Academic literature on the topic 'Polymerization'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Polymerization.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Polymerization"
Chen, Mao, Honghong Gong, and Yu Gu. "Controlled/Living Radical Polymerization of Semifluorinated (Meth)acrylates." Synlett 29, no. 12 (April 18, 2018): 1543–51. http://dx.doi.org/10.1055/s-0036-1591974.
Full textPenczek, Stanislaw, Julia Pretula, and Stanislaw Slomkowski. "Ring-opening polymerization." Chemistry Teacher International 3, no. 2 (March 15, 2021): 33–57. http://dx.doi.org/10.1515/cti-2020-0028.
Full textCheah, Pohlee, Caitlin N. Bhikha, John H. O’Haver, and Adam E. Smith. "Effect of Oxygen and Initiator Solubility on Admicellar Polymerization of Styrene on Silica Surfaces." International Journal of Polymer Science 2017 (2017): 1–7. http://dx.doi.org/10.1155/2017/6308603.
Full textPrescott, S. W., M. J. Ballard, E. Rizzardo, and R. G. Gilbert. "RAFT in Emulsion Polymerization: What Makes it Different?" Australian Journal of Chemistry 55, no. 7 (2002): 415. http://dx.doi.org/10.1071/ch02073.
Full textLowe, A. B., and C. L. McCormick. "Homogeneous Controlled Free Radical Polymerization in Aqueous Media." Australian Journal of Chemistry 55, no. 7 (2002): 367. http://dx.doi.org/10.1071/ch02053.
Full textZhang, Xiaoqian, Wenli Guo, Yibo Wu, Liangfa Gong, Wei Li, Xiaoning Li, Shuxin Li, Yuwei Shang, Dan Yang, and Hao Wang. "Cationic polymerization of p-methylstyrene in selected ionic liquids and polymerization mechanism." Polymer Chemistry 7, no. 32 (2016): 5099–112. http://dx.doi.org/10.1039/c6py00796a.
Full textJenkins, Aubrey D., Richard G. Jones, and Graeme Moad. "Terminology for reversible-deactivation radical polymerization previously called "controlled" radical or "living" radical polymerization (IUPAC Recommendations 2010)." Pure and Applied Chemistry 82, no. 2 (November 18, 2009): 483–91. http://dx.doi.org/10.1351/pac-rep-08-04-03.
Full textHU, ZHIGANG, and DAN ZHAO. "POLYMERIZATION WITHIN CONFINED NANOCHANNELS OF POROUS METAL-ORGANIC FRAMEWORKS." Journal of Molecular and Engineering Materials 01, no. 02 (June 2013): 1330001. http://dx.doi.org/10.1142/s2251237313300015.
Full textWang, Qiao, Jin Liang Li, Ai Ping Fu, and Hong Liang Li. "Effect Factors on the Preparation of Polystyrene Microspheres by Emulsifier-Free Emulsion Polymerization." Advanced Materials Research 926-930 (May 2014): 304–7. http://dx.doi.org/10.4028/www.scientific.net/amr.926-930.304.
Full textZhang, Jie, Zhiming Zhang, Fulin Yang, Haoke Zhang, Jingzhi Sun, and Benzhong Tang. "Metal-Free Catalysts for the Polymerization of Alkynyl-Based Monomers." Catalysts 11, no. 1 (December 22, 2020): 1. http://dx.doi.org/10.3390/catal11010001.
Full textDissertations / Theses on the topic "Polymerization"
Hajime, Kammiyada. "Ring-Expansion Cationic Polymerization:A New Precision Polymerization for Cyclic Polymers." 京都大学 (Kyoto University), 2017. http://hdl.handle.net/2433/225628.
Full textAran, Bengi. "Polymerization And Characterization Of Methylmethacrylate By Atom Transfer Radical Polymerization." Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/12605042/index.pdf.
Full textdimethyl 2,2&rsquo
bipyridine. Polymers with controlled molecular weight were obtained. The polymer chains were shown by NMR investigation to be mostly syndiotactic. The molecular weight and molecular weight distribution of some polymer samples were measured by GPC method. The K and a constants in [h]=K Ma equation were measured as 9.13x10-5 and 0.74, respectively. FT-IR and X-Ray results showed regularity in polymer chains. The molecular weight-Tg relations were verified from results of molecular weight-DSC results.
Barnette, Darrell Thomas. "Continuous miniemulsion polymerization." Diss., Georgia Institute of Technology, 1987. http://hdl.handle.net/1853/12518.
Full textEndsor, Robert M. "Living cationic polymerization." Thesis, Aston University, 1997. http://publications.aston.ac.uk/9597/.
Full textBrodsky, Colin John. "Graft polymerization lithography." Access restricted to users with UT Austin EID Full text (PDF) from UMI/Dissertation Abstracts International, 2001. http://wwwlib.umi.com/cr/utexas/fullcit?p3024998.
Full textVale, Hugo. "Population Balance Modeling of Emulsion Polymerization Reactors : applications to Vinyl Chloride Polymerization." Lyon 1, 2007. http://www.theses.fr/2007LYO10034.
Full textCette thèse est une contribution au développement de modèles mécanistiques de la polymérisation en émulsion et, plus particulièrement, une contribution à la modélisation de la formation des particules et de leur distribution de taille (DTP) lors de la polymérisation en émulsion du chlorure de vinyle. La première partie de l'étude est consacrée à l'obtention de données expérimentales. Des polymérisations ab initio ont été réalisées afin d'obtenir des données fiables sur l'effet de la concentration de tensioactif, concentration d'initiateur, vitesse d'agitation et rapport monomère/eau sur le nombre de particules formées et sur la cinétique de polymérisation. Des polymérisations ensemencées ont également été réalisées afin de déterminer l'influence de la quantité de semence et de la concentration de tensioactif sur la formation de particules par nucléation secondaire. Enfin, les isothermes d'adsorption du SDS et du SDBS sur des particules de latex de poly (chlorure de vinyle) ont été déterminées. La deuxième partie de l'étude concerne le développement et la validation du modèle de polymérisation. Celui-ci à la particularité d'utiliser les bilans de population propres aux systèmes ‘zéro-un-deux' pour déterminer la distribution jointe du nombre de radicaux et de la taille des particules. Dans l'ensemble, les résultats obtenus montrent que le modèle proposé est capable de décrire les principaux comportements retrouvés lors des polymérisations avec des valeurs physiquement plausibles des paramètres inconnus ou ajustables. Pour ce qui concerne la formation des particules, il s'avère que la prise en compte de la possibilité de nucléation (homogène ou micellaire) par les radicaux désorbés aide à expliquer les valeurs élevées du nombre de particules ainsi que l'effet négligeable de la concentration d'initiateur sur le nombre de particules. En autre, il est démontré que le phénomène d'agrégation des particules doit être pris en considération afin d'obtenir des DTPs cohérentes. Dans la troisième et dernière partie, deux nouvelles méthodes numériques pour la résolution de bilans de population d'intérêt pour la modélisation des systèmes de polymérisation en émulsion sont proposées et analysées
Ding, Shijie. "Atom transfer radical polymerization." Laramie, Wyo. : University of Wyoming, 2006. http://proquest.umi.com/pqdweb?did=1225138911&sid=1&Fmt=2&clientId=18949&RQT=309&VName=PQD.
Full textSong, Zhiqiang. "Kinetics of emulsion polymerization." Diss., Georgia Institute of Technology, 1988. http://hdl.handle.net/1853/10148.
Full textWong, Ji Sam. "Modeling polymerization-based amplification." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/104123.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 117-120).
Eosin, a photoreducible xanthene derivative, acts as a Type II photoinitiator of free radical polymerizations when used in combination with alcohols or amines as co-initiators. Previous work utilizing eosin in polymerizations focused on high concentrations of initiators but it has recently been gaining use in bio-applications at lower concentrations due to its ability to initiate polymerizations when illuminated by harmless visible light even in the presence of orders-of-magnitude larger amounts of dissolved oxygen which acts as an inhibitor. We investigated the mechanism behind eosin's role in the polymerization process and its ability to initiate polymerization at concentrations lower than that of oxygen. A series of model simulation studies that systematically examined the effects of including additional elementary reactions based on proposed reactions in published literature into the classical free radical polymerization scheme without fitting any unknown parameters to experimental results were performed and analyzed. The first study examined the effect on having an eosin regeneration reaction between the reduced eosin radical which is formed during the photogeneration of free radicals, and the peroxy radical formed by inhibiting reactions of propagating radicals with oxygen. This reaction results in an unreactive hydroperoxy species and the regeneration of ground state eosin which can then produce even more radicals that undergo propagation. The simulation results indicated that the additional eosin regeneration reaction did explain eosin's ability to initiate polymerization at lower concentrations than oxygen, but the best predicted times required for the formation of polymer was larger than experiments by an order of magnitude, suggesting that the reaction scheme was incomplete. We subsequently incorporated an amine chain peroxidation reaction into the overall reaction scheme and determined the effects of such a change. The amine chain peroxidation reaction involves the peroxy radical extracting a hydrogen atom from the tertiary amines present in the reaction mixture, forming an unreactive hydroperoxide species and an amino-radical that can further undergo propagation. The addition of this reaction greatly increased the rate of oxygen consumption and reduced the predicted polymerization times to an order of magnitude lower than experiments. In addition to purely kinetic studies on the overall reaction scheme, a one-dimensional reaction-diffusion model was also created to understand the effects of having a continuously diffusing oxygen flux on the overall polymerization process. The time course of polymerization and spatial variations when using the various reaction schemes were analyzed and contrasted. The models predicted the formation of a reaction front which forms at the onset of polymerization and slowly moves towards the closed surface, tracking the diffusion of oxygen back into the reaction system. A surface region of higher eosin concentrations was also simulated to model the effects of binding events occurring in polymerization-based amplification (PBA). The addition of a small amount of eosin on the surface resulted in slightly faster predicted polymerization times close to the surface, similar to experimental observations where a surface polymer is first formed before the whole solution polymerizes where binding events have occurred.
by Ji Sam Wong.
Ph. D.
Qi, Genggeng. "Unconventional radical miniemulsion polymerization." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/26547.
Full textCommittee Chair: Jones, Christopher W.; Committee Chair: Schork, F. Joseph; Committee Member: Koros, William J.; Committee Member: Lyon, Andrew; Committee Member: Nenes, Athanasios. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Books on the topic "Polymerization"
Hadjichristidis, Nikos, and Akira Hirao, eds. Anionic Polymerization. Tokyo: Springer Japan, 2015. http://dx.doi.org/10.1007/978-4-431-54186-8.
Full textBelfield, Kevin D., and James V. Crivello, eds. Photoinitiated Polymerization. Washington, DC: American Chemical Society, 2003. http://dx.doi.org/10.1021/bk-2003-0847.
Full textArjunan, Palanisamy, James E. McGrath, and Thomas L. Hanlon, eds. Olefin Polymerization. Washington, DC: American Chemical Society, 1999. http://dx.doi.org/10.1021/bk-2000-0749.
Full textFaust, Rudolf, and Timothy D. Shaffer, eds. Cationic Polymerization. Washington, DC: American Chemical Society, 1997. http://dx.doi.org/10.1021/bk-1997-0665.
Full textQin, Anjun, and Ben Zhong Tang, eds. Click Polymerization. Cambridge: Royal Society of Chemistry, 2018. http://dx.doi.org/10.1039/9781788010108.
Full textBuchmeiser, Michael R., ed. Metathesis Polymerization. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/b101315.
Full textR, Buchmeiser Michael, ed. Metathesis polymerization. Berlin: Springer, 2005.
Find full text1960-, Belfield Kevin, and Crivello James V. 1940-, eds. Photoinitiated polymerization. Washington, DC: American Chemical Society, 2003.
Find full textKennedy, Joseph Paul. Carbocationic polymerization. Malabar, Fla: Krieger Pub. Co., 1991.
Find full textYasuda, H. Plasma polymerization. Orlando: Academic Press, 1985.
Find full textBook chapters on the topic "Polymerization"
Ambade, Ashootosh V. "Ring-Opening Polymerization and Metathesis Polymerizations." In Metal-Catalyzed Polymerization, 137–60. Boca Raton : CRC Press, 2018.: CRC Press, 2017. http://dx.doi.org/10.1201/9781315153919-4.
Full textTadros, Tharwat. "Polymerization." In Encyclopedia of Colloid and Interface Science, 995–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-20665-8_134.
Full textGooch, Jan W. "Polymerization." In Encyclopedic Dictionary of Polymers, 564. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_9133.
Full textDyson, R. W. "Polymerization." In Specialty Polymers, 20–37. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4615-7894-9_3.
Full textDyson, R. W. "Polymerization." In Specialty Polymers, 19–36. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-009-0025-7_3.
Full textMishra, Munmaya, and Biao Duan. "Polymerization." In The Essential Handbook of Polymer Terms and Attributes, 175. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003161318-171.
Full textMILLER, I. K., and J. ZIMMERMAN. "Condensation Polymerization and Polymerization Mechanisms." In ACS Symposium Series, 159–73. Washington, D.C.: American Chemical Society, 1985. http://dx.doi.org/10.1021/bk-1985-0285.ch008.
Full textRatkanthwar, Kedar, Junpeng Zhao, Hefeng Zhang, Nikos Hadjichristidis, and Jimmy Mays. "Schlenk Techniques for Anionic Polymerization." In Anionic Polymerization, 3–18. Tokyo: Springer Japan, 2015. http://dx.doi.org/10.1007/978-4-431-54186-8_1.
Full textChen, Yougen, Keita Fuchise, Toshifumi Satoh, and Toyoji Kakuchi. "Group Transfer Polymerization of Acrylic Monomers." In Anionic Polymerization, 451–94. Tokyo: Springer Japan, 2015. http://dx.doi.org/10.1007/978-4-431-54186-8_10.
Full textLi, Zhong, and Durairaj Baskaran. "Surface-Initiated Anionic Polymerization from Nanomaterials." In Anionic Polymerization, 495–537. Tokyo: Springer Japan, 2015. http://dx.doi.org/10.1007/978-4-431-54186-8_11.
Full textConference papers on the topic "Polymerization"
Jaiswal, Arun, Sweta Rani, Gaurav Pratap Singh, Akanksha Sharma, Aman Singhal, Sumit Saxena, and Shobha Shukla. "Combining Single and Two -photon Polymerization: An Approach to Generate Laminated Anticounterfeiting Tags." In Frontiers in Optics, JD4A.81. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/fio.2024.jd4a.81.
Full textJohnson, Jason E., Yijie Chen, Paul Somers, and Xianfan Xu. "Modeling of polymerization kinetics in femtosecond two photon polymerization." In Synthesis and Photonics of Nanoscale Materials XVIII, edited by Andrei V. Kabashin, Jan J. Dubowski, David B. Geohegan, and Maria Farsari. SPIE, 2021. http://dx.doi.org/10.1117/12.2581960.
Full textCademartiri, Ludovico, Reihaneh Malakooti, Georg von Freymann, Yasemin Akçakir, André C. Arsenault, Srebri Petrov, Andrea Migliori, et al. "Nanocrystal Plasma Polymerization." In PHYSICS OF SEMICONDUCTORS: 28th International Conference on the Physics of Semiconductors - ICPS 2006. AIP, 2007. http://dx.doi.org/10.1063/1.2730258.
Full textPojman, John. "Frontal polymerization in microgravity." In 36th AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1998. http://dx.doi.org/10.2514/6.1998-813.
Full textJohnson, Heather F., Sahban N. Ozair, Andrew T. Jamieson, Brian C. Trinque, Colin C. Brodsky, and C. Grant Willson. "Cationic graft polymerization lithography." In Microlithography 2003, edited by Roxann L. Engelstad. SPIE, 2003. http://dx.doi.org/10.1117/12.484974.
Full textCENTELLAS, POLETTE, MOSTAFA YOURDKHANI, IAN D. ROBERTSON, JEFFREY S. MOORE, NANCY R. SOTTOS, and SCOTT R. WHITE. "Frontal Polymerization of Dicyclopentadiene." In American Society for Composites 2017. Lancaster, PA: DEStech Publications, Inc., 2017. http://dx.doi.org/10.12783/asc2017/15291.
Full textWang, Chunhong, and Ming Zhang. "Study on the Self-polymerization and Co-polymerization Properties of Gadolinium Methacrylate." In International Conference on Industrial Application Engineering 2017. The Institute of Industrial Applications Engineers, 2017. http://dx.doi.org/10.12792/iciae2017.022.
Full textZhang, Yujuan, Jing Xu, Mengting Duan, Dandan Zhu, Defeng Wu, Ming Zhang, and Chunhong Wang. "An Investigation on Self-polymerization and Co-polymerization Properties of Lead Methacrylate." In International Conference on Industrial Application Engineering 2019. The Institute of Industrial Applications Engineers, 2019. http://dx.doi.org/10.12792/iciae2019.015.
Full textLiu, Ting, Shi-Jian Chen, and Bo-Quan Jiang. "Preparation of Methylphenylvinyl Raw Rubber by Bulk Polymerization and Ring-Opening Polymerization Methods." In 2015 International Conference on Material Science and Applications (icmsa-15). Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/icmsa-15.2015.61.
Full textClare, D., G. Gharst, and T. Sanders. "Transglutaminase Polymerization of Peanut Proteins." In 13th World Congress of Food Science & Technology. Les Ulis, France: EDP Sciences, 2006. http://dx.doi.org/10.1051/iufost:20060479.
Full textReports on the topic "Polymerization"
Matyjaszewski, Krzysztof. Introduction of Living Polymerization. Living and/or Controlled Polymerization. Fort Belvoir, VA: Defense Technical Information Center, June 1994. http://dx.doi.org/10.21236/ada280800.
Full textTaylor, C., and C. Wilkerson. Surface polymerization agents. Office of Scientific and Technical Information (OSTI), December 1996. http://dx.doi.org/10.2172/442223.
Full textSchrock, Richard R. Ring Opening Metathesis Polymerization. Fort Belvoir, VA: Defense Technical Information Center, January 1992. http://dx.doi.org/10.21236/ada244693.
Full textTumas, W., K. Ott, and R. T. Baker. Heterogeneous oxidative and polymerization processes. Office of Scientific and Technical Information (OSTI), November 1998. http://dx.doi.org/10.2172/672308.
Full textGrubbs, Robert H. Living Catalysts for Cyclohexdiene Polymerization. Fort Belvoir, VA: Defense Technical Information Center, July 1996. http://dx.doi.org/10.21236/ada326125.
Full textChen, Peng. Single-Molecule Visualization of Living Polymerization. Fort Belvoir, VA: Defense Technical Information Center, February 2014. http://dx.doi.org/10.21236/ada606984.
Full textAdnani-Gleason, Z. Polymerization of Amino Acids on Kaolinite. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.2372.
Full textKatz, Thomas J. Polymer Syntheses and Mechanisms of Polymerization. Fort Belvoir, VA: Defense Technical Information Center, March 1991. http://dx.doi.org/10.21236/ada233034.
Full textHurlbutt, Katey. Silicone Resins for Vat Polymerization Printing. Office of Scientific and Technical Information (OSTI), March 2024. http://dx.doi.org/10.2172/2318929.
Full textWaite, J. H. Polymerization of Quinone-Crosslinked Marine Bioadhesive Protein. Fort Belvoir, VA: Defense Technical Information Center, October 1988. http://dx.doi.org/10.21236/ada200224.
Full text