Dissertations / Theses on the topic 'Polymères furaniques'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 16 dissertations / theses for your research on the topic 'Polymères furaniques.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Hui, Zuen. "Nouveaux polymères furaniques." Grenoble INPG, 1992. http://www.theses.fr/1992INPG0112.
Full textMealares, Christel. "Oligomères et polymères furaniques conjugués." Grenoble INPG, 1995. http://www.theses.fr/1995INPG0129.
Full textBaret, Fanton Véronique. "Contribution à l'étude des polymères furaniques photoactifs." Grenoble INPG, 1995. http://www.theses.fr/1995INPG0110.
Full textLai͏̈ta, Hamid. "Application de la réaction de Diels-Alder aux polymères furaniques." Grenoble INPG, 1993. http://www.theses.fr/1993INPG0148.
Full textGoussé, Cécile. "Applications de la réaction de Diels-Alder aux polymères furaniques." Grenoble INPG, 1997. http://www.theses.fr/1997INPG0007.
Full textDellière, Pierre. "Résines furaniques modulables et durables." Electronic Thesis or Diss., Université Côte d'Azur, 2023. http://www.theses.fr/2023COAZ4106.
Full textThis doctoral project was conducted within the ANR FUTURES (FUranic TUnable REsins for Sustainable materials) project.Poly(furfuryl alcohol) is a bio-based thermoset with excellent chemical and thermal properties. Yet, it may mechanically behave in a brittle manner. The aim of the project was to pave the way for new applications of poly(furfuryl alcohol) by exploiting side reactions occurring during polymerization. This leads to additional functionalities that could be exploited to, among others, reduce the brittleness of the material.First, the reactive carbonyl resulting from the furan ring opening side reaction were quantified by potentiometry and quantitative NMR. The key factors that were influencing the carbonyl content were assessed and water proved to be the main one. The chemical nature of the carbonyls was thoroughly investigated by 2D NMR and a new surface crosslinking phenomenon was identified and explained. The impact of this surface crosslinking on the materials' properties was evaluated. Finally, the presence of carbonyls due to the ring-opening side reaction was exploited to functionalize the polymer. The use of large flexible amines allowed to shift the materials properties from brittle to ductile therefore paving to way to new applications for poly(furfuryl alcohol). Finally, factors governing the properties of the amine-functionalized materials were studied
Hariri, Sahar. "Electrolytes polymères photoréticulables à base de chitosane, polyéthers et chromophores furaniques conjugués." Grenoble INPG, 2001. http://www.theses.fr/2001INPG0135.
Full textTournadre-Lasseuguette, Elsa. "Elaboration de nouveaux polymères photosensibles furaniques en vue de leur application sur plaques offset." Phd thesis, Grenoble INPG, 2004. http://tel.archives-ouvertes.fr/tel-00007623.
Full textWaig, Fang Sandrine. "Conception et élaboration de polymères furaniques et thiophéniques en vue de leur application sur plaques offset." Grenoble INPG, 2000. http://www.theses.fr/2000INPG0162.
Full textHerbois, Rudy. "Synthèses et caractérisations de nanoparticules métalliques stabilisées en phase aqueuse par des polymères en présence de cyclodextrines : hydrogénation catalytique de composés issus de la biomasse." Thesis, Artois, 2013. http://www.theses.fr/2013ARTO0407/document.
Full textSince the beginning of the 90s, nanotechnology has experienced a significant development. In catalysis, in particular, metallic nanoparticles have attracted a growing interest due to their properties at the interface between homogeneous and heterogeneous catalysis. At the same time, chemical reactions regarding the environment were the focus of a growing interest. To answer these environmental considerations, metallic nanoparticles (ruthenium and rhodium) synthesized in aqueous media were used, under mild conditions (temperature and pressure) for the hydrogenation of water-soluble biomass derivatives (furfural or 5-hydroxymethylfurfural) or insoluble (3-(2-furyl)acrolein). Among the different stabilizing agents, the use of cyclodextrins associated with water-soluble polymers was particularly studied. Cyclodextrins could be used in mixtures polymer/cyclodextrin, or in cyclodextrins polymers in two and three dimensions for the nanoparticles synthesis. Throughout this thesis, the various roles of cyclodextrine in these systems will be shown (crosslinking agent of polymers, stabilizing, dispersing or growth controlling agent of the nanoparticles and also phase transfer agent in biphasic catalysis)
Perez, Berumen Catalina Maria. "Nouveaux matériaux polymères basés sur la chimie furanique." Grenoble INPG, 2003. http://www.theses.fr/2003INPG0036.
Full textBougarech, Abdelkader. "Nouveaux copolyesters furaniques sulfonés : Synthèse caractérisation propriétés." Thesis, Lyon, INSA, 2014. http://www.theses.fr/2014ISAL0074.
Full textThe research conducted for the preparation of this thesis is devoted to develop a new family of furanic copolyesters incorporating in their structure sulfonated and pyridinic units. This choice is justified mainly by the following three considerations: (i) the presence of sulfonated units in the poly(ethylene-terephthalate) structure gives to this kind of polymer a specific physicochemical properties favoring its use in various industrial sectors in a detergents and in textiles domains (ii) the presence of furanic unit could lead to the biodegradability of these materials (iii) Pyridinic units confer to these polymers an optoelectronic properties (electrical conductivity, photoconductivity and luminescent properties) favoring its use in various applications , in the space and aeronautics fields
Pin, Jean-Mathieu. "Matrices thermodurcissables époxydes et furaniques biosourcées – conception d’assemblages macromoléculaires." Thesis, Nice, 2015. http://www.theses.fr/2015NICE4027/document.
Full textThe research work presented in this thesis was oriented on advanced thermoset materials and also on the conception of bio-based polymers and composites. This last topic has been investigated by the combination of different bio-based raw materials which are well-known to have a great potential to substitute the petroleum monomers. Firstly, a fundamental work has been done on the combination of epoxidized linseed oil (ELO) and anhydrides as cross-linkers, which links the polymerization reactivity with the network structure and thermomechanical properties. For being economically realistic, the bio-refineries are urged to valorize the sidestream products issued from biomass conversion. In that respect, a second study investigated successfully the incorporation and copolymerization of an important amount of humins (heterogeneous residues obtained during the sugar conversion into hydroxymethylfurfural (HMF)) with furfuryl alcohol (FA) in order to create new resins. Another proposed combination, focused on ELO and FA cationic copolymerization with the purpose to create new fully bio-based resins with tailored mechanical properties. Concerning the elaboration of advanced polymers and composites, a reflection around the hierarchically organized natural materials has been achieved in order to adapt the self-organization and structuration concepts to polymeric network
Ghorbel, Inès. "Elaboration, caractérisation et mise en œuvre de matériaux polymères à base de polysemicarbazides et polyester furanique bio-sourcés." Thesis, Lyon, INSA, 2013. http://www.theses.fr/2013ISAL0013.
Full textThis work aims at elaborating, characterising and processing polymer materials based on bio-sourced polysemicarbazides and furanic polyesters. The study has three main parts : Synthesis and optimisation of the synthesis of poly(acylsemicarbazide)s, elaboration of polymer blends based on furanic polymers (PEF or PSC) with PET, PLA and PHA and elaboration of new furano-aliphatic copolyesters by ring opening polymerisation (PEF/PCL) or by inter-exchange reactions between ’homopolymers (PEF/PCL, PEF/PLA et PEF/PHA) in the melt. The first chapter reports on the synthesis of a serie of bifuranic dihydrazides and on the study of their reactivity with several aromatic diisocyanates in order to elaborate furano-aromatic polyacylsemicarbazides. The behaviour of model monomer systems in various experimental conditions is studied in order to d’optimise the polycondensation processbefore transfering it to several monomer combinations. In the second chapter, we study the elaboration of new materials based on furanic polymers (PEF or PSC) blended with polyesters in the melt. 3 kinds of blends based on furanic polyesters / aliphatic and aromatic polyesters. The third chapter is devoted to the synthesis of furanic polyesters with controlled ends : dihydroxy-PEF (PEF di-OH), dicarboxylate-PEF (PEF di-COOH), diethylester-PEF (PEF di-COOEt) as well as PEF with mixed ends (PEF di-OH/COOEt). The latest have been used for the elaboration of new furano-aliphatic polyesters by ring opening polymerisation (PEF /PCL) or after interexchange reaction in melt homoplymer blends (PEF/PLA, PEF/PHA and PEF/PCL)
Labauze, Hélène. "Synthèse de structures furaniques à partir de glucose cellulosique en système diphasique eau-CO2 supercritique." Thesis, Toulouse, INPT, 2019. http://www.theses.fr/2019INPT0042/document.
Full textThis work aims at developing a new production process for 5-hydroxymethylfurfural (HMF), a promising bio-based platform chemical for the production of fuels and renewably sourced polymers. In the first part of this work, synthesis of HMF from lignocellulosic biomass-derived hexoses, and more particularly fructose, was carried out in a two-phase high-pressure CO2-H2O system, regarded as an efficient and eco-friendly technology in biomass processing. From kinetic experiments and their modeling, the effect of CO2 as a potential reversible acid catalyst was assessed. Also, HMF yield was shown to be limited due to sequential degradation reactions. Arelevant way to increase HMF yield by preventing its degradation has consisted in coupling its synthesis with simultaneous extraction by supercritical CO2, leading to a one-pot extractive reaction process. In that context, partition coefficients of HMF between supercritical CO2 and water have been experimentally evaluated, assuming that equilibrium is achieved at any time in the extraction device. Experimental data has enabled the application of thermodynamic models to describe the ternary CO2-HMF-H2O system in order to find favourable operating conditions for the process. Coupling the kinetic modelling with the CO2 extracting process modelling, based on the thermodynamic equilibrium of the mixture, has provided the theoretical tool allowing prediction of the best operating conditions for the one pot extractive process of HMF production from sugars issued from lignocellulosic biomass. This operating mode allowed exploiting all advantages of the use of CO2 for such reactions of biomass conversion: reversible acid catalyst and extracting solvent
Muralidhara, Anitha. "Physico-chemical safety issues pertaining to biosourced furanics valorization with a focus on humins as biomass resource." Thesis, Compiègne, 2019. http://www.theses.fr/2019COMP2508.
Full textThe present research work was integrated as part of the EU-funded project named HUGS (HUmins as Green and Sustainable precursors for eco-friendly building blocks and materials), involving 5 main partners (Institut national de l'environnement industriel et des risques - France, Avantium - the Netherlands, Institut de Chimie de Nice - France, Universidad De Cordoba- Spain and Leibniz - Institut Fur Katalyse Ev An Der Universitat Rostock- Germany). The project is essentially supported through five European Industrial Doctorate fellowships put in place when the HUGS-MSCA-ITN-2015 program was launched in 2016. The primary objective of the HUGS project was to explore several valorization pathways of so-called “humins” in order to add value and create better business cases. Humins (and similarly lignins) are the side products that may become low-cost feedstock resulting from a number of future biorefineries and sugar conversion processes. Humins are complex residues resulting from the Acid-Catalyzed Dehydration and condensation of sugars, having furan-rings in their polymeric structures. The work presented in this specific part of the HUGS project is essentially focusing on safety-related topics of all components and subsequent applications related to sugar dehydration technology. Priority actions were devoted to a first insight on the characterization of physicochemical safety profiles of the side-product humins and main (parent) furanic products. Some members of this large family of compounds (e.g. RMF and FDCA) have high volume potential which results in opening new doors towards the development of furanbased building blocks and a bio-based economy. Humins are residues or side products which can be burnt for energy. However, its safe and sustainable use in high-value applications could also become a key milestone in the so-called circular economy. In practice, the work has been developed in two main locations: primarily at the INERIS lab, located in Verneuil-en-Halatte and at Avantium, located in Amsterdam. Nearly all experimental research after the production of the components at Avantium was performed at INERIS. This involved the evaluation of physicochemical hazards of both humins (crude industrial humins and humin foams obtained by thermal curing) and a series of furanic compounds. Avantium is involved in the commercialization of humins, furanics and furanic polymers/materials as novel chemicals and materials. The work has encompassed: An extensive bibliographical review of humins, furanics, and their related products (polymers, composites) resulted in the following main conclusions o A lack of physicochemical safety-oriented studies for many furanic compounds and for humins was observed as these products are still in the early stage of development and only a few may be commercialized in the next 5 years.o Despite the limited availability of safety-related data, more studies on toxicity aspects have been conducted for a selected number of furanics than physicochemical safety-related aspects. o A few furanic family members that have been evaluated as biofuel components were found to have given better emphasis on addressing some physicochemical safety attributes. o Every modification of the process for acid-catalyzed sugar dehydration (such as solvent, temperature, residence time and sugar concentration) will result in different humins, which would certainly demand further characterization and safety profiling of the resulting humins. • Analytical development integrating the first examination of flash point distribution versus the Net Heating Values, and analysis of total heats of combustion of furanic compounds. • Design and development of experimental plan addressing the safety-related key parameters such as thermal stability, self-heating risks, fire-risk-assessment and flammability limits depending on the need for specific tests and availability of the test samples