviour in relation to in vitro performance. A major part of the present work is dedicated to the establishment of such standardised techniques. It is apparent that property design requirements in this field (i.e. oxygen permeability, surface and mechanical properties) are to some extent conflicting. In principle, the structural approaches used to obtain high oxygen permeability lead to surface properties that are less than ideal in terms of compatibility with tears. PMMA is known to have uniquely good (but not perfect) surface properties in this respect; it has been used as a starting point in attempting to design new materials that possess a more acceptable compromise of transport and surface properties for ocular use. Initial examination of the oxygen permeabilities of relatively simple alkyl methacrylates, show that butyl methacrylate which has a permeability some fifty times greater than PMMA, represents an interesting and hitherto unexplored group of materials for ophthalmic applications. Consideration was similarly given to surface modification techniques that would produce materials having the ability to sustain coherent tear film in the eye without markedly impairing oxygen transport properties. Particular attention is paid to the use of oxygen plasma techniques in this respect. In conclusion, similar design considerations were applied to an extended wear hydrogel lens material in an attempt to overcome mechanical stability deficiencies which manifest themselves lq`in vivo' but not `in vitro'. A relatively simple structure modification, involving steric shielding of the amide substituent group, proved to be an effective solution to the problem.
APA, Harvard, Vancouver, ISO, and other styles
4

Bogdanowicz, Krzysztof Artur. "Liquid Crystalline Polymers for Smart Applications." Doctoral thesis, Universitat Rovira i Virgili, 2015. http://hdl.handle.net/10803/321835.

Full text
Abstract:
Polímers cristall-líquids (PCL) posseeixen propietats que són una combinació entre sòlids cristal·lins i fluids. Actualment, PCL que incorporen elements actius en l'estructura (pe, grups de foto-sensibles, dendrons, etc.) condueixen a un material selectivament sensible. S'informa que els polímers es poden aplicar en diversos sistemes pe com materials amb memòria de forma, sensors o pantalles foto-òptiques. Els nostres estudis se centren en dues aplicacions diferents: microcàpsules fotosensibles per a sistemes de lliurament controlat i les membranes autoacoblades conductores de protons per a la fotosíntesi artificial. La versatilitat i les propietats anisotrópicas de PCL, els fan com a candidats ideals per a nombrosos aplicacions intel·ligents. Per obtenir sistemes amb alliberament foto-activa, una família de copolímers, que conté alfa-estilbè i diferents espaiadors s'han dissenyat i sintetitzat. Alfa-estilbè és un mesogéno foto-actiu. Les microcàpsules basades d'alfa-metilestilbeno, amb vainillina en nucli, estaven preparats. Experiment d'alliberament amb i sense fotoirradiación va demostrar l'eficàcia d'aquest sistema. CLP d'estructura adequada per a auto-acoblament en una estructura columnar que podria ser efectiu en el transport de protons selectiu. Alineació homeotrópica de columnes en una membrana polimèrica permet aconseguir conductivitat de protons. Objectiu del nostre treball va ser: aconseguir estructures organitzades utilitzant poliamines modificades amb un mesógeno dendrític en posició lateral; preparació de membranes orientades usant aquests materials polimèrics; avaluar l'eficàcia de les membranes cap al transport de protons. Es van preparar membranes híbrides de ceràmica / poliamina. El material va mostrar alta conductivitat de protons selectiva i transport aigua-independent.
Actualmente, PCL que incorporan elementos activos en la estructura (p.e., grupos de foto-sensibles, dendrones, etc.) conducen a un material selectivamente sensible. Se informa de que los polímeros se pueden aplicar en varios sistemas p.e. como materiales con memoria de forma, sensores o pantallas foto-ópticas. Nuestros estudios se centran en dos aplicaciones diferentes: microcápsulas fotosensibles para sistemas de entrega controlada y las membranas autoensambladas conductoras de protones para la fotosíntesis artificial. La versatilidad y las propiedades anisotrópicas de PCL, los hacen como candidatos ideales para numerosos aplicaciones inteligentes. Para obtener sistemas con liberación foto-activa, una familia de copolímeros, que contiene alfa-estilbeno y diferentes espaciadores se han diseñado y sintetizado. Alfa-estilbeno es un mesogéno foto-activo. Las microcápsulas basadas de alfa-metilestilbeno, con vainillina en núcleo, estaban preparados. Experimento de liberación con y sin fotoirradiación demostró la eficacia de este sistema. CLP de estructura adecuada para auto-ensamblaje en una estructura columnar que podría ser efectivo en el transporte de protones selectivo. Alineación homeotrópica de columnas en una membrana polimérica permite conseguir conductividad de protones. Objetivo de nuestro trabajo fue: lograr estructuras organizadas utilizando poliaminas modificadas con un mesógeno dendrítico en posición lateral; preparación de membranas orientadas usando estos materiales poliméricos; evaluar la eficacia de las membranas hacia el transporte de protones. Se prepararon membranas híbridas de cerámica/poliamina. El material mostró alta conductividad de protones selectiva y transporte agua-independiente.
Liquid Crystalline Polymers (LCPs) possess properties which are a combination of crystalline solids and fluids. Currently, LCPs which incorporate active elements into the structure (i.e. photo-sensitive groups, dendrons, etc.) lead to selectively sensitive material. It is reported, that those polymers can be applied in a variety of systems i.e. as memory-shape materials, sensors or photo-optical displays. Our studies are focused on two different applications: photosensitive microcapsules for controlled delivery systems and self-assembly proton-conducting membranes for artificial photosynthesis. The extreme versatility and the characteristic anisotropic properties of LCPs, make them the ideal candidates for numerous smart applications. To achieve systems with photo-triggered release, a family of copolymers which contained alpha-methylstilbene and different spacers were designed and synthesized. Alpha-methylstilbene is a well-known photo-active mesogenic group. Microcapsules based on alpha-methylstilbene containing vanillin as a core were prepared. Release experiment in the presence and the absence of photoirradiation proved the effectiveness of this system. LC polymers of proper structure self-assembly into a columnar structure which could be effective in selective proton transport. Homeotropic alignment of columns in a polymeric membrane allows to achieve proton-conductivity. Aim of our work was: achieving organized structures using polyamine modified with a dendritic mesogen in side position; preparing oriented membranes based on this polymeric materials;assessing the effectiveness of the prepared membranes toward proton transport. Hybrid ceramic/polyamine membranes were prepared. The new material showed high selective proton conductivity and water independent transport.
APA, Harvard, Vancouver, ISO, and other styles
5

Inal, Sahika. "Responsive polymers for optical sensing applications." Phd thesis, Universität Potsdam, 2013. http://opus.kobv.de/ubp/volltexte/2014/7080/.

Full text
Abstract:
LCST-type synthetic thermoresponsive polymers can reversibly respond to certain stimuli in aqueous media with a massive change of their physical state. When fluorophores, that are sensitive to such changes, are incorporated into the polymeric structure, the response can be translated into a fluorescence signal. Based on this idea, this thesis presents sensing schemes which transduce the stimuli-induced variations in the solubility of polymer chains with covalently-bound fluorophores into a well-detectable fluorescence output. Benefiting from the principles of different photophysical phenomena, i.e. of fluorescence resonance energy transfer and solvatochromism, such fluorescent copolymers enabled monitoring of stimuli such as the solution temperature and ionic strength, but also of association/disassociation mechanisms with other macromolecules or of biochemical binding events through remarkable changes in their fluorescence properties. For instance, an aqueous ratiometric dual sensor for temperature and salts was developed, relying on the delicate supramolecular assembly of a thermoresponsive copolymer with a thiophene-based conjugated polyelectrolyte. Alternatively, by taking advantage of the sensitivity of solvatochromic fluorophores, an increase in solution temperature or the presence of analytes was signaled as an enhancement of the fluorescence intensity. A simultaneous use of the sensitivity of chains towards the temperature and a specific antibody allowed monitoring of more complex phenomena such as competitive binding of analytes. The use of different thermoresponsive polymers, namely poly(N-isopropylacrylamide) and poly(meth)acrylates bearing oligo(ethylene glycol) side chains, revealed that the responsive polymers differed widely in their ability to perform a particular sensing function. In order to address questions regarding the impact of the chemical structure of the host polymer on the sensing performance, the macromolecular assembly behavior below and above the phase transition temperature was evaluated by a combination of fluorescence and light scattering methods. It was found that although the temperature-triggered changes in the macroscopic absorption characteristics were similar for these polymers, properties such as the degree of hydration or the extent of interchain aggregations differed substantially. Therefore, in addition to the demonstration of strategies for fluorescence-based sensing with thermoresponsive polymers, this work highlights the role of the chemical structure of the two popular thermoresponsive polymers on the fluorescence response. The results are fundamentally important for the rational choice of polymeric materials for a specific sensing strategy.
Als Reaktion auf bestimmte äußere Stimuli ändern bestimmte wasserlösliche Polymere reversibel ihren physikalischen Zustand. Dieser Vorgang kann mithilfe von Fluorophoren, die in die Polymerstrukturen eingebaut werden und deren Fluoreszenzeigenschaften vom Polymer¬zustand abhängen, detektiert werden. Diese Idee ist der Ausgangspunkt der vorliegenden Arbeit, die sich damit beschäftigt, wie äußerlich induzierte Änderungen der Löslichkeit solcher Polymere mit kovalent gebundenen Fluorophoren in Wasser in ein deutlich messbares Fluoreszenzsignal übersetzt werden können. Dazu werden photophysikalische Phänomene wie Fluoreszenz-Resonanz¬energie¬transfer und Solvatochromie ausgenutzt. In Kombination mit einem responsiven Polymergerüst wird es möglich, verschiedene Stimuli wie Lösungs¬temperatur oder Ionenstärke, oder auch Assoziation-Dissoziation Reaktionen mit anderen Makromolekülen oder biochemische Bindungs¬reaktionen über die Änderung von Fluorezenz¬farbe bzw. –Intensität autonom mit bloßem Auge zu detektieren. Unter anderem wurde ein wässriger ratiometrischer Temperatur- und Salzsensor entwickelt, der auf der komplexen supramolekularen Struktur eines thermoresponsiven Copolymers und eines thiophenbasierten konjugierten Polyelektrolyts beruht. Die Anbindung solvato¬chromer Fluorophore erlaubte den empfindlichen Nachweis einer Temperatur¬änderung oder des Vorhandenseins von Analyten. Komplexere Phänomene wie das kompetitive Anbinden von Analyten ließen sich hochempfindlich steuern und auslesen, indem gleichzeitig die Sensitivität dieser Polymeren gegenüber der Temperatur und spezifischen Antikörpern ausgenutzt wurde. Überraschenderweise wiesen die hier untersuchten thermoresponsiven Polymere wie poly-N-isopropylacrylamid (pNIPAm) oder poly-Oligoethylenglykolmethacrylate (pOEGMA) große Unterschiede bzgl. ihrer responsiven optischen Eigenschaften auf. Dies erforderte eine ausführliche Charakterisierung des Fluoreszenz- und Aggregationsverhaltens, unter- und oberhalb des Phasenübergangs, im Bezug auf die chemische Struktur. Ein Ergebnis war, dass alle drei Polymertypen sehr ähnliche temperaturabhängige makroskopische Absorptionseigenschaften aufweisen, während sich die Eigenschaften auf molekularer Ebene, wie der Hydratisierungsgrad oder die intermolekulare Polymerkettenaggregation, bei diesen Polymeren sehr unterschiedlich. Diese Arbeit zeigt damit anhand zweier sehr etablierter thermoresponsiver Polymere, nämlich pNIPAm und pOEGMA, das die chemische Struktur entscheidend für den Einsatz dieser Polymere in fluoreszenzbasierten Sensoren ist. Diese Ergebnisse haben große Bedeutung für die gezielte Entwicklung von Polymermaterialien für fluoreszenzbasierte Assays.
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, Jinfang. "Xanthine-imprinted polymers for decaffeination applications." Thesis, University of Strathclyde, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.431777.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Spampinato, Nicoletta. "Ferroelectric polymers for organic electronic applications." Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0392/document.

Full text
Abstract:
L'électronique organique représente une alternative réaliste aux technologies conventionnelles à base de silicium par le design, la synthèse et la mise en oeuvre des matériaux organiques fonctionnels dans des dispositifs légers et flexibles. Les matériaux organiques, tels que les petites molécules ou les polymères organiques, sont avantageux pour leur faible coût, leur flexibilité et leur facilité de traitement. Grâce aux avantages liés à l'utilisation de matériaux organiques, en termes économiques et de gain de temps, l'électronique organique est devenue un domaine innovant qui s'applique aux technologies de l'énergie, de l'environnement, de la santé, de l'information et de la communication.L'électronique organique est issue de la découverte de polymères dotés de fonctionnalités semi-conductrices. Cependant, il ne faut pas négliger une autre classe de polymères exceptionnels, les polymères ferroélectriques. La nature électroactive des polymères ferroélectriques, qui sont également pyroélectriques et piézoélectriques, combinés aux avantages intrinsèques des polymères, les a désignés comme éléments constitutifs d’une gamme étendue de dispositifs électroniques organiques.La famille de polymères ferroélectriques la plus connue est celle du poly(fluorure de vinylidène) P(VDF) et de son copolymère avec le trifluoroéthylène, P(VDF-co-TrFE). La récupération d'énergie, le stockage et la détection de données, principales applications de l'électronique organique, peuvent potentiellement tous être réalisés avec ces matériaux fonctionnels exceptionnels. La ferroélectricité étant une propriété dépendant de la structure, il est indispensable de mieux comprendre les relations réciproques entre la structure et les propriétés ferroélectriques finales afin d'améliorer les applications existantes des polymères ferroélectriques en électronique organique et de promouvoir l'introduction du P(VDF-co-TrFE) dans de nouvelles applications.P(VDF-co-TrFE) en tant que polymère semi-cristallin possède des propriétés cristallines sensibles au traitement thermique. Puisque seules les régions cristallines contribuent a le commutation électronique de la polarisation et non les amorphes, le degré de cristallinité est un facteur clé pour moduler les propriétés ferroélectriques. En autre, l'orientation des cristallites ainsi que la présence de défauts dans les cristallites sont des paramètres cruciaux qui jouent un rôle important dans la définition des performances finales des dispositifs dans lesquels P(VDF-co-TrFE) est incorporé. Tel est l'objectif de cette thèse: atteindre une compréhension exhaustive des relations traitement-structure-fonction qui serviront d'outil pour moduler les performances des dispositifs ferroélectriques.De plus, les applications potentielles de P(VDF-co-TrFE) en électronique organique sont explorées en examinant sa mise en oeuvre dans: (1) des capteurs médicaux à cathéter piézoélectrique destinés à mesurer la fonction cardiaque et éventuellement à détecter maladies cardiaques et (2) dispositifs électroniques dans lesquels P(VDF-co-TrFE) est mélangé avec le polymère poly(3-hexylthiophène) semi-conducteur, P3HT. Ce dernier a déjà été appliqué dans les diodes à mémoire ferroélectrique non volatile et l’utilisation potentielle dans le champ de l’organique photovoltaïque est explorée
Organic electronics represent a realistic alternative to conventional silicon-based technologies through the design, synthesis and implementation of functional organic materials into light and flexible devices. Organic materials, such as small molecules or organic polymers, are advantageous for their low-cost, flexibility and easy processing. Thanks to the economical and timesaving advantages, organic electronics have emerged as an innovative field with application in energy, environment, health, information and communication technologies.Organic electronics originates from the discovery of polymers with semiconducting functionalities. However, one should not neglect another class of outstanding polymers, the ferroelectric polymers. The electroactive nature of ferroelectric polymers, which are also pyroelectric and piezoelectric, combined with the intrinsic advantages of polymers have designated them as constituent elements of a widespread range of organic electronic devices. The most well-known family of ferroelectric polymers is that of poly(vinylidene fluoride), P(VDF), and its copolymers with trifluoroethylene, P(VDF-co-TrFE). Energy harvesting, data storage and sensing, main applications of organic electronics, can potentially all be realised using these exceptional functional materials.Since ferroelectricity is a structure-dependent property an insight into the interrelations between structure and final ferroelectric properties is indispensable in order to improve existing applications of ferroelectric polymers in organic electronics and to promote the introduction of P(VDF-co-TrFE) in new application fields. P(VDF-co-TrFE) as semi-crystalline polymer possess crystalline properties which are sensitive to thermal treatment. Since only the crystalline regions contribute to ferroelectric switching and not the amorphous ones, the degree of crystallinity is a key factor to modulate the ferroelectric properties. Moreover, crystallites orientation as well as the presence of defects within the crystallites are crucial parameters playing an important role in defining the final performance of the devices in which P(VDF-co-TrFE) is incorporated.Herein stands the aim of this thesis: reach an exhaustive understanding of processing-structure-function relationships that will serve as tool to modulate ferroelectric devices performances.Going one step further, the potential applications of P(VDF-co-TrFE) in organic electronics are explored by investigating it in: (1) medical piezoelectric catheter sensors for measuring cardiac function and eventually for detecting cardiac disease and (2) electronic devices in which P(VDF-co-TrFE) is blended with the semiconducting polymer poly(3-hexylthiophene), P3HT. The latter has already been applied in non-volatile ferroelectric memory diodes and the potential use in organic photovoltaics is explored
APA, Harvard, Vancouver, ISO, and other styles
8

Kuroda, Kenichi 1972. "Thermally responsive polymers and their applications." Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/29641.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemistry, 2003.
Vita.
Includes bibliographical references.
This thesis focuses on development of polymeric materials that can alter their functions according to temperature changes. We chose poly(N-isopropylacrylamide) (polyNIPA) as a platform, which phase-separates from water upon heating. The thermally responsive properties and applications of polyNIPA are introduced in Chapter One. In Chapter Two, we described the synthesis of polyNIPA gels with an imidazole comomoer and examined copper ion adsorption by the swollen (room temperature) and shrunken gels (60⁰C). The data analysis using a Langmuir adsorption isotherm indicates that the imidazole groups form 2:1 and 4:1 complexes with a copper ion in the swollen and shrunken gels, respectively, which suggests that thermal gel swelling and shrinking control the formation of multivalent Cu complexes by changing the distance among imidazole groups. In Chapters Three to Six, the synthesis of polyNIPA-conjugated polymer block copolymers and their applications are described. Non-ionic water-soluble poly(phenylene-ethynylene)s (PPEs) (Chapter Three) were used as conjugated polymer segments in the block copolymers. In a route to synthesis of the block copolymers, atom transfer radical polymerization (ATRP) and nitroxide-mediated radical polymerization (NMRP) of NIPA were developed. Incorporation of ATRP or NMRP initiators to the polymer ends of PPEs and the following polymerizations of NIPA were expected to provide tri-block copolymers with precise structures. The ATRP method produced pure polyNIPA with monodisperse and defined molecular weights (Chapter Four). However, endcapping of PPEs with an ATRP initiator ((α-chloroamide) was not successful due to its instability to PPE polymerization conditions (Chapter Five).
(cont.) On the other hand, PPEs could be endcapped with a NMRP initiator (a tert-butyl nitroxide derivative), and the following NMRP of NIPA provided the tri-block copolymers (Chapter Six), phase-separate from aqueous solutions upon heating due to the polyNIPA aggregation. In Chapter Six, we examined fluorescence resonance energy transfer (FRET) between a PPE-polyNIPA block copolymer and Rhodamine B (RhB) bound to polyNIPA. The RhB emission from the polymer precipitates produced by thermally induced phase-separation from the aqueous mixtures increased relative to that from the solutions, which indicates that thermal precipitation brought the PPE and RhB within the F6rster radius of each other and induced FRET between the PPE and RhB.
by Kenichi Kuroda.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
9

Maine, Elicia M. A. (Margaret Anne). "Future of polymers in automotive applications." Thesis, Massachusetts Institute of Technology, 1997. http://hdl.handle.net/1721.1/10509.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Svensson, Mikael. "Conducting redox polymers for battery applications." Thesis, Uppsala universitet, Strukturkemi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-415137.

Full text
Abstract:
The near future will put a lot of demand on the increasing need for energy production and storage. Issues regarding the modern-day battery technology’s environmental benignity, safety and cost to sustain such demands thus serve as a huge bottleneck, necessitating the research into alternative electrochemical energy storage solutions. Conducting redox polymers are a class of materials which combines the concepts of conducting polymers and redox active molecules to work as fully organic electrode materials. In this work three conducting redox polymers based on 3,4-ethylenedioxythiopene and 3,4-propylenedioxythiopene (EPE) with hydroquinone, catechol and quinizarin pendant groups were investigated. The polymers were electrochemically characterized with regards to their ability to cycle protons (aqueous electrolyte) and cations (non-aqueous electrolyte), their kinetics and charge transport and as cathodes in a battery. In non-aqueous electrolyte, hydroquinone and catechol did not exhibit redox activity in a potential region where the backbone was conducting as they were not redoxmatched. Quinizarin showed redox-matching as concluded by in situ conductance and UV-vis measurements when cycling Na+, Li+, Ca2+ and Mg2+-ions in acetonitrile. Comparison of the kinetics revealed that the rate constant for Ca2+-ion cycling was several magnitudes larger than the rest, and galvanostatic charge/discharge showed that 90% of the polymer capacity was attainable at 5C. An EPE-Quinizarin cathode and metallic calcium anode coin cell assembly displayed output voltages of 2.4 V, and the presented material thus shows promising and exciting properties for future sustainable battery chemistries.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Polymers-applications"

1

Seymour, Raymond B., and Herman F. Mark, eds. Applications of Polymers. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4684-5448-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

1912-, Seymour Raymond Benedict, Mark H. F. 1895-, Battista O. A. 1917-, and Phillips Petroleum Company, eds. Applications of polymers. New York: Plenum Press, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chanda, Manas. Industrial Polymers, Specialty Polymers, and Their Applications. London: Taylor and Francis, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Britton, C. F. Polymers in marine applications. Oxford: Pergamon Press, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mahapatro, Anil, and Ankur S. Kulshrestha, eds. Polymers for Biomedical Applications. Washington, DC: American Chemical Society, 2008. http://dx.doi.org/10.1021/bk-2008-0977.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Scrosati, Bruno, ed. Applications of Electroactive Polymers. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1568-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gutiérrez, Tomy J., ed. Polymers for Food Applications. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94625-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Scrosati, Bruno. Applications of Electroactive Polymers. Dordrecht: Springer Netherlands, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bruno, Scrosati, ed. Applications of electroactive polymers. London: Chapman & Hall, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Polymers for packaging applications. Toronto: Apple Academic Press, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Polymers-applications"

1

Pittman, Charles U., and Charles E. Carraher. "Applications of Organometallic Polymers." In Applications of Polymers, 113–24. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4684-5448-2_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lange, Wendy. "Polymers in Automobile Applications." In Plastics and the Environment, 727–46. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2004. http://dx.doi.org/10.1002/0471721557.ch17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ganachari, Sharanabasava V. "Polymers for Energy Applications." In Handbook of Ecomaterials, 1–17. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-48281-1_194-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Joy, Nidhin, Geethy P. Gopalan, Joby Eldho, and Raju Francis. "Conducting Polymers: Biomedical Applications." In Biomedical Applications of Polymeric Materials and Composites, 37–89. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527690916.ch3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

GEBELEIN, CHARLES G. "Medical Applications of Polymers." In ACS Symposium Series, 535–56. Washington, D.C.: American Chemical Society, 1985. http://dx.doi.org/10.1021/bk-1985-0285.ch023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kulshrestha, Ankur S., and Anil Mahapatro. "Polymers for Biomedical Applications." In ACS Symposium Series, 1–7. Washington, DC: American Chemical Society, 2008. http://dx.doi.org/10.1021/bk-2008-0977.ch001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ganachari, Sharanabasava V. "Polymers for Energy Applications." In Handbook of Ecomaterials, 3011–27. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-68255-6_194.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Inzelt, György. "Applications of Conducting Polymers." In Monographs in Electrochemistry, 245–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27621-7_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Arunprasath, K., M. Vijayakumar, Pon Janani Sugumaran, P. Amuthakkannan, V. Manikandan, and V. Arumugaprabu. "Polymers for structural applications." In Materials for Lightweight Constructions, 39–60. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003252108-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Seymour, Raymond B. "Conductive Polymers." In Applications of Polymers, 69–71. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4684-5448-2_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Polymers-applications"

1

Poga, Constantina, and Robert Andrew Norwood. "Reliable polymers for OADM applications." In Organic Thin Films. Washington, D.C.: OSA, 1999. http://dx.doi.org/10.1364/otf.1999.suc2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ryles, R. G., and J. V. Cicchiello. "New Polymers for EOR Applications." In SPE Enhanced Oil Recovery Symposium. Society of Petroleum Engineers, 1986. http://dx.doi.org/10.2118/14947-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lippert, Thomas, Marc Hauer, Claude R. Phipps, and Alexander J. Wokaun. "Polymers designed for laser applications: fundamentals and applications." In International Symposium on High-Power Laser Ablation 2002, edited by Claude R. Phipps. SPIE, 2002. http://dx.doi.org/10.1117/12.482044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pawlowski, Kristin, Tyler St.Clair, Amber McReynolds, Cheol Park, Zoubeida Ounaies, Emilie Siochi, and Joycelyn Harrison. "Electrospun Electroactive Polymers for Actuator Applications." In 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2003. http://dx.doi.org/10.2514/6.2003-1768.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sinyukov, Alexander M., Megan R. Leahy, and L. Michael Hayden. "Electro-optic polymers for THz applications." In Optics East, edited by M. Saif Islam and Achyut K. Dutta. SPIE, 2004. http://dx.doi.org/10.1117/12.573839.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bauer, F. "High pressure applications of ferroelectric polymers." In High-pressure science and technology—1993. AIP, 1994. http://dx.doi.org/10.1063/1.46161.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Foshee, James J., Suning Tang, Jennifer K. Colegrove, and Kevin J. Zhang. "Photonic polymers and their optoelectronic applications." In Integrated Optoelectronics Devices, edited by Louay A. Eldada, Andrew R. Pirich, Paul L. Repak, Ray T. Chen, and Joseph C. Chon. SPIE, 2003. http://dx.doi.org/10.1117/12.479789.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kuhn, H. H., A. D. Child, and W. C. Kimbrell. "Toward real applications of conductive polymers." In International Conference on Science and Technology of Synthetic Metals. IEEE, 1994. http://dx.doi.org/10.1109/stsm.1994.835662.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chipara, Mircea, Jeffrey Zaleski, Bogdan Dragnea, Emma Shansky, Tiberiu-Dan Onuta, and Magdalena Dorina Chipara. "Self-Healing Polymers for Space Applications." In 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
14th AIAA/ASME/AHS Adaptive Structures Conference
7th
. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-1946.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

MEADOR, MARY, JAMES GAIER, BRIAN GOOD, G. SHARP, and MICHAEL MEADOR. "Electrically conducting polymers for aerospace applications." In Conference on Advanced SEI Technologies. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1991. http://dx.doi.org/10.2514/6.1991-3432.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Polymers-applications"

1

Gottesfeld, S. Conducting polymers: Synthesis and industrial applications. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/494121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gottesfeld, S. Conducting polymers: Synthesis and industrial applications. Office of Scientific and Technical Information (OSTI), May 1995. http://dx.doi.org/10.2172/105129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhang, Qiming. Electroactive Polymers for Smart Skin Applications. Fort Belvoir, VA: Defense Technical Information Center, November 2001. http://dx.doi.org/10.21236/ada390644.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhang, Qiming. Electroactive Polymers for Smart Skin Applications. Fort Belvoir, VA: Defense Technical Information Center, June 2000. http://dx.doi.org/10.21236/ada378481.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mather, Patrick T. New Polymers and Processes for Space Applications. Fort Belvoir, VA: Defense Technical Information Center, November 2003. http://dx.doi.org/10.21236/ada418326.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gurchinoff, Stephen, Duane Fish, and Brian Stern. High Performance Polymers for Small Engine Applications. Warrendale, PA: SAE International, October 2013. http://dx.doi.org/10.4271/2013-32-9012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Orlicki, Joshua A., Xianyan Wang, Matthew S. Bratcher, Robert E. Jensen, Lynne A. Samuelson, and Steven H. McKnight. Modified Hyperbranched Polymers for Fluorescence Sensing Applications. Fort Belvoir, VA: Defense Technical Information Center, June 2012. http://dx.doi.org/10.21236/ada568734.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Czanderna, A. W. Polymers as advanced materials for desiccant applications. Office of Scientific and Technical Information (OSTI), December 1990. http://dx.doi.org/10.2172/5774745.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Czanderna, A. W. Polymers as Advanced Materials for Desiccant Applications: 1987. Office of Scientific and Technical Information (OSTI), December 1988. http://dx.doi.org/10.2172/913314.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Czanderna, A. W., and H. H. Neidlinger. Polymers as advanced materials for desiccant applications, 1988. Office of Scientific and Technical Information (OSTI), September 1990. http://dx.doi.org/10.2172/6822580.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography