Dissertations / Theses on the topic 'Polymères à empreintes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Polymères à empreintes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Cadinot, Mélanie. "Nouveaux procédés d'élaboration de polymères à empreintes moléculaires." Phd thesis, INSA de Rouen, 2008. http://tel.archives-ouvertes.fr/tel-00558785.
Full textLe, Foll Alexandra. "Polymères à empreintes moléculaires : nouveaux outils prometteurs pour la synthèse organique." Thesis, Rouen, INSA, 2010. http://www.theses.fr/2010ISAM0006.
Full textThis work deals with the use of molecular imprinting technology for the design of new tools in organic sythesis. First, we studied the potential of MIPs in organocatalysis through activation in the imprints. For this purpose, several thiourea-cinchona alkaloid derivatives have been prepared so as to be introduced in the polymer cavities. The use of different MIPs synthesised with these polymerisable catalysts in Henry reaction did not show any advantageous effect on reaction rate or enantioselectivity. Secondly, we have prformed the development of a strategy for separation and recovery of a wide range of compounds by relating tag technology with molecular imprinting. Efficiency and selectivity of MIP-Tag for in triazole series have been demonstrated. Tagged tyrosine has been selectively extracted from an amino-acid mixture. Then, the application of this Tag technology for the recovery of pybox and proline catalyst was investigated. Finally, we have demonstrated the efficiency of our process for the removal of triphenylphosphine oxide formed during a Mitsunobu reaction. The removal of 99% of tagged phosphine oxide was perforrmed by the purification of a reaction medium in SPE by means of MIP-Tag
Griffete, Nebewia. "Cristaux photoniques et polymères à empreintes moléculaires pour la détection optique de polluants." Paris 7, 2011. http://www.theses.fr/2011PA077105.
Full textVery recent years have shown great improvements in the field of molecularly imprinted polymers (MIPs), biomimetic Systems able to selectively recognize a target molecule. Another emerging domain in full expansion is the development of photonic crystals based on highly organized colloïdal particle networks, with the possibility to immobilize them within polymer films: the selective etching of the particles provides 3D-ordered interconnected macroporous structure, called inverse opals. In this PhD, we have combined these two promising concepts (molecular imprinting and photonic crystals in order to elaborate an original self-reporting sensing film exhibiting high sensitivity and selectivity. We have adopted the Langmuir-Blodgett method to form colloïdal silica crystals as templates in combination with the molecular-imprinting technique to prepare highly ordered 3D macroporous hydrogel films (of polymethacrylic acid). The resulting porous material contains both specific molecular recognition nanocavities for bisphenol A and a periodic variation of the dielectric constant which generates a readable optical signal directly (self-reporting) upon binding' the target analyte without the need for labeling. We focused particularly on the optimisation of the optical response of the photonic crystals towards external stimuli (such as pH changes or variation of the BPA concentration) by introducing active defect layer within the materials. Two kinds of defect layers were studied: (i) planar defects made of the same material as the host crystal but varying by the particle size; (ii) planar defects made of a chemically different material, consisting in ferric oxide nanoparticles covered by a molecularly imprinted polymer overlayer (NP@MIP)
Sahun, Maxime. "Développement d'un capteur à base de polymère à empreintes moléculaires pour la quantification de la sphingosine 1-phosphate libre et circulante comme biomarqueur du mélanome cutané." Thesis, Toulouse 3, 2017. http://www.theses.fr/2017TOU30242/document.
Full textMelanoma is the most aggressive and severe form of cutaneous cancer due to its high metastatic potential. However, to date, no marker for the early detection of melanoma has been unanimously accepted. Our group has demonstrated that ceramide metabolism is strongly altered in melanoma, leading to the overproduction of sphingosine 1-phosphate (S1P), one of its derivatives. S1P is secreted by melanoma cells and has been identified as a critical molecule of tumor microenvironment remodeling that supports cancer progression. Physiologically, circulating S1P is predominantly linked to high density lipoproteins (HDLs), low and very low density lipoproteins (LDLs and VLDLs), as well as albumin. Melanoma cells produce unbound S1P that could be responsible for the effects induced by this lysophospholipid on the tumor microenvironment, as a result of its binding to S1PR receptors present on the surface of stromal cells. Thus, secreted tumor S1P could represent a new biomarker for the early detection of melanoma. However, there are currently no means to quantify it. The goal of this interdisciplinary work was to develop a new sensor based on a Molecularly Imprinted Polymer (MIP) in order to quantify unbound S1P present in the blood of melanoma patients. This study has been conducted between the "Engineering for Life science Applications (EliA)" group at the Laboratory for Analysis and Architecture of Systems (LAAS) and the "Sphingolipids, metabolism, cell death and tumor progression" group at the Cancer Research Center of Toulouse (CRCT), in strong collaboration with the team "Biomimetism and Bioinspired Structures" of the University of Technology of Compiègne (UTC). First, we synthesized a new MIP against S1P employing a bulk thermopolymerization approach. The resulting MIP was characterized and optimized by performing both mass spectrometry and fluorescence spectroscopy measurements. It was compared to a Non Imprinted Polymer (NIP) and exposed to S1P analogues to assess its selectivity. Second, in order to use the MIP as the sensitive layer of a future sensor and prepare its immobilization and structuration onto a transducer, we synthesized a new surface photopolymerizable MIP. This MIP was first structured by photolithography onto silicon substrates and validated by fluorescence microscopy measurements. The MIP was also structured as a thin layer onto Quartz Crystal Microbalance (QCM) chips in order to validate its binding capacities using this label-free method. Finally, the use of a MIP-coated optical fiber as an infrared sensor was explored, with the aim of detecting S1P in blood using Attenuated Total Reflectance (ATR) spectroscopy
Fuchs, Yannick. "Capteurs chimiques holographiques à base de polymères à empreintes moléculaires comme éléments de reconnaissance." Compiègne, 2012. http://www.theses.fr/2012COMP2037.
Full textMolecularly imprinted polymers (MIPs) are tailor-made synthetic receptors capable of specifically recognizing a target molecule. They are synthesized by polymerization of a complex between functional monomers and a template molecule in the presence of cross-linkers. After polymerization and removal of the template molecule, the cross-linked polymer network contains cavities that are complementary to the template in terms of size, shape, and position of functional groups, allowing the polymer to bind target analytes with high affinity and specificity. The work reported in this thesis is focused on the development of MIP-based holographic sensors, a novel group of optical sensors in which MIPs is used as recognition element, and the holographic element is built into it and used as an optical transducer. Label-free binding assays performed with holographic sensors showed the optical signal being specifically modified upon incubation in testosterone solutions. This is due to structural modifications that occur in the MIP matrix upon analyte binding, which consequently give rise to structural changes. Testosterone concentrations as low as 1 µM could thus be detected. The combination of holographic transducers with MIPs as synthetic recognition elements has the potential to give rise to inexpensive general sensing devices that can be adapted to, and used in, a broad range of sensing tasks, without the need of labeling the analyte. These range from the highly sensitive spectrometric sensor to the instrument-less test strip, and should be of interest for industry, biomedical, environmental and food, end even for household use
Henry, Nathaly. "Conception de polymères à empreintes moléculaires pour l'extraction de principes actifs de produits naturels." Thesis, Orléans, 2012. http://www.theses.fr/2012ORLE2028/document.
Full textThe cosmetic industry uses plants as sources of natural active ingredients. The extraction of theseactive ingredients requires selective extraction method such as molecularly imprinted polymers (MIP)technique. This thesis describes the development of MIP for the selective extraction of glucosamine,fructosazine and 2,5-déoxyfructosazine.In the first part, three approaches were developed to extract glucosamine by MIP technique: thecovalent approach, semi-covalent and noncovalent. For each approach, the various parametersinvolved in the synthesis of the MIP were optimized. The best results were obtained with a MIPsynthesized with a non-covalent ionic approach based on the complexation of glucosamine by asulfonic acid. The MIP exhibits higher performance than commercial media and extractions fromplants were performed. The potential for industrialization of the MIP was validated during initial testson a larger scale.In the second part, the simultaneous extraction of fructosazine and 2,5-déoxyfructosazine wasperformed following the development of a MIP synthesized using a covalent approach based on theformation of boronic esters. An original synthesis method is exposed since the templates were formedin situ during the polymerization. The MIP obtained showed good selectivity for each compound andallowed to separate and purify fructosazine and 2,5-déoxyfructosazine from plant and food matrices.All these works were performed according to an eco-friendly approach based on the use of aqueoussolvents as solvents for polymerization and extraction
Moussa, Manel. "Développement de polymères à empreintes ioniques pour l'extraction sélective des lanthanides dans des échantillons environnementaux." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066585/document.
Full textThe analysis of the lanthanide ions present at trace level in complex environmental matrices requires often a purification and preconcentration step. The solid phase extraction (SPE) is the most used sample preparation technique. To improve the selectivity of this step, Ion Imprinted Polymers (IIPs) can be used as SPE solid supports. The aim of this work was the development of IIPs for the selective extraction of lanthanide ions from environmental samples. In a first part, IIPs were prepared according to the trapping approach using 5,7-dichloroquinoline-8-ol as non-vinylated ligand. For the first time, the loss of the trapped ligand during template ion removal and sedimentation steps was demonstrated by HPLC-UV. Moreover, this loss was not repeatable, which led to a lack of repeatability of the SPE profiles. It was then demonstrated that the trapping approach is not appropriate for the IIPs synthesis.In a second part, IIPs were synthesized by chemical immobilization of methacrylic acid as vinylated monomer. The repeatability of the synthesis and the SPE protocol were confirmed. A good selectivity of the IIPs for all the lanthanide ions was obtained. IIPs were successfully used to selectively extract lanthanide ions from tap and river water. Finally, IIPs were synthesized by chemical immobilization of methacrylic acid and 4-vinylpyridine as functional monomers and either a light (Nd3+) or a heavy (Er3+) lanthanide ion as template. Both kinds of IIPs led to a similar selectivity for all lanthanide ions. Nevertheless, this selectivity can be modified by changing the nature and the pH of the washing solution used in the SPE protocol
Hadj, Ali Wassim. "Polymères à empreintes moléculaires pour l'extraction de l'ochratoxine A des matrices alimentaires : caractérisation et miniaturisation." Paris 6, 2011. http://www.theses.fr/2011PA066803.
Full textSala, Alexandre. "Synthèse et caractérisation de polymères à empreintes ionique du cuivre pour la conception d'électrodes modifiées." Electronic Thesis or Diss., Toulon, 2022. http://www.theses.fr/2022TOUL0010.
Full textThe use of copper as a biocide in anti-fouling coatings on ships has led to its accumulation in harbour waters. The aim of this work is to develop electrochemical sensors for its detection in marine samples. For this purpose, copper(II)-imprinted polymers were prepared and used for the modification of electrodes.Firstly, imprinted polymer particles were synthesised using a cross-linking agent (ethylene glycol dimethacrylate or N,N'-methylene-bis-acrylamide) and a functional monomer, methacrylamido-L-histidine (MAH), which can form a complex with copper(II). The physico-chemical characterization of the polymer particles confirmed the integration of MAH and allowed to evaluate the morphological properties of the polymers.The copper(II) binding properties were then evaluated and the particles with the best performance were used to make carbon paste electrodes. These electrodes, with a detection limit of 5.9 x 10-2 μM (or 3.75 μg/L), allowed the determination of copper(II) in marine samples.Finally, new approaches for surface modification were explored for in situ polymer film formation. Thus, iniferters were grafted onto gold electrodes by the formation of self-assembled monolayers but also by electropolymerisation of a polymer with pendant iniferter functions. The latter route allowed the photopolymerisation of a copper(II)-imprinted polymer film on a carbon electrode
Vandevelde, Fanny. "Matériaux nanostructurés à empreintes moléculaires : Récepteurs biomimétiques pour des biocapteurs." Compiègne, 2007. http://www.theses.fr/2007COMP1703.
Full textMolecularly imprinted polymers (MIPs) represent a novel type of bioinspired materials that mimic the behaviour of natural antibodies, enzymes or receptors, while exhibiting far greater stability than their natural counterparts. Their usefulness has no more to be demonstrated for applications in bioanalytical chemistry such as immunoassays or biosensors. Coupling silicon-based microfabricated structures with MIPs used as sensitive layer appears particularly interesting since that combines the binding selectivity of the MIPs with a high-sensitivity and high-resolution transduction mechanism eliminating the need of labelling. We describe, in this study, a MIP-based label-free sensing system for the herbicide 2,4-dicWorophenoxyacetic acid (2,4-0) is validated using piezoelectric micro-membranes working in dynamic mode. The MIP precursor solution containing the template molecule 2,4-0 and a corresponding non-imprinted polymer (NIP) precursor solution without 2,4-0 as a control were deposited on the membranes using a specific cantilever array-based microspotting technique. We describe the preparation of nanostructured molecularly-imprinted surfaces using nanomolding on porous alumina. This approach produces snrface-bound nanofilaments, which greatly increases the surface area of the material and should result in a faster mass transfer compared to porous films. Two different approaches were chosen : imprinting of the bulk filaments, and imprinting of the filament surface. For the bulk and surface imprinting, we used the blocking drug propranolol and the dye fluorescein, respectively, as the target molecules (the imprinting templates). Rebinding studies performed with the imprinted surfaces and with non-imprinted control surfaces revealed a specific recognition of the templates and thus the existence of selective molecularly imprinted binding sites
Bartkowski, Magali. "Polymère à empreintes moléculaires comme élément de reconnaissance dans un biocapteur." Compiègne, 2008. http://www.theses.fr/2008COMP1775.
Full textBetatache, Amina. "Conception et réalisation de capteurs biomimétiques à base de polymères à empreintes moléculaires à transduction électrochimique." Thesis, Lyon 1, 2013. http://www.theses.fr/2013LYO10250.
Full textBiosensors are rapid, selective and low-cost analytical devices of growing interest for a wide range of application fields (e.g. environment, food, health). The extraordinary molecular recognition capabilities of sensing biomolecules such as enzymes and antibodies have been successfully exploited in the elaboration of a number of biosensors. However, these biorecognition elements are often produced via complex and costful protocols and require specific handling conditions because of their poor stability. To circumvent these limitations, artificial receptors of similar recognition properties are now proposed as alternatives to natural receptors in sensor technology. Molecular imprinted polymers are among the most promising biomimetic materials reported. In this work, we developed two impedimetric biomimetic sensors. The first one is based on imprinted poly(ethylene co-vinyl alcohol) for creatinine detection and the second on polymethacrylate MIPs for testosterone analysis. In the first case, MIP was produced and deposited onto gold microelectrodes, either by spin-coating of a pre-polymerization solution, or by electrospinning. In the second case, MIPs were synthetized by photopolymerization of methacrylic acid in presence of ethyleneglycoldimethacrylate (cross-linker), an azo-initiator and testosterone as template using the “grafting from” method in which the initiator is first attached to the transducer surface but to effect polymerization we used two different approaches (dip-coating of a prepolymerization solution on the transducer surface functionalized with the initiator or immersing it in the solution of monomers and testosterone) followed by exposure to an energy source to effect polymerization. Then, analytical performances (linear range, detection limit, selectivity and reproducibility) of both creatinine and testosterone sensors were determined and compared
René, William. "Polymères à empreintes ioniques fluorescents : un outil innovant pour la détection du plomb en milieu marin." Electronic Thesis or Diss., Toulon, 2019. http://www.theses.fr/2019TOUL0012.
Full textIon imprinted polymers (IIP) are highly cross-linked porous materials with specific recognition cavities of a target ion. Thus, this kind of materials shows high selectivity. This work focuses on the preparation of fluorescent ion-imprinted polymers specific to lead (11), i.e. capable of transforming the ion recognition into a fluorescence signal, for the detection of this contaminant in marine environment. ln a first step, the strategy adopted was to select and synthesise a fluorescent ligand, specific to lead (11) and t study and use it for the preparation of the polymers. This ligand was modified to produce a styrene type fluorescent monomer (ANQ-ST). An exaltation of the fluorescence signal of ANQ-ST was observed along with lead Il addition. The second ste was dedicated to the develo ment of the lead Il ion-im rinted ol mers. Various parameters were tested: polymerization solvants, nature of crosslinking agent (EGDMA and DVB) and ANQ-ST/crosslinker ratio (2 % and 5% molar). A diversified panel of characterization techniques allowed to study the polymer structures and to evidence the integration of the functional monomer ANQ-ST inside the polymer matrix. The last step consisted in evaluating the performances of the IIPs for the detection of lead (Il) by fluorescence. The polymers prepared with EGDMA and 5 % of functional monomer showed the best results For these polymers, IIPs' fluorescence intensity in the presence of lead (11) was almost not impacted by the addition of interfering ion species, unlike their non-imprinted analogs. These results highlight the effectiveness of the imprinting effect. Calibration curves were established in aqueous media at different pH and in different matrices. Those parameters did not have major influences. The limits of detection obtained are below the World Health Organization recommendation (10 µg.L-1 ). These results were successfully validated by the detection of lead in natural samples, includinçi tests in marine media
Omar-Aouled, Nima. "Développement d'un biocapteur associant dispositif à onde de Love et polymères à empreintes moléculaires, caractérisation sous gaz." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2013. http://tel.archives-ouvertes.fr/tel-00987912.
Full textOmar, Aouled Nima. "Développement d'un biocapteur associant dispositif à onde de Love et polymères à empreintes moléculaires : caractérisation sous gaz." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2013. http://tel.archives-ouvertes.fr/tel-01064177.
Full textDuhirwe, Gilbert. "Polymères à empreintes moléculaires biodégradables : synthèse de nouveaux monomères fonctionnels et agents réticulants à base de sucres." Thesis, Amiens, 2017. http://www.theses.fr/2017AMIE0008/document.
Full textMolecularly imprinted polymers (MIPs) are synthetic biomimetic materials, capable of recognizing and specifically binding a target molecule in a similar way to the natural receptors (antibodies, enzymes, hormone receptors). Considering their screening ability, their mechanical and chemical stability and their weak production cost compared to conventional biomolecules, these materials are used in separative, bioreceptors, synthesis and catalysis fields. However, the use of these materials in controlled drug delivery for clinical applications is still limited due to their lack of biodegradation and biocompatibility. The main drawback lies in the use of functional monomers and cross-linking agents based on petrochemicals products. In this work, we have studied the use of functional monomers and cross-linking agents based on sugars for the development of biodegradable and biocompatible MIPs. These molecules derived from biomass resources are potentially cleavable by enzymes. Firstly, our study focused on selective modification in order to graft polymerisable functions through ester, amide and triazole groups of derivatives based on di-, tri-, and oligosaccharides. Under enzymatic conditions, we observed and verified the cleavage of glycosidic bonds. We finally began a preliminary study of polymerization with these new molecules. Our first results showed that our compounds allowed obtaining hydrophilic polymers, which are degradable under enzymatic conditions
Boitard, Charlotte. "Polymères à empreintes de protéines couplés à des nanoparticules magnétiques : de la synthèse aux applications en nanomédecine." Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS032.
Full textThis thesis focuses on the development of hybrid magnetic nanoparticles for nanomedicine. A major challenge is to propose innovative solutions in the treatment and/or diagnosis of some pathologies, such as cancers. Magnetic nanoparticles are interesting for nanomedicine because they can be employed to magnetically direct a vector toward a target, or locally heat this target when submitted to an alternating magnetic field. Moreover, protein imprinted polymers can be used to selectively target proteins of interest. Thus, the idea of this project is to bind magnetic nanoparticles and protein imprinted polymers (PIP), to propose a new system to target, detect and treat cells of interest. γ-Fe2O3@PIP hybrid nano-objects were synthesized through polymerization of polyacrylamide around template proteins, such as green fluorescent proteins or the glycoproteins CD44. PIP represent less than 30 % of final hybrid nano-objects, which have hydrodynamic diameters smaller than 400 nm, according to the synthetic pathway. Effective targeting of cells displaying these proteins of interest occurred while using γ-Fe2O3@PIP nano-objects. Under an alternating magnetic field, proteins are denatured thanks to magnetic hyperthermia. γ-Fe2O3@PIP particles will not detach themselves from the cell, and will thus be internalized. A further study denoted the absence of an acute cytotoxicity for hybrid nano-objects, which will be metabolized inside lysosomes. Targeting and magnetic hyperthermia properties of γ-Fe2O3@PIP make them ideal candidates to detect cancer metastasis and slow down their development
Boulanouar, Al Massati Sara. "Synthèse et caractérisation de polymères à empreintes moléculaires pour l'extraction sélective de pesticides organophosphorés dans les huiles végétales." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066204/document.
Full textThe increasing use of pesticides in agriculture causes serious health risks to humans. These pesticides may possibly be found in vegetable oils used as cosmetic ingredients. Their identification and reliable quantitative analysis at trace levels constitute a challenge for the safe use of such oils despite the high potential of analytical methods such as liquid chromatography coupled to mass spectrometry (LC-MS/MS). Their determination at low concentration levels in complex oil samples requires an extraction and a purification step. In order to increase the selectivity of the sample treatment step, the synthesis of imprinted sorbents can be considered. This study focusses on a group of pesticides, the organophosphorus (OPs) that present some structural disparity and belong to a wide range of polarity (log P values between 0.7 and 4.7). To produce imprinted sorbents, a first approach of synthesis consists in the radical polymerization of organic monomers in moderately polar organic solvents to obtain molecularly imprinted polymers (MIPs). The second one, the Sol-Gel approach, consists in the hydrolysis and then condensation of organosilanes in a polar medium to produce molecularly imprinted silicas (MIS). For both approaches, different conditions of synthesis were screened using different template molecules, monomers and solvents. The selectivity of the resulting imprinting polymers was first evaluated by studying the extraction profiles of OPs in pure media on MIP and MIS. The non-specific interactions were estimated by studying in parallel the retention of OPs on non-imprinted polymers synthesized in the same conditions as imprinted sorbents but in the absence of the template molecule. Both sorbents MIP/MIS present a complementarity in terms of selective extraction of the target OPs: polar OPs were extracted selectively using the MIS while moderately polar OPs were selectively extracted by the MIP. The capacity of these supports was evaluated and was consistent with the analysis of OPs at trace levels in real oil samples. After studying the repeatability of the extraction procedure and of the reliability of the syntheses, the performances of these supports were studied in real media. For this, MIP/MIS were applied to the selective extraction of OPs from different vegetable oils (almond, olive and sunflower oil) and similar results were obtained for the three different oils. Their potential in terms of ability to remove matrix interfering compounds were higher than those of the conventional method based on the use of C18 silica. The estimated limits of quantifications were lower than the Maximum Residue Levels (MRLs) established by EU Regulation 396/2005 for these compounds in oils
Ayari, Mohamed. "Développement de Polymères à Empreintes Moléculaires pour la Libération Controlée de la Ribavirine et de l'Adénosine -5'-monosphosphate." Thesis, Orléans, 2018. http://www.theses.fr/2018ORLE2047/document.
Full textThis thesis report presents the synthesis of new polymeric cargos associated with molecular imprinting technology for the controlled release of nucleoside analogs: ribavirin for the treatment of pulmonary influenza A and adenosine 5'-monophosphate.At first, we focused on the development of different formulations of bulk MIPs in hydrogel form with the aim of setting up controlled release systems for ribavirin under different stimuli. Then, we carried out a "Dummy-template"approach using 2 ', 3', 5'-tri-O-acetyl-ribavirin in order to reduce the polarity of ribavirin so that we could explore different aprotic solvents to better stabilize the pre-polymerization complex. This study was accomplished by the use of new monomers synthesized within the laboratory and by comparing them with a commercial monomer such as methacrylic acid.These different MIPs showed differences in adsorption with respect to ribavirin but also different release profiles and kinetics depending on the release medium or the temperature.Secondly, we transposed the best formulations using 2 ', 3', 5'-tri-O-acetyl-ribavirin as template molecule towards the synthesis of imprinted beads. The spherical MIPs obtained showed desired geometry and diameter to be administeredby the pulmonary route. The incorporation of various co-monomers allowed to modify the architecture of these beads bymaking them thermosensitive or fluorescent.Lastly, this time, we have synthesized imprinted polymers for the controlled release of adenosine-5'-monophosphate. In this part, we studied the release from the spherical shape obtained by inverse Pickering emulsion polymerization
Le, Moullec Sophie. "Développement de polymères à empreintes moléculaires pour l'extraction sélective de produits de dégradation de neurotoxiques organophosphorés de matrices complexes." Paris 6, 2007. http://www.theses.fr/2007PA066462.
Full textLebal, Naîma. "Développement d'architectures innovantes associant capteurs acoustiques et matériaux polymères à empreintes moléculaires pour la détection de biomarqueurs de cancer." Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0411/document.
Full textColorectal cancer statistics in France and all over the world demonstrate theneed for fast, sensitive and specific technological platforms development for cancerdiagnosis. A rapid diagnosis will improve the patients’ health status and reduce the resultswaiting time which could be a great stress factor. Biomarkers analysis in blood, urine andother body fluids is recognized as one of the applied methods for early cancer detection. Inframe of this project, urinary nucleosides have been identified as colorectal cancerbiomarkers. Funded by the National Research Agency (ANR), through the cancer sensorproject (TECSAN program), this thesis was carried out in IMS laboratory. Hence, a colorectalcancer biomarkers detection and monitoring technological solution has been proposed. Inour detection strategy, Molecularly Imprinted Polymers (MIP) has been identified asbiomarker recognition element. The MIP layer has been associated to Love Wave acoustictransducer. This biosensor will sense the identified colorectal cancer nucleosides
Saadaoui, Asma. "Développement de nouveaux monomères biosourcés à base d’Isosorbide et applications à la synthèse de matériaux à applications spécifiques." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSE1036.
Full textThe isosorbide and its derivatives are chiral diols obtained from cornstarch. The use of the latter as a monomer for the development of polymers has proved to be effective. The diols match the properties of conventional polymers. As part of this thesis, the diols are used to synthesize new platforms of bio based AA and AB from the 1,4: 3,6 - dianhydrohexitols monomers. The synthesis of intermediaries based on dinitriles or mononitrilies and their derivaties starting from the three isomers as well as the test results from one of these promising monomers polymerization which have been described. The resulting polymer revealed semi-cristallin through stereoregulier AB monomers layout. This work is also the first to describe the use of the reticulants chiral at base of 1.4: 3, 6-dianhydrohexitols participating in the formation of three-dimensional network for the development of polymers to footprints (MIP) Excelsior for detection of Methyltestosterone (MT). The polymers synthesized by polymerization have been characterized by precipitation. The properties of retention were evaluated in batch mode by HPLC-MS/MS. These MIPs present good properties of adsorption towards the MT with factors of footprint greater than 1 showing the effectiveness of printing. These materials have a good ability of adsorption compared to literature. Unprinted polymers (PIN) have shown even greater adsorption capacity than the conventional MIP. The high adsorption capacity was observed in cMIP-Is based on isosorbide for the concentrations (500 mg L-1). The experimental data have been studied according to Langmuir and Freundlich adsorption models to interpret the phenomena of adsorption these developed cMIP have been adapted for the methyltestoterone on the phase of extraction (SPE) solid. An extraction procedure has been developed leading through a full optimization finalized by an application in wastewater
Mba, Ekomo Vitalys. "Du polymère à empreintes moléculaires électrochimiques au capteur : Etude de faisabilité pour la détection du Bisphénol A." Electronic Thesis or Diss., Toulon, 2018. http://www.theses.fr/2018TOUL0010.
Full textMolecularly imprinted polymers are materials with specific recognition properties that can be used for the detection of a wide range of template. In recent years, many works have been reported on their use in sensors because of their capability to specifically bind a defined analyte.The aim of this work is to assign to the molecularly imprinted polymers redox properties in order to detect Bisphenol A (BPA) by using easy electrochemical techniques. These electroactive polymers are synthesizedby precipitation polymerization of ferrocenylmethyl methacrylate (Fc) and ethylene glycol dimethacrylate(EDMA) in the presence of BPA for the imprinted polymer (e-MIP-Fc) and in its absence for the nonimprinted polymer (e-NIP-Fc). The copolymerization of the previous monomer with 4-vinylpyridine (4-VP) leads to two other imprinted (e-MIP-Fc-VP) and non-imprinted (e-NIP-Fc-VP) polymers. The resulting polymers are characterized in batch using LC-MS and have ability to recognize BPA with an imprinting factor of 2.5 and 1.3 respectively for e-MIP-Fc-VP and e-MIP-Fc the proving the recognition efficiency ofthese polymers. Their cyclic voltammetry recording confirm first, the good integration of the redoxferrocenyl monomer inside the polymers e-MIP/e-NIP during the polymerization, and on the other hand,the capability of these polymers to reveal the presence of BPA in the solution. The e-MIP-Fc particles were then integrated inside devices like microelectrode and OECT (Organic ElectroChemical Transistor). The first results, even if they must be confirmed, are positive regarding the modification of the electrical properties of these devices in the presence of BPA. The e-MIP-Fc-VP particles, after mixing with a carbon paste, were screen-printed to obtain a modified working electrode in a screen-printed electrode device. This electrode enable the recognition of BPA with limits of detection and quantification of 60 pM and 190 pM respectively, for a concentration range between 0.15 and 1.84 nM, thus opening up interesting perspectives for the detection of BPA in aqueous medium
Lordel, Sonia. "Synthèse et caractérisation de polymères à empreintes moléculaires pour l'extraction sélective de résidus d'explosifs pour le développement de dispositifs de terrain." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2011. http://pastel.archives-ouvertes.fr/pastel-00631350.
Full textLordel, Sonia. "Synthèse et caractérisation de polymères à empreintes moléculaires pour l'extraction sélective de résidus d'explosifs pour le développement de dispositifs de terrain." Phd thesis, Paris 6, 2011. http://www.theses.fr/2011PA066344.
Full textMba, Ekomo Vitalys. "Du polymère à empreintes moléculaires électrochimiques au capteur : Etude de faisabilité pour la détection du Bisphénol A." Thesis, Toulon, 2018. http://www.theses.fr/2018TOUL0010/document.
Full textMolecularly imprinted polymers are materials with specific recognition properties that can be used for the detection of a wide range of template. In recent years, many works have been reported on their use in sensors because of their capability to specifically bind a defined analyte.The aim of this work is to assign to the molecularly imprinted polymers redox properties in order to detect Bisphenol A (BPA) by using easy electrochemical techniques. These electroactive polymers are synthesizedby precipitation polymerization of ferrocenylmethyl methacrylate (Fc) and ethylene glycol dimethacrylate(EDMA) in the presence of BPA for the imprinted polymer (e-MIP-Fc) and in its absence for the nonimprinted polymer (e-NIP-Fc). The copolymerization of the previous monomer with 4-vinylpyridine (4-VP) leads to two other imprinted (e-MIP-Fc-VP) and non-imprinted (e-NIP-Fc-VP) polymers. The resulting polymers are characterized in batch using LC-MS and have ability to recognize BPA with an imprinting factor of 2.5 and 1.3 respectively for e-MIP-Fc-VP and e-MIP-Fc the proving the recognition efficiency ofthese polymers. Their cyclic voltammetry recording confirm first, the good integration of the redoxferrocenyl monomer inside the polymers e-MIP/e-NIP during the polymerization, and on the other hand,the capability of these polymers to reveal the presence of BPA in the solution. The e-MIP-Fc particles were then integrated inside devices like microelectrode and OECT (Organic ElectroChemical Transistor). The first results, even if they must be confirmed, are positive regarding the modification of the electrical properties of these devices in the presence of BPA. The e-MIP-Fc-VP particles, after mixing with a carbon paste, were screen-printed to obtain a modified working electrode in a screen-printed electrode device. This electrode enable the recognition of BPA with limits of detection and quantification of 60 pM and 190 pM respectively, for a concentration range between 0.15 and 1.84 nM, thus opening up interesting perspectives for the detection of BPA in aqueous medium
Udomsap, Dutduan. "Développement de polymères à empreintes moléculaires électrochimiques pour la surveillance en micropolluants organiques des eaux dans les ouvrages du Canal de Provence." Thesis, Toulon, 2014. http://www.theses.fr/2014TOUL0009/document.
Full textMolecularly Imprinted Polymers show highly selective affinity towards the target molecule and are used inmany applications. In this context, the technology is used for preparing selective polymers for benzo(a)pyrene(BaP) with the aim of sensor fabrication. The addition of a redox tracer inside the polymer allows thepossibility of direct target detection by an electrochemical technique. In the MIP field, this work is the firstreporting the use of a functional monomer that not only participates in the creation of the polymer network butalso provides a redox property. The polymers synthesized using precipitation polymerization technique werecharacterized in terms of composition, thermal stability and textural properties. The adsorption properties wereevaluated in batch mode by HPLC-UV in the presence of BaP and interfering polycyclic aromatichydrocarbons. These MIPs show good adsorption behavior towards BaP with imprinting factors superior to 1showing the efficiency of the molecular imprinting. These properties were also preserved even in presence ofan organic matter (humic acid salt), and also after several uses. Finally, electrochemical analysis showed thatthese MIPs had a different electrochemical behavior depending on the presence or the absence of the targetwith a detection limit of 0.09 μM for BaP. The use of such electrochemical MIPs can thus be interestinglyconsidered in sensor devices
Udomsap, Dutduan. "Développement de polymères à empreintes moléculaires électrochimiques pour la surveillance en micropolluants organiques des eaux dans les ouvrages du Canal de Provence." Electronic Thesis or Diss., Toulon, 2014. http://www.theses.fr/2014TOUL0009.
Full textMolecularly Imprinted Polymers show highly selective affinity towards the target molecule and are used inmany applications. In this context, the technology is used for preparing selective polymers for benzo(a)pyrene(BaP) with the aim of sensor fabrication. The addition of a redox tracer inside the polymer allows thepossibility of direct target detection by an electrochemical technique. In the MIP field, this work is the firstreporting the use of a functional monomer that not only participates in the creation of the polymer network butalso provides a redox property. The polymers synthesized using precipitation polymerization technique werecharacterized in terms of composition, thermal stability and textural properties. The adsorption properties wereevaluated in batch mode by HPLC-UV in the presence of BaP and interfering polycyclic aromatichydrocarbons. These MIPs show good adsorption behavior towards BaP with imprinting factors superior to 1showing the efficiency of the molecular imprinting. These properties were also preserved even in presence ofan organic matter (humic acid salt), and also after several uses. Finally, electrochemical analysis showed thatthese MIPs had a different electrochemical behavior depending on the presence or the absence of the targetwith a detection limit of 0.09 μM for BaP. The use of such electrochemical MIPs can thus be interestinglyconsidered in sensor devices
Belhadj-Kaabi, Faten. "Développement et caractérisation de polymères à empreintes moléculaires pour l'extraction de composés pharmaceutiques à l'état de traces dans les fluides biologiques : miniaturisation du format de synthèse et couplage en-ligne à la nano-chromatographie." Paris 6, 2008. http://www.theses.fr/2008PA066542.
Full textChapuis, Florence. "Immunoadsorbants et polymères à empreintes moléculaires pour l'extraction sélective de composés de matrices environnementales et biologiques : synthèse et caractérisation en vue de leur intégration au système total d'analyse." Paris 6, 2004. http://www.theses.fr/2004PA066049.
Full textBakas, Idriss. "Modélisation moléculaire et synthèse de polymères à empreintes moléculaires pour l’extraction sélective sur phase solide d’insecticides organophosphorés à partir d’échantillons naturels : application à l’huile d’olive." Perpignan, 2012. http://www.theses.fr/2012PERP1169.
Full textThe analysis of organophosphate insecticides residues in complex samples such as the environmental matrices or the foodstuffs is remaining hard considering the presence of matrices effect. For this, a sample clean-up is required to clean the sample and preconcentrate the insecticides before chromatography analysis, in order to identify and quantify them easily. Solid phase extraction has become the method of choice for the treatment of such complex samples. Various extracting sorbents are available but coextraction of interfering compounds can be observed. Thus, polymeric sorbents called MIPs (molecularly imprinted polymers) developing a binding based on a molecular recognition mechanism have been suggested as sorbent for the selective extraction of the organophosphate insecticides which are some of the most commonly used pesticides. Firstly, a molecular modelling by using a SYBYL 7. 0 software (Tripos Inc. , st. Louis, MB, the USA) to select functional monomers presenting a good affinity for the organophosphate insecticides, particularly methidathion, malathion, dimethoate and fenthion was realized. The selected monomers were used for synthesized polymers (MIPs) by radicalaire way. Then synthesized MIPs were characterized using the Langmuir-Freundlich isotherms and the microscopic analysis (MEB). The effect of several parameters on the binding of insecticides using MIPs as sorbent in slide phase extraction (SPE) was studied; it shows that the high polarity of the percolation solutions decreases this binding. Therefore, the hexane seems to be the best solvent of percolation, due to its low polarity and to its miscibility with olive oil. The washing step which allows minimizing non specific interactions was optimized for each insecticide. This extraction method was applied to aqueous matrices and high extraction yields were obtained after studying of the effect of pH and the ionic strength. Finally the optimized protocol was used for the selective extraction of insecticides from olive oil: very interesting results were obtained with limits of detection lower than the authorized limits. A simple and fast system for analysis of the metabolites insecticides, based on the association of the extraction using MIPs cartridges and detection by amperometric biosensor was also used
Bourdillon, Céline. "Etude de cristaux photoniques et de polymères stimulables : réalisation d'un capteur de nanoparticules." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066659/document.
Full textSince the emergence of analysis techniques at the nanometer scale, many nanostructures and nanoparticles have been elaborated. Because of the specific properties induced by their size, nanoparticles are present in a lot of products used in the everyday life and can present a high toxicity. This toxicity depends, inter alia, on their size and surface chemistry. Therefore, it is really important to collect and detect them specifically when they are present as trace contaminants. This thesis deals with the combination of the optical properties of a photonic crystal, an opal, and the chemical properties of a stimulable polymer, a nanoparticles imprinted polymer, to realize a sensitive, specific and selective nanoparticles sensor. The nanoparticles that we used as targets are fluorescent CdSeTe/ZnS nanocrystals. In the first part of this thesis, we studied the filtering of the emission of the targets by heterostructures based on direct opals. In the second part, we synthetized, for the first time to our knowledge, a polymer presenting nanocrystals imprints. We used this polymer to realize an inverse opal allowing the sensing of these nanoparticles by specular reflection measurements. This sensor can be generalized to any functionalized nanoparticle
Linares, Ana-Valvanuz. "Hierarchically structured molecularly imprinted nanomaterials as recognition elements in biochips." Compiègne, 2010. http://www.theses.fr/2010COMP1862.
Full textMolecularly imprinted polymers (MIPs) are tailor-made synthetic receptors that are able to specifically recognize a given target molecule. They are synthesized using the target molecule or a derivative thereof as a molecular template around which functional and crosslinking monomers are arranged and co-polymerized to form a cast-like shell. After polymerization and removal of the template, three-dimensional binding sites complementary to the target molecule in size, shape, and position of functional groups are exposed and their conformation is preserved by the crosslinked structure. Thus, a molecular memory is imprinted on the polymer, which is now capable of selectively rebinding the target. MIPs are able to mimic thebiological interactions that take place between antigens and antibodies, an enzyme and its substrate or between a hormone and its receptor. Hence, they are proposed as recognition elements in sensors and biochips as possible substitutes for biomolecules. In order to construct integrated systems containing the recognition element and the transducer part, suitable interfacing and patterning methods are required. The work of this thesis focuses on the deposition and patterning of MIPs onto flat surfaces for their further integration in a sensing device. Three-main techniques have been studied for this purpose: nanomolding, microscope projection photolithography (MPP) and near-field photolithography by evanescent waves (PEW). Nanomolding on sacrificial nanoporous alumina generated films composed of parallel, surfacebound nanofilaments with high aspect ratio, containing surface molecular imprints for either a small molecule, fluorescein, or for the protein myoglobin. These MIPs were able to specifically recognize their targets over other molecules with similar structures. When MPP was used to synthesize these nanostructured MIP films and a pattern was projected onto the surface for polymerization, regular arrays of MIP dots composed of nanofilaments were obtained. These showed an increase in capacity and thus in signal intensity, together with less non-specific binding compared to plain dots generated by the same technique where the MIP precursors were polymerized on a flat surface. Finally, using PEW, molecularly imprinted ultrathin microdots with thicknesses in the range of tens of nanometers were obtained in a controlled manner, exhibiting good recognition properties towards their target, the fluorescent amino acid derivative dansyl-L phenylalanine, as revealed by fluorescence microscopy. We believe that this work paves the road to a better integration of molecularly imprinted polymers into sensing technology. !
Claude, Bérengère. "Intérêt des polymères à empreintes moléculaires pour la préparation d'échantillons par extraction solide-liquide. Applications aux triterpènes dans les plantes et aux dopants dans les urines." Phd thesis, Université d'Orléans, 2007. http://tel.archives-ouvertes.fr/tel-00148669.
Full textLa première application révèle l'influence des liaisons hydrogène lors de l'extraction d'un échantillon organique sur un MIP préparé à partir d'acide méthacrylique (MAA). Des expériences de réactivité croisée réalisées sur des molécules analogues à la molécule empreinte (triterpène) montrent l'impact de la nature et de la position des groupes fonctionnels sur la spécificité de reconnaissance des analytes par le MIP. La capacité d'une cartouche SPE est évaluée à partir d'une solution standard puis d'un extrait végétal avec des solvants de lavage adaptés à la matrice.
Les interactions polymère-analyte sont ensuite étudiées dans une matrice aqueuse saline. Deux MIPs respectivement préparés à partir de MAA et de MAA-styrène, avec le clomiphène comme molécule empreinte, sont caractérisés par les isothermes de Freundlich puis appliqués à la préconcentration du tamoxifène, molécule hydrophobe et basique contenue dans des urines hydrolysées et dopées. Les liaisons hydrogène, ioniques et hydrophobes intervenant dans la rétention des analytes sont étudiées par des équilibres d'adsorption et par SPE. La percolation de l'urine sur un support hydrophobe en préalable de la SPE-MIP, ou directement sur un MIP à caractère hydrophobe renforcé (MAA-styrène) entraîne une augmentation des rendements d'extraction avec un nombre d'étapes de lavage réduit.
Mohamed, Sophie. "Développement de polymères à empreintes moléculaires basé sur une manganoporphyrine utilisé comme catalyseur oxydatif de dérivés soufrés. Vers une nouvelle approche biomimétique de décontamination d'armes chimiques." Thesis, Normandie, 2019. http://www.theses.fr/2019NORMR027/document.
Full textMolecular imprinting polymer is a useful technique for creating artificial receptors able of selectively binding substrates. These recognition properties are particularly interesting for developing macromolecular catalysts. Our aim was to access to a reusable supramolecular catalyst able of oxidizing sulfur derivatives under heterogeneous conditions in the presence of a mild and eco-sustainable oxidant such as hydrogen peroxide. Given the expertise of the team, we decided to focus our work on the development of a catalytic system for the decontamination of surfaces or equipment, after an exposure to compounds that can be detoxified by a selective oxidation of sulfides. Thus, we prepared a porphyrin-based MIP that we tested in the oxidation of various sulfides. The mild conditions used for the catalysis allowed a control of the oxidation degree of a simulant of yperite, leading to a great selectivity the sulfoxide derivative, and avoiding the toxic sulfone formation. With other structures similar to VX, we showed that it is possible to regioselectively oxidize the sulfur atom, and highlighted the interest of this process to facilitate the cleavage of a C-S bond. This approach is then an interesting decontamination strategy that will be evaluated in the future to the case of true chemical warfare agents
Mohamed, Rayane. "Analyse quantitative de contaminants chimiques dans des matrices alimentaires par spectrométrie de masse : évaluation de nouvelles technologies de préparation d'échantillon." Paris 6, 2007. http://www.theses.fr/2007PA066362.
Full textBompart, Marc. "Molecularly imprinted polymers and nano-composites by free radical and controlled/living radical polymerization : applications in optical sensors." Compiègne, 2010. http://www.theses.fr/2010COMP1870.
Full textThis thesis is organized in three chapters and is based on three published papers, and two manuscripts about to be submitted. Molecularly imprinted polymers (MIPs) are tailor-made synthetic receptors that are obtained by polymerization in the presence of a molecular template. The first paper describes the use of Raman spectroscopy to detect and quantify the presence of the imprinting template in single molecularly imprinted polymer microspheres. The polymers were imprinted with the Beta-blocking drugs propranolol and atenolol, and precipitation polymerization was used to obtain spherical particles. The nanoparticles were used for bulk detection whereas with micrometer-sized particles, quantitative measurements on single particles were possible. Relatively low detection limits down to 1µM have been reached for the detection of S-propranolol through bulk measurements on MIP nanoparticles. The second paper describes chemical nanosensors with a submicron core-shell composite design, based on a polymer core, a molecularly imprinted polymer (MIP) shell for selective analyte recognition, and an interlayer of gold nanoparticles for signal amplification. SERS measurements on single nanosensors yielded a detection limit of 10-7 M for the Beta-blocker propranolol, several orders of magnitude lower than on plain MIP spheres. These particles were also used as sensor materials with localized surface plasmon resonance measurements as the transduction method (Paper III), for the determination of the Beta-blocking drug propranolol. The sensors were used in suspension and were measured using a standard UV-Vis spectrophotometer. In order to solve general problems associated with MIPs, in particular their heterogeneity in terms of inner morphology and distribution of binding site affinities, it has been suggested to use modern methods of controlled/living radical polymerization for their synthesis. This also facilitates their generation in the form of nanomaterials, nanocomposites, and thin films, a strong recent trend in the field. The fourth paper reviews recent advances in the molecular imprinting area, with special emphasis on the use of controlled polymerization methods, their benefits, and current limitations. In the last paper, we have for the first time used a recently developed CRP method based on iodide mediated polymerization, reversible chain transfer catalyzed polymerization (RTCP), for the synthesis of MIPs. We show on the example of MIPs specific for the Beta-blocking drug propranolol that RTCP is compatible with MIP synthesis, both for the synthesis of bulk polymers and nanospheres, and that it yields polymers with the same binding capacity as the standard FRP method used for comparison. Solid-state NMR measurements revealed that the conversion of pendant vinyl groups was higher with RTCP than with polymers synthesized by FRP, in particular at higher initiator concentrations
ALLES, HERVE. "Etude expérimentale et théorique de l'injection des polymères thermoplastiques." EMP, 1986. http://www.theses.fr/1986ENMP0005.
Full textPuzio, Kinga. "Towards controlled release of Vanillin and bio-sensing of Adenosine monophosphate using molecularly imprinted polymers." Thesis, Orléans, 2012. http://www.theses.fr/2012ORLE2075.
Full textThis thesis report presents the exploration of molecularly imprinted polymers (MIP) for the application in controlled release and targeting antivirus and anticancer drugs. The first part of this study describes the imprinting of vanillin as a monolith. Several strategies were studied: non-covalent, covalent and semi-covalent. The composition of the MIP prepared in each approach was optimized to obtain the best properties and performance. The affinity, selectivity and capacity of MIP were determined. MIPs were evaluated in solid-phase extraction (SPE) of structural analogues in natural samples (vanilla extract, wine). We also present the study of the exploration of spherical beads as potential tools for the controlled release of vanillin. These studies concern the characteristics of uptake and release of the molecule of interest in the aqueous medium on functionalised microspheres supplied by Merck ESTAPOR Microspheres®. The second part of this thesis is devoted to studies on the evaluation of MIP of adenosine 5'-monophosphate (AMP). The polymer was prepared in non-covalent approach and efficiency of binding was characterised using frontal analysis (FA). FA is a useful technique that allows discriminate specific and nonspecific interactions and to understand the binding mechanisms in specific cavities
Rodriguez, Vilches Seila. "Nanostructuration of innovative molecular imprinted polymers for their use in protein detection." Toulouse 3, 2011. http://thesesups.ups-tlse.fr/1387/.
Full textThe aim of this PhD work was to design and develop a new type of nanostructured material that could be further used in a biochip capable of selectively detecting proteins such cancer biomarkers. The chosen method to achieve this goal was the molecularly imprinted polymer (MIP) technique. The MIP had to be structured in nanometric lines to be coupled subsequently with the diffracting label-free detection. During the first part of this project, different hydrogel formulations were assessed, which needed to respond to several specifications: polymerization process at 25-37°C in phosphate buffer solution and a polymerization time of less than 15 minutes. In addition, the hydrogel required functional groups that can interact with the protein, it needed to be transparent and biocompatible. Finally, these materials had to have pore sizes compatible with that of the protein for successful surface recognition and exhibit mechanical properties which are compatible with routine technological processes. Three formulations for hydrogel synthesis were selected, including functional groups presenting either a positive or negative charge, or no charge at all. These materials were characterized by techniques such as piezorheometry, differential scanning calorimetry (DSC), electron microscopy (SEM, TEM and cryoSEM), atomic force microscopy (AFM) and profilometry. By following the formation of the hydrogel under UV irradiation by piezorheometry, we showed that maximal crosslinking was achieved in less than 5 minutes when using a lamp with a power of 150 mW/cm2. In addition we also confirmed that these formulations were compatible with UV-nanoimprint lithography and that sub-micron periodic gratings could be obtained. The protein MIPs after batch rebinding experiments were evaluated by fluorescence, showing recognition for streptavidin with an imprinting factor of I. F= 1. 7
Krstulja, Aleksandra. "Development of molecularly imprinted polymers for the recognition of urinary nucleoside cancer biomarkers." Thesis, Orléans, 2015. http://www.theses.fr/2015ORLE2009.
Full textThis thesis report presents the exploration of molecularly imprinted polymer (MIP) technology for developing of a sensitive and selective polymers used in urinary nucleoside biomarker recognition. The main goal was to develop water compatible MIPs prepared by a “dummy template” imprinting technology, using a non-covalent approach and radical-polymerization in bulk. We were focusing mostly on the polymer quality in the formulation (rigidity, stability and repeatability). This was chosen empirically first by production of powders from monolithic MIP. Thus, to accomplish the stated goals, we have explored the choice of the template molecule. A model study presented by Chapter 3, using three 2’3’5’-tri-Operacylateduridine nucleosides as templates in a “dummy” template approach was first developed. Then, applying the knowledge of the type of template choice, we developed a selective MIP for recognition of pseudouridine and N7-methylguanosine in the studies presented in Chapter 4 and Chapter 5 respectively. By using 2’3’5’-tri-O-acetylpseudouridine and 2’3’5’-tri-O-acetylguanosine as templates. Chromatographic methods like HPLC retention and frontal analysis were used in the interest of determining the binding capacity of synthesized polymers, and the behavior in synthetic urine. Finally, to evaluate the possible application of these polymers in urine, molecularly imprinted solid phase extraction (MISPE) was developed. Selective purification of urine samples containing pseudouridine and N7-methylguanosine obtained in the end
Mathieu-Scheers, Emilie. "Développement de capteur électrochimique pour la détection de micropolluants prioritaires." Thesis, Orléans, 2018. http://www.theses.fr/2018ORLE2024.
Full textElectrochemical sensor based on functionalized carbon materials, for the detection of two micropollutants, lead and anthracene, which are among of the priority substances of the European Framework Directive on Water(DCE 2000/60 / EC). Electrochemical sensors allow to achieve detection limits and selectivities for the analysis of micropollutants whose concentrations are of the order of μg/L. They are easy to use for in situ analyzes at lower costs compared to those of the conventional analysis equipment. Their robustness is an important parameter in order to allow continuous or semi-continuous measurements in water. First of all, this thesis proposes the development of a sensor for lead detection. The conductive carbon ink formulation is studied for the screen-printing of the receiving electrode, thus allowing to control the ink composition and to study the influence of the carbon phase on the electrocatalytic properties of electrodes. Functionalization of electrodes by electrochemical grafting of a diazonium salt is also studied in order to control the sensitivity and reproducibility of grafted electrodes, by controlling the thickness and the quality of the layers. With this aim it has been studied the functionalization in a protic ionic liquid in order to allow the control of the monolayer bymodulating the viscosity of this medium. The grafted electrodes show improved analytical performance especially in terms of repeatability and reproducibility. Finally, this work reports the development of a sensor for the electrochemical detection of anthracene, a molecule without chemical functions. In this case, a molecularly imprinted polymer, a material known for its very high selectivity, functionalizes the electrodes.Having a selectivity is only based on the form factor of the molecule, the performance of the sensor developed for the detection of anthracene is also highlighted
Gonzato, Carlo. "Chemical nanosensors based on molecularly imprinted polymer nanocomposites synthesized by controlled radical polymerization." Compiègne, 2012. http://www.theses.fr/2012COMP2035.
Full textMolecularly imprinted polymers (MIPs) are synthetic receptors, also known as antibody mimics, that can specifically bind target molecules. Molecular imprinting has emerged, over the last 30 years; it is an extremely versatile strategy for synthesizing networks possessing high affinity and selectivity for a chemical species, used as a molecular template during their synthesis. The wide variety of materials and formats that are accessible through this strategy has resulted in a broad spectrum of applications for such MIPs, ranging from separation to sensing, catalysis, drug delivery, etc. Since the beginning, the great majority of the imprinted networks has been synthesized by assembling vinyl monomers via free-radical polymerization (FRP). This polymerization method represents a convenient choice for synthesizing MIPs, due to its easy setup, versatility, tolerance with respect to many solvents and functional groups. However, some drawbacks greatly affect the possibility of achieving of suitable degree of control over some “polymeric” parameters which become important for specific applications. The introduction of controlled/”living” radical polymerization (CRP) techniques has then represented an opportunity for MIPs to reduce, and in some cases even to overcome, some of their limits arising from FRP. In this respect, this Ph. D. Thesis has studied how the use of RAFT polymerization, one of the most applied CRPs, can be advantageously used to syntheze MIPs. This has been done by focusing on the main characteristics of CRPs: their living and controlled nature. The living nature has been exploited during the first part of this work, which involved the synthesis of superparamagnetic molecularly imprinted nanocomposites via surface-initiated RAFT polymerization of p(EGDMA-co-MAA) on amino-modified Fe3O4 nanoparticles. The polymer grafting has been performed using an unusual stirring technique (i. E. Ultrasonication) during the polymerization step, and by testing different polymerization solvents for evaluating their effect on the composite structure. It has been observed that the grafting resulted in homogeneous polymer layers, the thickness of which could be controlled by adjusting the RAFT/radical source ratio. Moreover, the living nature of RAFT fragments has been exploited for post-functionalizing the surface of a composite particle with p(EGMP) brushes, thus demonstrating the potential of fine-tuning the particle surface properties through the living chain ends. In the second part of the thesis, an in-depth study has been performed on the effects induced by the use of controlled (RAFT) polymerization conditions on the binding behaviour and structural parameters of bulk acrylic and methacrylic MIPs and the corresponding non-imprinted polymers, synthesized by RAFT and FRP with varying cross-linking degree. This strategy actually provided scaffolds with progressively increased degree of flexibility (especially in the case of acrylics) which allowed visualize the enhancement of binding and structural differences arising from the polymerization technique. As a result, it has been observed that the use of controlled (RAFT) conditions induced, on the imprinted networks, an increased template affinity over equivalent FRPs, and it has been demonstrated that this improved affinity can be related to more homogeneous distributions of the cross-linking points achieved during RAFT polymerization. The third part presents preliminary results toward the synthesis by RAFT of individual multi-composite MIP nanosensors using enhanced Raman spectroscopy (SERS) for detection
Chia, Gomez Laura Piedad. "Elaboration et caractérisation de matériaux fonctionnels pour la stereolithographie biphotonique." Thesis, Mulhouse, 2017. http://www.theses.fr/2017MULH9153.
Full textThe two-photon stereolithography (TPS) technique is a micro-nanofabrication method based on photopolymerization by two-photon absorption that allows in a single manufacturing step to obtain complex 3D structures with high-resolution details (sub-100nm). Due to the specific conditions of TPS process (intense photon flux, spatial confinement of the photoreaction…) one of the main concerns today is the development of functional materials compatible with the TPS. According to the aforementioned, the general objective of this thesis was to develop new functional materials based on molecularly imprinted polymers (MIP) to elaborate chemical microsensors. In the first step of this work, different methods were implemented to characterize the geometrical, chemical and mechanical properties of the materials synthesized by TPS. For example, laser-Doppler vibrometry was used for first time to evaluate the mechanical properties of microstructures fabricated by TPS in a non-invasive way. In the second step, the characterization methodology was used to study the impact of the manufacturing process (i.e. photonic conditions) and the physicochemical parameters that affect the photoreaction (i.e. oxygen inhibition and the nature of the monomer) and the final properties of the materials. Finally, the obtained results enabled the prototyping of chemical microsensors based on MIP. Their molecular recognition properties and their selectivity were demonstrated for the molecule (D-L-Phe) by an optical and a mechanical sensing method
Lopez, Claire. "Synthèse de polymères à empreintes moléculaires d'alcaloïdes Vinca pour leur extraction sur phase solide dans des extraits de plantes ou des fluides biologiques : développement du détecteur conductimétrique sans contact à couplage capacitif et de la technique de la double injection en électrophorèse capillaire." Thesis, Orléans, 2010. http://www.theses.fr/2010ORLE2078.
Full textThis thesis reports in a first part results obtained with molecularly imprinted polymers (MIP) during solid liquid extraction. Polymer-analyte interactions, composition of the sample matrix and selectivity of MIPs have been studied.The first application concerned the extraction of molecules in a plant extract. Two MIPs respectively prepared from the methacrylic acid (MAA) and itaconic acid ( IA) and with respectively catharanthine and vindoline as template showed their selectivity on standard solutions then on a plant extract. Experiments of cross reactivity performed with analogue of the template (dimers alkaloids) have proved the specificity of analytes recognition by the MIPs. The MIP-catharanthine is characterized by Scatchard isotherms and its capacity was estimated from the extract of Catharanthus roseus. A MIP prepared from MAA with the vinorelbine as template was applied in salt aqueous matrices for the extraction of vinflunine and its metabolite in bovine plasma and urine. High extraction recoveries were reached with a study of the impact of salts and the choice of washing solvents adapted to the matrix. The second part showed the simplicity of use and the sensibility of capacitively coupled contactless conductivity detection (C4D) for the analysis of counter-ion and active principle in pharmaceutical compounds in capillary electrophoresis (CE). The technique of double injection allowed the simultaneous analysis of cations and anions. The developed method EC-C4D was applied to Vinca alkaloids and various medicines with anionic or cationic counter-ions
Dezest, Denis. "Nanosystèmes électromécaniques pour la biodétection : intégration d'un moyen de transduction et stratégies de biofonctionnalisation." Thesis, Toulouse, INSA, 2015. http://www.theses.fr/2015ISAT0034/document.
Full textWith an ultimate limit of detection down to the yoctogram regime (1 yg = 10-24 g),nanoelectromechanical systems (NEMS) resonators used as ultra-sensitive and label-free gravimetric sensors have a high potential for biodetection applications. To date, several challenges currently limit their wide spread use as viable biosensing tools. This PhD thesis addresses the issues related to the transducer integration and the biofunctionnalization. A Lead Zirconate Titatane (PZT)-based piezoelectric transducer has been implemented according to a top-down approach compatible with collective fabrication of NEMS arrays. Two biofunctionnalization strategies, suitable for a NEMS array organization and based on the localized deposition of biological material assisted by microcontact printing and the patterning of molecularly imprinted polymers (MIP) by photolithography, have also been investigated and first proof-of-concept biosensors were demonstrated. These various contributions have the potential to drive future advancements in the realm of NEMS as effective biosensing tools
Ferey, Ludivine. "Mise au point d'un microsystème électrophorétique pour l'analyse des hydrocarbures aromatiques polycycliques dans les huiles alimentaires." Phd thesis, AgroParisTech, 2013. http://pastel.archives-ouvertes.fr/pastel-01057098.
Full textParuli, Ernesto III. "Direct writing of micro and nanostructures via two-photon stereolithography for the design of molecularly imprinted polymer-based sensing elements." Thesis, Compiègne, 2021. http://www.theses.fr/2021COMP2629.
Full textMolecularly imprinted polymers (MIPs) are synthetic receptors of excellent affinity and selectivity for their targets on par with antibodies, finding applications in chemical sensing, bioimaging, catalysis, etc. As polymers, MIPs can be synthesized into various formats to better suit their applications. In this PhD thesis, we explore the use of two-photon stereolithography (TPS) for the arbitrary and precise structuring of MIPs via light manipulation within the 3D space of a polymerizable material, which is in contrast to traditional methods that typically only produce MIP particles and to other “restrained” lithographic techniques. First, we present a rich discussion on photopolymerization and the existing techniques for photostructuring MIPs, including TPS. This is followed by the application of the thiol-yne chemistry in the open-air synthesis of selective MIPs for its potential use in the open-air setup of TPS. From opals to photonic woodpiles, we exploit TPS on different photoresist formulations to optimize MIP designs. Finally, this leads to the TPS of hexagon arrays (honeycombs) with sub-micron features on commercial photoresists for their subsequent MIP functionalization via a photoiniferter. The MIP honeycombs exhibit affinity and selectivity toward their target, rendering the approach successful as a general strategy for the fabrication of sub-micron MIP sensing element designs
El, Alami el Hassani Nadia. "Conception et Réalisation de Capteurs et de Biocapteurs Électrochimiques à Base de Nanomatériaux pour le Contrôle de la Qualité en Agroalimentaire et pour l'Analyse Biomédicale." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSE1311/document.
Full textIn recent decades, the use of electrochemical sensors and biosensors have grown considerably due to their simplicity, reliability, rapidity, and selectivity. They were the most attractive alternative tools for conventional analytical methods in various fields such as food control, medicine, and clinical biology or environmental control. In this research works, we focused, in the first part, on the development of immunosensors and electrochemical sensors based on molecularly imprinted polymers (MIPs) for the quality control of honey. In the second part, we managed to apply a voltammetric electronic tongue (VE-tongue) for food monitoring and biomedical analyzes. The first part of our research work concerns the development of immunosensors based on gold microelectrodes of the Bio-MEMS devices. The development of these immunosensors was dedicated to the detection of antibiotic residues namely sulfapyridine (SPy) and tetracycline (TC). A new structure of magnetic nanoparticles (MNPs) coated with the poly (pyrrole-co-pyrrole-2-carboxylic acid) copolymer has been exploited in this work for their three-dimensional immobilization network as well as for their stability for long periods. The detection of SPy and TC was performed by different competitive approaches using polyclonal antibodies. In this part, we have also synthesized the MIP sensors dedicated to the detection of sulfaguanidine, doxycycline, and chloramphenicol in honey. These devices have been developed on the surface of the screen-printed gold electrodes by employing a polyacrylamide matrix in the presence of the target molecules. The performances of these sensors and biosensors (limit of detection, selectivity, reproducibility, applications in real samples) were then evaluated. Regarding the second part of our research works, it involved the discrimination between honeys from fourteen regions from France and Morocco. We have succeeded in demonstrating the reliability of this device in predicting the results of the different physico-chemical parameters of honey samples according to the responses of the used analytical methods. In other steps, we proceeded to the application of the VE-tongue in biomedical analyzes to discriminate urine specimens of patients suffering from urinary tract infections and those of healthy subjects
Aftim, Nadin. "Polymères à empreinte moléculaire pour l'extraction d'un insecticide organophosphoré utilisé en oléiculture : le phosmet." Thesis, Perpignan, 2017. http://www.theses.fr/2017PERP0030.
Full textThe objective of this thesis has been the synthesis of a molecularly imprinted polymer (MIP) for the extraction of phosmet, an organophosphorus pesticide widely used in olive growing. The search for the functional monomer (FM) having the best ability to interact non-covalently with phosmet in the presence of the most suitable pore-forming solvent was carried out for the first time by means of an acetylcholinesterase sensor. This innovative strategy allowed us to better understand the kinetic mechanisms of FM-template interaction. Because of the importance of its role in determining the structure of a MIP, the selection of a crosslinking agent with adequate physicochemical characteristics made it possible to select the best MIP, whose adsorption isotherms were studied according to Freundlich and Langmuir models. Extraction of phosmet using a Molecularly Imprinted Solid Phase Extraction (MISPE) procedure was carried out via an SPE cartridge, whose capacity was evaluated from a standard solution. The choice of reagents and experimental conditions were validated by carrying out selectivity assays using another organophosphorus insecticide. Extraction of phosmet from olive oil was successfully carried out according to an optimized reverse flow extraction protocol. This work opens new opportunities for studying new FM-template interactions by means of enzymatic biosensors capable of detecting other inhibitors such as herbicides, fungicides and other pesticides