Dissertations / Theses on the topic 'Polymères – Innovation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 19 dissertations / theses for your research on the topic 'Polymères – Innovation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Pion, Florian. "L'acide férulique, un synthon naturel pour la préparation de nouveaux polymères aromatiques." Electronic Thesis or Diss., Paris, AgroParisTech, 2014. http://www.theses.fr/2014AGPT0007.
Full textLignin is the most abundant component of wood after cellulose and is separated from whilepaper production. Within this lingo-cellulosic biomass, in case of graminous, ferulic acid is a crosslinkingagent binding lignin to polysaccharide fibers to increase its mechanical properties. If lignin iscomplex and poorly degradable, ferulic acid, as it is present free, is extractible in alkali media frommany resources (beetroot pulp, wheat, corn, rice...).By its aromatic nature, this p-hydroxycinnamic acid seems interesting to prepare new polymersincorporating biobased aromatic units. Indeed, if biobased polymers are more and more nowadays,today biobased aromatic units are still missing.In this aim, into the APSYNTH team, we developed a new class of biobased bisphenols obtainedthrough enzymatic catalysis. These bisphenols were then implicated in different strategies to developnew copolyesters, polyurethanes and polyphenolic oligomers. This work describes the synthesis andcharacterization of this new bisphenols derived from ferulic acid, as well as the resulting polymers
Eltzer, Thomas. "Contribution à l'intégration des approches standard et inventives dans la conception : Application à l'injection de thermoplastiques." Université Louis Pasteur (Strasbourg) (1971-2008), 2005. http://www.theses.fr/2005STR13174.
Full textInnovation is a real need for industry today. Technical dimension of innovation relies on invention, which means technical problem solving. Our research contributes in building methodological support, assisting technical problem solving in design. The first step is the identification of a problematics in injection molding design, based on the one hand on the analysis of nine projects in two different companies, and on the other hand on a litterature review. This problematics is synthesised in the shape of three conflicts that need to be solved. These three conflicts are then generalised in a problematics in the field of technical system design. To do so, three directions existing in litterature have been reviewed: concurrent engineering, inventive design and TRIZ. The built contributions are presented in the second step. They aim at solving both of the identified problematics. Our contributions are: a knowledge modeling principle (based on three kinds of parameters, linked by objective laws) and a method using this technical knowledge (either in order to identify known solution concepts in the frame of standard design, or to formulate a key contradiction that is to be solved using TRIZ tools in the frame of inventive design). Knowledge modeling principle has been applied to injection molding in order to propose an extended knowledge base. The third step is the testing of our contributions on three projects, managed in the companies already mentionned. It has been possible to propose concept solutions to continue these projects, bloqued due to technical problem. Hence, the efficiency of our contributions has been proved
Merzouk, Walid Adel. "Study of an integrated on-chip interferometer. Application for the characterization of innovative transducers." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLV014/document.
Full textThis work concerns the study of two elements of a system of nanopositioning and micromanipulation: a) integrated on-chip interferometric sensor; its characteristics, peculiarities and potential are studied in detail; b) an element usable in sensor and actuator mode: an electro-active flexural polymer.The PicoMove interferometer is the result of the collaboration between LISV and the company TeemPhotonics. This interferometer, which operates in the mid-infrared range (1.55 μm), is based on optical guide technology that gives a high degree of robustness to the external environment. Its architecture is based on a modified Michelson-Young structure. Experiments have been implemented to characterize its performance. It has been demonstrated nanometric resolution and very low noise level. A spectral power density of 100 fm/√Hz was reached under static conditions.In addition, its robustness to the environmental conditions is demonstrated, and the metrological specificities are discussed with details about the specific error sources. It is applied to a nanopositioning stage using mobile coil and flexible guidance.The second point of this PhD work concerns the study of electromechanical properties of an ionic electroactive polymer (IEAP) in a flexible cantilever configuration. It is able to operate in actuator mode and in sensor mode. For the actuator part, its stiffness and its natural frequency are studied. For the sensor part, its bandwidth, resolution and transfer function are experimentally studied.The micrometric capabilities of this polymer in actuator and sensor mode are demonstrated and discussed
Lagel, Marie-Christine. "Développement de nouveaux matériaux à base de polymères naturels et leurs applications." Thesis, Université de Lorraine, 2015. http://www.theses.fr/2015LORR0178/document.
Full textWith the constant increase of oil prices and with the dwindling of fossil resources, "green" alternatives must be found. Thus, first research was conducted on the possibility to develop synthetic phenolic adhesives for wood-based panels where a part of phenol was substituted by wheat proteins. Similarly, tannins which are natural polyphenolic molecules can be used as an alternative to synthetic chemical products. Chestnut tannin, a hydrolysable tannin was used to substitute part of phenol during the synthesis of phenolic resins. The characteristics of these resins were studied and the resins used for the manufacture of rigid phenolic foams. This is a new step towards the development and future commercialization of more environmentally friendly materials. Furthermore, condensed flavonoid tannins were also used in the development of tannins-furanic biobased rigid foams. Quebracho wood tannin extract was coupled with furfuryl alcohol another material of natural, agricultural origin. These "green" foams show good mechanical strength, good thermal performance and do not burn, thus they are entirely suitable for use in building insulation. Finally, new types of materials made from the same natural products (tannins and furfuryl alcohol) were developed during the research described in this thesis: biobased abrasive and friction materials. Abrasive wheels and abrasive discs for steel molding and steel cutting using a biobased matrix were thus developed and tested. Moreover, automotive brake pads were prepared and were tested under real vehicle application conditions. All these new materials showed excellent properties compared to commercial materials and yielded excellent results comparable and sometime superior to their synthetic commercial equivalents
Meabe, Iturbe Leire. "Innovative polycarbonates for lithium conducting polymer electrolytes." Thesis, Pau, 2019. http://www.theses.fr/2019PAUU3042.
Full textThe 21st century must address new challenges. The highly qualified life, demanded by modern society, requires constant developments. Energy is the essential ingredient for the economic and social development. The technological revolution that we are now suffering has as a principle the energy produced by coal, oil, and gas. However, the consumption of these energy sources are limited and additionally, during the last decades have been strongly criticized due to the high CO2 emissions released. Besides, the energy produced by renewable energies are promising alternative supplies to limited non-renewable resources. Little by little, the use of fuel-based energy sources will be reduced and renewable solar energy, wind power, hydropower, geothermal energy and bioenergy will be settled in our life. Nevertheless, due to the intermittent availability of these type of resources, good energy storage systems have to be designed. Among the all systems, electrochemical energy storage systems (EESS)s seem to be the best alternative for the use of portable electronics, electric vehicles and smart grid facilities.Generally, a battery contains a liquid electrolyte on it, which is based on a salt dissolved in a liquid organic solvent. This solvent is known to be toxic and highly flammable. Great efforts have been devoted to design safe electrolytes. Thus, polymer electrolytes have been proposed as safe materials. Nevertheless, the ionic conductivity, lithium transference number and electrochemical stability window should be addressed in order to be used in different applications. In this direction, in this thesis different polycarbonates have been proposed as promising host materials and they have been evaluated in as safe electrolytes
Maftei, Gabriella. "Systèmes polymères sous forme de particules pour l'immobilisation et le relargage contrôlé de principes biologiquement actifs." Pau, 2009. http://www.theses.fr/2009PAUU3005.
Full textIn 2005, sales of systems for controlled release of bioactive substances have summed over 20% of total pharmaceutical sales. To achieve these systems aimed to reduce the frequency of drug doses, increasing their efficiency by locating the place of action and decreasing the dose necessary to ensure a uniform product issue was considered. To elaborate these drug release systems, the most important aspect is the choice of the polymer matrix involved in the implementation of release, or the material support for biologically active principle. In this thesis interpenetrated-interconnected networks (IPN) based on carboxymethylcellulose (CMC), poly(vinyl alcohol) (PVA) and gelatin (GEL) for developing systems with drug-polymer sustained release are presented. They are obtained by crosslinking these polymers with either epichlorohydrin (EpCl) in alkaline medium or glutaric aldehyde (AG) in neutral or acid medium. CMC, PVA and GEL are polymers (natural and synthetic) characterized by their biocompatibility and biodegradability, necessary conditions for materials used in biomedical applications. Reaction parameters of the synthesis of IPN based hydrogels under forms of film or particles were discussed and related with the properties of such materials. (composition, morphology, swelling. . . ). Inclusion and release of drugs were studied; their mechanism, kinetics and efficiency were evaluated according to the structural and physico-chemical characteristics of the materials, especially their swelling properties in aqueous media. The same systems were characterized in terms of antimicrobial activity and toxicity; potential in vivo applications of polymer-drug systems are described. Moreover magnetic polymer microparticles were elaborated and characterized. They allow specific applications which are discussed
Turbiez, Mathieu. "Nouveaux systèmes conjugués linéaires intégrant des motifs 3,4-éthylènedioxythiophènes (EDOT) : synthèse et étude des propriétés électroniques." Angers, 2003. http://www.theses.fr/2003ANGE0012.
Full textThis work concerns the development and the study of the properties of new linear conjugated systems (LCS) built with 3,4-ethylenedioxythiophenes (EDOT) moieties. The synthesis of oligomers varying by their length, the number and the position of the EDOT units in the conjugated chain is described. The analysis of the optical and electrochemical properties clearly shows a marked influence of the EDOT unit on the structure of oligomers. The donor effect of the ethylenedioxy group increases the level of the HOMO and contributes to locate the positive charge on the EDOT moieties. A rigidification of the molecules, by intramolecular interactions between oxygen atoms of ethylenedioxy group and the sulphur atoms of an adjacent thiophene cycle, is observed. The last part proposes two alternatives for replacing the EDOT core, its sulphur analogue, EDST, and the3,6-dimethoxy-thienothiophene, which constitute interesting ways to obtain low gap polymers more soluble than the PEDOT
Grosse, Charlotte. "Development of innovative bio-based treatments for wood modification with bio-polyesters." Thesis, Université de Lorraine, 2018. http://www.theses.fr/2018LORR0213.
Full textWood thermo-chemical modification process consists of permanent enhancement of wood properties in the core of the material. By decreasing wood equilibrium moisture content below the limit of fungi development, one could in addition reduce the dimensional variations due to humidity. A better dimensional stability of wood would be beneficial to durability of assemblies and surface coatings, further improving the performance of the material. Hydroxyl groups from wood polymers are responsible for the material hydrophilicity. The thermochemical modifications considered in this work mainly consist in limiting the access to these groups and / or reducing their number, by impregnation of bio-based monomers / oligomers (oligomers of lactic acid (OLA) or oligomers of butylene succinate (OBS)) followed by their in situ polymerisation by heat treatment. The hygroscopic behaviour of the material, the persistence of oligomers in the wood and the biological resistance of the treated wood are the criteria for the selection of treatments. The selected treatments lead to materials with enhanced dimensional stability and biological resistance. The potential applications of these materials have been evaluated after characterisation of mechanical properties, adhesion of the surface coatings and bonding capacity of the treated wood
Guillemet, Richard. "La gestion de projets fondés sur des connaissances scientifiques en voie d'émergence : le cas d'un projet de recherche relatif à un emballage biodégradable à base de biopolymères issus d'amidon de blé." Reims, 2007. http://theses.univ-reims.fr/exl-doc/GED00000704.pdf.
Full textThese last years, the project management knew a significant development as well by its use in various organizations and sectors as by the theoretical analyses which focus on it. The aim of this work is to show the difficulties induced by such a project management in projects based on the creation of new scientific knowledge likely to give birth to a new paradigm. Starting from the analysis of a research project relative to a biodegradable starch-based packaging, this work shows, firstly, that inherent uncertainty relative to the production of science limits the effectiveness of the project management. Indeed, knowledge to be created for the realization of a project becomes concomitant with the project itself but also with the kind of products and markets and thus with the actors taking part in the project. Consequently, it seems impossible to optirnize the triptych cost/time/quality. Secondly, it highlights that science-based projects are carried out in ex-ante unknown complex interorganisational configurations, which makes problematic any ex-ante constitution of the network in which the project will be managed. Moreover, these inter-organisational configurations require compromises making it possible the convergence of the different objectives and temporal horizons from the various actors taking part in this type of project. Consequently, the project management constitutes a rational myth, which is the result of making the bet to explore only one potentiality of the emergent paradigm whereas there are different ones
Alhajj, Assaf Salim. "Innovative nanostructured textiles for thermal comfort." Thesis, Lille 1, 2020. http://www.theses.fr/2020LIL1I012.
Full textFor the past ten years, photonic nanostructures have represented a paradigm for the control of thermal radiations, offering a panel of exciting properties for energy applications. Because of their abilities to control and manage electromagnetic waves at the Mid-Infrared (Mid-IR) wavelength scale, photonic nanostructures demonstrate their ability to manage thermal radiations properties in a way drastically different from conventional thermal emitters. The fundamental advances in controlling thermal radiation led to different applications in the energy domain, as thermo photovoltaic devices or through the concept of daytime radiative cooling to passively decrease the temperature of terrestrial structures. Recently, another field of application has appeared in the thermal radiation control, with the introduction of photonic nanostructures in textiles for personal thermoregulation. The goal of the thesis is to study different passive photonic membranes that modulate the human body optical radiations in the Mid-IR for personal thermoregulation. We have investigated the optical properties of different polymer membranes, considering the effect of their structuration. We showed that a photonic crystal membrane is able to modulate the transmission coefficient by 28% in benefit or deficit of both the absorption and reflection. We analyzed the thermal balance between the human body and the indoor environment through the photonic membrane, considering the radiation, convection and conduction mechanisms. We found that the temperature of the skin is almost 2°C higher when the human body is clothed with a structured membrane. The study was carried out on analytical calculations and numerical simulation with the help of the finite element method (FEM). The numerical study was supported by experiments in fabrication in the IEMN cleaning room and in characterization by infrared spectroscopy (FTIR) at the HEI engineering school
Rodriguez, Vilches Seila. "Nanostructuration of innovative molecular imprinted polymers for their use in protein detection." Toulouse 3, 2011. http://thesesups.ups-tlse.fr/1387/.
Full textThe aim of this PhD work was to design and develop a new type of nanostructured material that could be further used in a biochip capable of selectively detecting proteins such cancer biomarkers. The chosen method to achieve this goal was the molecularly imprinted polymer (MIP) technique. The MIP had to be structured in nanometric lines to be coupled subsequently with the diffracting label-free detection. During the first part of this project, different hydrogel formulations were assessed, which needed to respond to several specifications: polymerization process at 25-37°C in phosphate buffer solution and a polymerization time of less than 15 minutes. In addition, the hydrogel required functional groups that can interact with the protein, it needed to be transparent and biocompatible. Finally, these materials had to have pore sizes compatible with that of the protein for successful surface recognition and exhibit mechanical properties which are compatible with routine technological processes. Three formulations for hydrogel synthesis were selected, including functional groups presenting either a positive or negative charge, or no charge at all. These materials were characterized by techniques such as piezorheometry, differential scanning calorimetry (DSC), electron microscopy (SEM, TEM and cryoSEM), atomic force microscopy (AFM) and profilometry. By following the formation of the hydrogel under UV irradiation by piezorheometry, we showed that maximal crosslinking was achieved in less than 5 minutes when using a lamp with a power of 150 mW/cm2. In addition we also confirmed that these formulations were compatible with UV-nanoimprint lithography and that sub-micron periodic gratings could be obtained. The protein MIPs after batch rebinding experiments were evaluated by fluorescence, showing recognition for streptavidin with an imprinting factor of I. F= 1. 7
Chouvin, Jérôme. "L'étain dans les nouveaux matériaux anodiques pour accumulateurs "lithium-ion", structures d'accueil et mécanismes." Montpellier 2, 2001. http://www.theses.fr/2001MON20160.
Full textLemée, Frédéric. "Composés polyioniques contraints bioactifs libres et supportés : accès à de nouveaux matériaux antibactériens." Thesis, Université de Lorraine, 2015. http://www.theses.fr/2015LORR0047/document.
Full textDevelopment of new materials with antibacterial properties is a major concern in medical and environmental world. It’s for that reason that, Merrifield and Wang commercial polymers were modified by grafting polycationic calixarenic sub-units inspired by laboratory work and designed to interact with negatively charged bacterial surface. Those calixarenes were modified on the lower part, in a controlled manner, by the incorporation of a functional spacer group leading to a targeted grafting of the polymer. We have, at first, evaluated several kinds of functionalities introduced on the calixarene, giving us the opportunity to graft them on the polymeric support. Like this, a reductive amination was chosen to anchor the Wang-benzaldehyde resin, whereas a pyridinium anchoring point was pointed out as a very good candidate for the grafting of calixarenes. The validation of this pyridinium anchoring point was checked by incorporation of a fluorescent probe (pyrene) and characterized by solid state fluorescence, by infrared spectroscopy, those two lasts analysis were applied for all the other grafted polymers grafted after that. Through a capture-release study in aqueous media of two carboxylic antibiotics (quinolone and ß–lactame kind), the pyridinium polymer model, without calixarène, showed his interest faced to Cholestyramine (Questran®) or Amberlite IRA-400, as an anion exchange resin and leading to depoluting/decontamination applications. Before antibacterial studies of thoses new materials, we wanted to find a way to quantify the material capacity to catch/hold bacteria. Capillary electrophoresis, rapid and sensitive analytical method, appeared as a perfect solution. Using E. coli model, synthesized polycationic resins were evaluated as sequestering agent in aqueous media. Results obtained prove the efficiency of some of them; capture was finally confirmed by confocal fluorescent microscopy. The number of bacteria fixed by material surface could be visually evaluated
Mangiante, Gino. ""Green" and innovative chemical modifications of cellulose fibers." Thesis, Lyon, INSA, 2013. http://www.theses.fr/2013ISAL0024.
Full textThis research project, in collaboration with CTP (Centre Technique du Papier), aimed at developing chemical pathway in water to graft polymers on cellulose fibers via “Click Chemistry” in eco-friendly and non-degrading conditions conferring new mechanical properties upon the resulting paper sheets. A first step was to develop a “green” alkyne derivatization method in mild conditions – through pure water or water/isopropanol mixture – allowing for a substantial alkyne functionalization without jeopardizing the cellulose crystallinity, the fiber structure, and maintaining good mechanical properties of the cellulose fibers and resulting paper sheets. To better understand how the functionalization impacts the mechanical properties, several microscopy methods were employed. Then, aiming at improving mechanical properties of the resulting paper, grafting of azidefunctionalized polyoxyalkylenes on alkyne-modified fibers was achieved via Copper(II)-Catalyzed Alkyne-Azide Cycloaddition (CuAAC) in pure water. Water soluble polymers of different nature (poly(ethylene glycol) or poly[(ethylene glycol)-stat-(propylene glycol)]), with different molar mass and functionality (one or two azide groups per macromolecular chain) were successfully attached on cellulose fibers. Grafting of PEG chains involved a slight decrease of the tensile index but a drastic increase of the flexibility of the paper sheet. Interestingly, fibers grafted with difunctional polymers demonstrated an original water resistance maintaining the hydrophilic nature of fibers. Finally, Thiol-Yne reaction was successfully carried out to attach small water soluble thiol-bearing reagents on alkyne-functionalized fibers in water as a metal-free alternative to CuAAC reaction
Eutionnat-Diffo, Prisca Aude. "3D Printing of polymers onto textiles : an innovative approach to develop functional textiles." Thesis, Lille 1, 2020. http://www.theses.fr/2020LIL1I058.
Full textThis thesis aims at characterizing tridimensional (3D) printed polymers onto PET textile materials via fused deposition modeling (FDM) that uses both non-conductive and conductive polymers, optimizing their mechanical and electrical properties through statistical modeling and enhancing them with pre and post-treatments and the development of polymer blends. This research work supports the development of technical textiles through 3D printing that may have functionalities. The FDM process was considered in this thesis for its strong potential in terms of flexibility, resource-efficiency, cost-effectiveness tailored production and ecology compared to the existing conventional textile finishing processes, for instance, the digital and screen printings. The main challenge of this technology is to warranty optimized electrical and mechanical (bending, flexibility, tensile, abrasion, etc.) properties of the 3D printed polymer onto textiles for the materials to be used in textile industry. Therefore, the development of novel 3D printed polymers onto PET materials with improved properties is necessary. First of all, 3D printed non-conductive Polylactic Acid (PLA) and PLA filled with 2.5wt% Carbon-Black filled onto PET fabrics were purchased and manufactured through melt extrusion process respectively, to characterize their mechanical properties including adhesion, tensile, deformation, wash ability and abrasion. Then, the relationship between the textile structural characteristics and thermal properties and build platform temperature and these properties through statistical modeling was determined. Subsequently, different textile pre-treatments that include atmospheric plasma, grafting of acrylic acid and application of adhesives were suggested to enhance the adhesion properties of the 3D printed PLA onto PET fabrics. Lastly, novel biophasic blends using Low-Density Polyethylene (LDPE) / Propylene- Based Elastomer (PBE) filled with multi-walled carbon nanotubes (CNT) and high-structured carbon black (KB) were developed and manufactured to improve the flexibility, the stress and strain at rupture and the electrical properties of the 3D printed PLA onto PET fabric. The morphology, thermal and rheological properties of each blends are also accessed in order to understand the material behavior and enhanced mechanical and electrical properties.The findings demonstrated that the textile structure defined by its weft density and pattern and weft and warp yarn compositions has a significant impact on the adhesion, deformation, abrasion, tensile properties of 3D printed PLA onto PET fabrics. Compromises have to be found as porous and rough textiles with low thermal properties showed better wash-ability, adhesion and tensile properties and worse deformation and abrasion resistance. Statistical models between the textile properties and the 3D printed PLA onto PET materials and the properties were successfully developed and used to optimize them. The application of adhesives on treated PET with grafted acrylic acid did significantly improve the adhesion resistance and LDPE/PBE blends filled with CNT and KB that have co-continuous LDPE and PBE phases as well as CNT and KB selectively located at the interface and in the LDPE phase revealed enhanced deformation and tensile and electrical properties
Mbadinga, Mbadinga Duchesse Lacours. "Evolution de la cutine chez les plantes et son rôle durant la terrestrialisation." Thesis, Toulouse 3, 2020. http://www.theses.fr/2020TOU30325.
Full textThe successful and long-lasting colonization of lands by plants required the evolution of innovations in order to survive to the novel constraints such as limited nutrient and water access, gravity, oxidative environment and UV radiations. In extant land plants, hydrophobic polymers deposited on the surface of different tissues, such as sporopollenin, cuticle, suberin and lignin, are known to contribute to the limitation of water loss, and resistance to other abiotic stresses, making them potential "terrestrialization innovations". How and when these traits evolved in plants remains elusive. Fossils data and phylogenetical analysis of genes involved in cutin biosynthesis in plants proposed cutin as the best candidate for plant terrestrialization. However, works testing this hypothesis are actually scares and the evidence limited. This thesis describes conducted investigations to determine the distribution of cutin in plants, the evolution of the genes required for its biosynthesis and the function of two of them in the model bryophyte, Marchantia polymorpha. The presence of cutin in species from the zygnematophyceae, which are the closest algal relatives to land plants, and in diverse land plants was monitored through microscopic observations and biochemical analyses. Cutin was only detected in land plants, as was one terminal enzyme in the biosynthesis of the cutin monomer, the Glycerol-Phosphate Acyl Transferases (GPATs). To confirm the origin of cutin in Embryophytes we have studied GPAT in the Bryophyte M. polymorpha. First, the expression pattern of M. polymorpha GPAT were studied using promoter:GUS fusion. The M. polymorpha GPATs promoter activities were mainly detected where cutin is formed. Then a mutant line of M. polymorpha GPAT was isolated. Macroscopic analysis of this mutant have shown that such as in Embryophytes, Marchantia cutin-related genes are involved in development of aerial organs. Biochemical analysis, reverse-genetics and phylogenetics were combined to reach the conclusion that cutin evolved in the first land plants together with one class of cutin-biosynthesis enzymes, the GPATs, and likely play a function in development in Bryophytes. This works indicates that cutin evolution in Embryophytes played a role in the terrestrialization event
Wei, Hua. "Développement d'électrodes innovantes pour la conversion électrocatalytique de petites molécules." Thesis, Lyon, 2021. https://tel.archives-ouvertes.fr/tel-03789610.
Full textNitrogen plays an indispensable role for all life on earth and for the development of human beings. Industrially, nitrogen gas is converted to ammonia (NH3) and nitrogen-rich fertilisers to supplement the amount of nitrogen fixed spontaneously by nature. At present, the only industrial-scale ammonia synthesis technology is the process developed by Haber and Bosch in the early 20th century using gas phase N2 and H2 as the feeding gases. However, the Haber-Bosch process requires harsh conditions, complex equipment and high energy consumption, and operates with low conversion rates, which are inconsistent with economic and social growing development requirements. Compared to the Haber-Bosch method, electrocatalysis is one of the promising routes that can integrate electricity produced from renewable energy technologies for the production of ammonia at room temperature and ambient pressure. A specific challenge is related to the development of novel electrocatalysts/electrodes with the aim to achieve a low-cost, large-scale and delocalized production of ammonia. In view of the above key scientific issues, this PhD work focuses on three main aspects of the electrocatalytic nitrogen reduction reaction (NRR): i) engineering and design of the electrocatalyst, ii) electrode and cell design of the electrochemical device and iii) improvement and optimization of the reaction conditions, to enhance the performances of ammonia synthesis. Most of the research activities of this PhD work about synthesis and characterization of the electrocatalytic materials and assembling/testing of the electrodes in unconventional electrochemical devices were carried out at the laboratory CASPE (Laboratory of Catalysis for Sustainable Production and Energy) of the University of Messina. Moreover, during the three years, a period of 12 months was spent in cotutelle with the École supérieure de chimie, physique, électronique de Lyon (CPE Lyon), where advanced synthesis routes were explored for the preparation of organometallic-based electrocatalysts to be used as more active electrodes in NRR. The PhD thesis is organized in five main chapters. Chapter 1 focuses on N2 fixation issues and on describing the industrial Haber-Bosch process, with an overview of the general implications related to its high energy requirements. Chapter 2, instead, refers to the electrocatalytic materials developed in this PhD work for the preparation of the electrodes: 1) the Metal-organic Frameworks (MOFs), a class of porous materials very promising for their peculiar characteristics of high surface area, tunable properties, organic functionality and porosity, as well as for the possibility of creating specific catalytic active sites thanks to both the functional groups and the metal ion centres; 2) the MXenes, a class of metal carbide or nitride materials with a two-dimensional (2D) structure, which have recently attracted a large interest for a broad range of applications, including catalysis and N2 fixation, for their unique properties of metallic conductivity and hydrophilic nature of the hydroxyl or oxygen terminated surfaces. In Chapters 3-5, the experimental results are presented and discussed. Chapter 3 concerns the preparation of a series of Fe-MOF-based (Fe@Zn/SIM-1) electrodes and their testing in NRR by using an advanced engineered three-phase reactor, working in gas-phase. In Chapter 4, a series of improved Fe-MOF-based materials (Fe-based and Fe-alkali metal-based MOF UiO-66-(COOH)2), synthesized by cation exchange reaction technique to replace the proton of carboxylic acid with an iron cation, are presented. Finally, Chapter 5 refers to the exploration of advanced MXene materials (Ti3C2 MXene) and to the attempt of synthesizing a 3D nanoarchitecture starting from 2D-dimensional MXene-based catalysts
Akhtar, Muhammad Javeed. "Fonctionnalisation et caractérisatin de films bioactifs à base d'HPMC : influence de l'introduction d'antioxydants sur les propriétés des films et la conservation des aliments." Thesis, Université de Lorraine, 2012. http://www.theses.fr/2012LORR0417/document.
Full textBiodegradable packaging functionalized with natural antioxidants is one of the promising techniques to enhance foods shelf-life, lower use of preservatives in food formations, higher protection of flavours and higher food qualities. Controlled release of these bioactive compounds from packaging to food surface provides longer food stability by continuously librating antioxidants at food surface. The overall objective of the present work was to functionalize the HPMC polymer as colored antioxidant packaging and investigate its suitability as active packaging for unsaturated lipids. Firstly, HPMC films containing different synthetic colours like blue, green, yellow, red and white were tested to chose a suitable color having control against photo-oxidation. Secondly, red synthetic color (showing maximum control against pho-oxidation) was replaced by natural active red compounds including "natural red color" (beetroot extract + purple carrot extract), betalains and anthocyanins to produce bioactive food packaging. Mode of incorporation of these active compounds in HPMC matrix and also their potential effects on thermal, mechanical, barrier and structural properties of films were investigated. Controlled release kinetics, antioxidant capacity and light stability of bioactive compounds in HPMC films were also investigated. The overall results showed that successful incorporation of different natural active compounds have capability to improve film properties. The active compounds under discussion have ability to control photo ageing of polymer matrix and HPMC has the capability for being a suitable carrier for antioxidant active packaging for some food products
WEI, Hua. "Development of Innovative Electrodes for the Electrocatalytic Conversion of Small Molecules." Doctoral thesis, 2021. http://hdl.handle.net/11570/3191397.
Full textNitrogen plays an indispensable role for all life on earth and for the development of human beings. Industrially, nitrogen gas is converted to ammonia (NH3) and nitrogen-rich fertilisers to supplement the amount of nitrogen fixed spontaneously by nature. At present, the only industrial-scale ammonia synthesis technology is the process developed by Haber and Bosch in the early 20th century using gas phase N2 and H2 as the feeding gases. However, the Haber-Bosch process requires harsh conditions, complex equipment and high energy consumption, and operates with low conversion rates, which are inconsistent with economic and social growing development requirements. Compared to the Haber-Bosch method, electrocatalysis is one of the promising routes that can integrate electricity produced from renewable energy technologies for the production of ammonia at room temperature and ambient pressure. A specific challenge is related to the development of novel electrocatalysts/electrodes with the aim to achieve a low-cost, large-scale and delocalized production of ammonia. In view of the above key scientific issues, this PhD work focuses on three main aspects of the electrocatalytic nitrogen reduction reaction (NRR): i) engineering and design of the electrocatalyst, ii) electrode and cell design of the electrochemical device and iii) improvement and optimization of the reaction conditions, to enhance the performances of ammonia synthesis. Most of the research activities of this PhD work about synthesis and characterization of the electrocatalytic materials and assembling/testing of the electrodes in unconventional electrochemical devices were carried out at the laboratory CASPE (Laboratory of Catalysis for Sustainable Production and Energy) of the University of Messina. Moreover, during the three years, a period of 12 months was spent in cotutelle with the École supérieure de chimie, physique, électronique de Lyon (CPE Lyon), where advanced synthesis routes were explored for the preparation of organometallic-based electrocatalysts to be used as more active electrodes in NRR. The PhD thesis is organized in five main chapters. Chapter 1 focuses on N2 fixation issues and on describing the industrial Haber-Bosch process, with an overview of the general implications related to its high energy requirements. The alternative methods based on the electrochemical nitrogen fixation are then presented, with a wide description of pros and cons related to the milder conditions (i.e., room temperature and atmospheric pressure) and by discussing the elements to be developed for a future implementation of this technology, including a description of the possible reaction mechanism, which is still unclear in literature. Chapter 2, instead, refers to the electrocatalytic materials developed in this PhD work for the preparation of the electrodes: 1) the Metal-organic Frameworks (MOFs), a class of porous materials very promising for their peculiar characteristics of high surface area, tunable properties, organic functionality and porosity, as well as for the possibility of creating specific catalytic active sites thanks to both the functional groups and the metal ion centres; 2) the MXenes, a class of metal carbide or nitride materials with a two-dimensional (2D) structure, which have recently attracted a large interest for a broad range of applications, including catalysis and N2 fixation, for their unique properties of metallic conductivity and hydrophilic nature of the hydroxyl or oxygen terminated surfaces. In Chapters 3-5, the experimental results are presented and discussed. Chapter 3 concerns the preparation of a series of Fe-MOF-based (Fe@Zn/SIM-1) electrodes and their testing in NRR by using an advanced engineered three-phase reactor, working in gas-phase. This novel device operates at room temperature and atmospheric pressure, with counter and reference electrodes immersed into an anode half-cell (where the oxidation of H2O to O2 occurs) containing a liquid electrolyte (the anolyte), while the cathode half-cell for NRR operates in gas phase without a liquid electrolyte (electrolyte-less conditions). This type of electrocatalytic reactor is thus quite different from the conventional electrocatalytic reactors operating in liquid phase, with the main advantages of avoiding issues related to the low N2 solubility and transport in the electrolyte, and allowing an easier recovery of ammonia. The results obtained from these electrocatalytic tests in gas-phase were very useful to improve the design of the MOFs-based electrodes, evidencing the limits of these kinds of materials in terms of N content, stability and possibility to prepare more advanced electrocatalysts by carbonization. A wide part of this chapter was dedicated to the development of new experimental strategies for avoiding false positive in the detection of ammonia, which is one of the topics most studied from scientists working in NRR in the last two years. As accurate protocols were recently suggested in literature, also using advanced analytical techniques (i.e. using 15N labelled nitrogen), an easier methodology based on UV-visible spectrophotometric analysis (coupled with blank tests with inert gases) was suggested in this work to avoid ammonia contaminations and false positives, although more sophisticated analytical techniques may definitely confirm the real source of ammonia. In Chapter 4, a series of improved Fe-MOF-based materials (Fe-based and Fe-alkali metal-based MOF UiO-66-(COOH)2), synthesized by cation exchange reaction technique to replace the proton of carboxylic acid with an iron cation, are presented. With respect to Fe@Zn/SIM-1, this new class of MOFs are more stable in water and do not contain nitrogen atoms in their structure. Results evidenced that 80% cation exchange Fe@UiO-66-(COOH)2 (with an effective Fe content of around 8 wt.%) was the best electrocatalyst among the tested Fe-based MOF synthesized materials. The performances in NRR highly depended on cell and electrode design. More in detail, an ammonia yield of 1.19 μg•h-1•mgcat-2 was obtained with an assembling configuration of layers ordered as i) Nafion (the membrane), ii) Fe-based MOF (the electrocatalyst), iii) GDL (the carbon gas diffusion layer) and iv) a further layer of Fe-MOF. The effect of applied voltage was also explored, indicating an optimal voltage of -0.5 V vs. RHE to maximize activity in NRR and limiting the side hydrogen evolution reaction. Moreover, as currently used in the industrial catalysts for Haber-Bosh process, the introduction of potassium in the electrocatalysts was also investigated, in order to facilitate charge transfer from K- ions to the iron-based catalyst surface, balancing the dissociative chemisorption between H2 and N2, and suppressing side reactions, thus improving both activity and stability. These results were very promising, although a further experimentation is needed to improve their performances in NRR, to overcome limitations related to MOF materials themselves, majorly due to their low conductivity and stability. Finally, Chapter 5 refers to the exploration of advanced MXene materials (Ti3C2 MXene) and to the attempt of synthesizing a 3D nanoarchitecture starting from 2D-dimensional MXene-based catalysts. To understand the role of the nanostructure of MXene materials in NRR, Ti3C2 nanosheets were treated with KOH to obtain a final shape of three-dimensional (3D) porous frameworks nanoribbons. Specifically, the objective of this research was to investigate how the conversion of Ti3C2 nanosheets to 3D-like nanoribbons influence the NRR reactivity in the gas-phase electrochemical device. A full characterization of MXenes nanoribbons (SEM, TEM, HRTEM, XRD, XPS and EDX) was also presented. Results showed that the 3D-type nanostructure (nanoribbons) leads to a significant enhancement of the N2 fixation activity due to the formation of exposed Ti-OH sites. A linear relationship was observed between ammonia formation rate and amount of oxygen on the surface of Ti3C2 MXene.
L'azote joue un rôle indispensable pour toute vie sur terre et pour le développement des êtres humains. Industriellement, l'azote gazeux est converti en ammoniac (NH3) et en engrais riches en azote pour compléter la quantité d'azote fixée spontanément par la nature. À l'heure actuelle, la seule technologie de synthèse de l'ammoniac à l'échelle industrielle est le procédé mis au point par Haber et Bosch au début du XXe siècle, qui utilise les phases gazeuses N2 et H2. Cependant, le procédé Haber-Bosch nécessite des conditions difficiles, des équipements complexes et une consommation d'énergie élevée, et fonctionne avec de faibles taux de conversion, ce qui est incompatible avec les exigences d’un développement durable. Par rapport à la méthode Haber-Bosch, l'électrocatalyse est l'une des voies prometteuses qui permet d'intégrer l'électricité produite à partir de technologies d'énergies renouvelables pour la production d'ammoniac à température ambiante et à pression ambiante. Un défi spécifique est lié au développement de nouveaux électrocatalyseurs/électrodes dans le but de parvenir à une production d'ammoniac à faible coût, à grande échelle et délocalisée. Compte tenu ces défis scientifiques, ce travail de doctorat se concentre sur trois aspects principaux de la réaction électrocatalytique de réduction de l'azote (NRR) : i) ingénierie et conception de l'électrocatalyseur, ii) conception de l'électrode et de la cellule du dispositif électrochimique et iii) amélioration et optimisation des conditions de réaction, afin d'améliorer les performances de la synthèse de l'ammoniac. La plupart des activités de recherche de ce travail de doctorat sur la synthèse et la caractérisation des matériaux électrocatalytiques et l'assemblage/le test des électrodes dans des dispositifs électrochimiques non conventionnels ont été menées au laboratoire CASPE (Laboratory of Catalysis for Sustainable Production and Energy) de l'université de Messine. En outre, une période de 12 mois a été passée en cotutelle avec l'École supérieure de chimie, physique, électronique de Lyon (CPE Lyon), où des voies de synthèse avancées ont été explorées pour la préparation d'électrocatalyseurs à base de composés organométalliques qui ont été utilisés comme électrodes plus actives dans la RRN. Cette thèse de doctorat est organisée en cinq grands chapitres. Le chapitre 1 se concentre sur les questions de fixation de l'azote et sur la description du processus industriel de Haber-Bosch, avec un aperçu des implications générales liées à ses besoins élevés en énergie. Les méthodes alternatives basées sur la fixation électrochimique de l'azote sont ensuite présentées, avec une large description des avantages et des inconvénients liés aux conditions plus douces (c'est-à-dire la température ambiante et la pression atmosphérique) et en discutant des éléments à développer pour une future mise en œuvre de cette technologie, y compris une description du mécanisme de réaction possible, encore débattu dans la littérature. Le chapitre 2 fait référence aux matériaux électrocatalytiques développés pour la préparation des électrodes : 1) les matériaux hybrides organiques-inorganiques de type MOF, une classe de matériaux poreux très prometteurs pour leurs caractéristiques particulières de surface spécifique élevée et leurs propriétés ajustables ainsi que pour la possibilité de créer des sites catalytiques actifs spécifiques grâce aux groupes fonctionnels et aux centres d'ions métalliques ; 2) les MXènes, une classe de matériaux en carbure ou nitrure de métal à structure bidimensionnelle (2D), qui ont récemment suscité un grand intérêt pour un large éventail d'applications, notamment la catalyse et la fixation de N2, pour leurs propriétés uniques de conductivité métallique et de nature hydrophile des surfaces terminées par un hydroxyle ou un oxygène. Les chapitres 3 à 5 présentent et analysent les résultats expérimentaux. Le chapitre 3 concerne la préparation d'une série d'électrodes à base de Fe-MOF (Fe@Zn/SIM-1) et leur test dans la réaction NRR en utilisant un réacteur triphasé de pointe, fonctionnant en phase gazeuse. Ce nouveau dispositif fonctionne à température ambiante et à la pression atmosphérique, avec des électrodes de comptage et de référence immergées dans une demi-cellule anodique (où se produit l'oxydation de H2O en O2) contenant un électrolyte liquide (l'anolyte), tandis que la demi-cellule cathodique pour le NRR fonctionne en phase gazeuse sans électrolyte liquide. Ce type de réacteur électrocatalytique est donc très différent des réacteurs électrocatalytiques classiques fonctionnant en phase liquide, avec les principaux avantages d'éviter les problèmes liés à la faible solubilité et au transport de N2 dans l'électrolyte, et de permettre une récupération plus facile de l'ammoniac. Les résultats obtenus lors de ces essais électrocatalytiques en phase gazeuse ont été très utiles pour améliorer la conception des électrodes à base de MOFs, mettant en évidence les limites de ce type de matériaux en termes de teneur en N, de stabilité et de possibilité de préparer des électrocatalyseurs plus avancés par carbonisation. Une grande partie du chapitre 3 a été consacrée au développement de nouvelles stratégies expérimentales pour éviter les faux positifs dans la détection de l'ammoniac, qui est l'un des sujets les plus étudiés par les scientifiques travaillant dans la NRR ces deux dernières années. Comme des protocoles précis ont été récemment suggérés dans la littérature, utilisant également des techniques analytiques avancées (c'est-à-dire utilisant de l'azote marqué à 15N), une méthodologie plus facile basée sur l'analyse spectrophotométrique UV-visible (couplée à des essais à blanc avec des gaz inertes) a été suggérée dans ce travail pour éviter les contaminations par l'ammoniac et les faux positifs, bien que des techniques analytiques plus sophistiquées puissent définitivement confirmer la source réelle d'ammoniac. Dans le chapitre 4, une série de matériaux améliorés à base de Fe-MOF (incluant un dopage additionel par un métal alcalin du MOF UiO-66-(COOH)2), synthétisés par une technique de réaction d'échange de cations pour remplacer le proton de l'acide carboxylique par un cation de fer, sont présentés. En ce qui concerne le Fe@Zn/SIM-1, cette nouvelle classe de MOF est plus stable dans l'eau et ne contient pas d'atomes d'azote dans sa structure. Les résultats ont montré que l'échange cationique à 80 % Fe@UiO-66-(COOH)2 (avec une teneur effective en Fe d'environ 8 % en poids) était le meilleur électrocatalyseur parmi les matériaux synthétisés de MOF à base de Fe testés. Les performances du NRR dépendaient fortement de la conception de la cellule et de l'électrode. Plus en détail, un rendement en ammoniac de 1.19 μg•h-1•mgcat-2 a été obtenu avec une configuration d'assemblage de couches ordonnées comme i) Nafion (la membrane), ii) MOF à base de Fe (l'électrocatalyseur), iii) GDL (la couche de diffusion de gaz carbonique) et iv) une autre couche de Fe-MOF. L'effet de la tension appliquée a également été exploré, indiquant une tension optimale de -0,5 V par rapport à la RHE pour maximiser l'activité dans le NRR et limiter la réaction latérale d'évolution de l'hydrogène. En outre, comme c'est le cas actuellement dans les catalyseurs industriels pour le procédé Haber-Bosh, l'introduction de potassium dans les électrocatalyseurs a également été étudiée, afin de faciliter le transfert de charge des ions K- à la surface du catalyseur à base de fer, en équilibrant la chimisorption dissociative entre H2 et N2, et en supprimant les réactions secondaires, ce qui améliore à la fois l'activité et la stabilité. Ces résultats étaient très prometteurs, bien qu'une nouvelle expérimentation soit nécessaire pour améliorer leurs performances dans les NRR, afin de surmonter les limitations liées aux matériaux MOF eux-mêmes, principalement en raison de leur faible conductivité et de leur stabilité. Enfin, le chapitre 5 fait référence à l'exploration des matériaux avancés à base de MXène (Ti3C2 MXène) et à la tentative de synthèse d'une nanoarchitecture 3D à partir de catalyseurs à base de MXène en 2D. Pour comprendre le rôle de la nanostructure des matériaux à base de MXène dans la NRR, des nanofeuilles de Ti3C2 ont été traitées au KOH pour obtenir une forme finale de nanorubans à armature poreuse tridimensionnelle (3D). Plus précisément, l'objectif de cette recherche était d'étudier comment la conversion des nanofeuilles de Ti3C2 en nanorubans tridimensionnels influençait la réactivité du NRR dans le dispositif électrochimique en phase gazeuse. Une caractérisation complète des nanorubans MXenes (SEM, TEM, HRTEM, XRD, XPS et EDX) a également été présentée. Les résultats ont montré que la nanostructure de type 3D (nanorubans) conduit à une amélioration significative de l'activité de fixation du N2 en raison de la formation de sites Ti-OH exposés. Une relation linéaire a été observée entre le taux de formation d'ammoniac et la quantité d'oxygène à la surface du Ti3C2 MXene.