Dissertations / Theses on the topic 'Polymer Nanocomposite coatings'

To see the other types of publications on this topic, follow the link: Polymer Nanocomposite coatings.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 33 dissertations / theses for your research on the topic 'Polymer Nanocomposite coatings.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Brandt, Jennifer M. "Rheological and abrasion resistant properties of transparent polymer/silicate nanocomposite coatings." [Gainesville, Fla.] : University of Florida, 2005. http://purl.fcla.edu/fcla/etd/UFE0010040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Eaves, Elizabeth. "Soft-soft nanocomposite coating materials produced by emulsion polymerisation." Thesis, University of Manchester, 2015. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.654865.

Full text
Abstract:
This thesis reports on the challenge of applying an innovative ‘soft-soft nanocomposite’ design strategy to establish synthesis parameters that affect the performance of coatings based upon water-borne latexes, which is driven by the environmental and legislative need to develop feasible alternatives to solvent-borne coatings. A framework emulsion polymerisation formulation to synthesise core-shell latexes with (poly[(butyl acrylate)-co-(butyl methacrylate)]) core and (poly[(butyl acrylate)-co-(butyl methacrylate)-co-(diacetone acrylamide)]) shell copolymer phases in a controlled manner was established, with high monomer conversions and approximately constant particle numbers. Retention of particle morphology in the films was confirmed using atomic force microscopy (AFM). The effect of adding adipic acid dihydrazide to the latex post-polymerisation to facilitate crosslinking of the shell phase during film formation was found to have a significant effect on the stress-strain properties of latex films. A core:shell mass ratio of 80:20 was found to be optimum in all crosslinked systems tested. Increasing the amount of crosslinking in the shell phase of the particles was found to have an effect on the large strain tensile properties of films, leading to strain hardening with reduced extension to break and higher failure stresses at higher crosslinker levels. Core phase copolymer Tg had a very significant effect upon the low strain mechanical properties, with Young’s modulus values of 5-180 MPa being accessible in the range of core Tg¬s from 5 – 25 oC, although little difference in mechanical behaviour was seen when varying the shell phase Tg from 5 – 15 oC. Adding 2 wt% methacrylic acid (MAA) to the shell phase copolymer gave an additional improvement in the low strain tensile region, with a Young’s modulus of 425 MPa being realised. However, it was found that additional amounts of MAA (up to 5 wt% in the shell phase) were deterious to film properties, with low Young’s modulus and poor extensibility. This was interpreted as being due to an increased concentration of ionomeric crosslinks restricting interparticle chain diffusion and keto-hydrazide crosslinking. Studies to evaluate the mechanical performance of soft-soft nanocomposite films compared to binder latexes used in commercial products were favourable, and showed that a high level of versatility with regards to mechanical properties is possible.
APA, Harvard, Vancouver, ISO, and other styles
3

Beemat, Jaspreet S. "Processing and Properties of Hybrid Silane-Epoxy Nanocomposite Coatings." University of Cincinnati / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1352992819.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Shabani-Nooshabadi, M., and Y. Jafari. "Electropolymerized Coatings of Poly (o-anisidine) and Poly (o-anisidine)-TiO2 Nanocompsite on Aluminum Alloy 3004 by using the Galvanostatic Method and Their Corrosion Protection Performance." Thesis, Sumy State University, 2012. http://essuir.sumdu.edu.ua/handle/123456789/34811.

Full text
Abstract:
Poly (o-anisidine) (POA) and also poly (o-anisidine)-TiO2 (POA-TiO2) nanocomposite coatings on aluminum alloy 3004 (AA3004) have been investigated by using the galvanostatic method. The electrosynthesized coatings were characterized by FT-IR, SEM- EDX, SEM and AFM. The corrosion protection performances of POA and also POA-TiO2 nanocomposite coatings were investigated in 3.5% NaCl solution by using the potentiodynamic polarization technique and electrochemical impedance spectroscopy (EIS). The corrosion rate of nanocomposite coatings was found ∼900 times lower than bare AA3004. The results of this study clearly ascertain that the POA-TiO2 nanocomposite has outstanding potential to protect the AA3004 against corrosion. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/34811
APA, Harvard, Vancouver, ISO, and other styles
5

Jafarzadeh, Shadi. "Functional composite coatings containing conducting polymers." Doctoral thesis, KTH, Yt- och korrosionsvetenskap, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-155132.

Full text
Abstract:
Organic coatings are widely used to lower the corrosion rate of metallic structures. However, penetration of water, oxygen and corrosive ions through pores present in the coating results in corrosion initiation and propagation once these species reach the metal substrate. Considering the need for systems that offer active protection with self-healing functionality, composite coatings containing polyaniline (PANI) conducting polymer are proposed in this study. In the first phase of my work, PANI was synthesized by various methods and characterized. The rapid mixing synthesis method was chosen for the rest of this study, providing PANI with high electrical conductivity, molecular structure of emeraldine salt, and morphology of spherical nanoparticles. PANIs doped with phosphoric and methane sulfonic acid revealed hydrophilic nature, and I showed that by incorporating a long-chain alkylphosphonic acid a hydrophobic PANI could be prepared. The second phase of my project was dedicated to making homogenous dispersions of PANI in a UV-curable resin based on polyester acrylate (PEA). Interfacial energy studies revealed the highest affinity of PEA to PANI doped with phosphoric acid (PANI-PA), and no attractive or long-range repulsive forces were measured between the PANI-PA surfaces in PEA.This is ideal for making conductive composites as, along withno aggregation tendency, the PANI-PA particles might come close enough to form an electrically connected network. Highly stable PEA/PANI-PA dispersions were prepared by pretreatment of PANI-PA in acetone followed by mixing in PEA in small portions under pearl-milling. The third phase of my project dealt with kinetics of the free radical polymerization that was utilized to cure the PEA/PANI-PA mixture. UV-vis absorption studies suggested a maximum allowed PANI-PA content of around 4 wt.% in order not to affect the UV curing behavior in the UV-C region. Real-time FTIR spectroscopy studies, using a laboratory UV source, revealed longer initial retardation of the photocuring and lower rates of crosslinking reactions for dispersions containing PANI-PA of higher than 3 wt.%. The presence of PANI-PA also made the formulations more sensitive to changes in UV light intensity and oxygen inhibition during UV curing. Nevertheless, curing of the dispersions with high PANI-PA content, of up to 10 wt.%, was demonstrated to be possible at either low UV light intensities provided the oxygen replenishment into the system was prevented, or by increasing the UV light intensity to very high levels. In the last phase of my project, the PEA and PEA/PANI-PA coatings, cured under high intensity UV lamps, were characterized. SEM analysis showed small PANI-PA particles to be closely packed within the matrix, and the electrical conductivity of the composite films was measured to be in the range of semiconductors. This suggested the presence of a connected network of PANI-PA, as confirmed by investigations of mechanical and electrical variations at the nanoscale by PeakForce TUNA AFM. The data revealed the presence of a PEA-rich layer at the composite-air interface, and a much higher population of the conductive network within the polymer matrix. High current signal was correlated with a high elastic modulus, consistent with the level measured for PANI-PA, and current-voltage studies on the conductive network showed non-Ohmic characteristics. Finally, the long-term protective property of the coatings was characterized by OCP and impedance measurements. Short-term barrier-type corrosion protection provided by the insulating PEA coating was turned into a long-term and active protection by addition of as little as 1 wt.% PANI-PA. A large and stable ennoblement was induced by the coatings containing PANI-PA of up to 3 wt.%. Higher content of PANI-PA led to poorer protection, probably due to the hydrophilicity of PANI-PA facilitating water transport in the coating and the presence of potentially weaker spots in the film. An iron oxide layer was found to fully cover the metal surface beneath the coatings containing PANI-PA after final failure observed by electrochemical testing.

QC 20141103

APA, Harvard, Vancouver, ISO, and other styles
6

Rosidian, Aprillya. "Nanocomposite of ZrO2/Polymer Thin-Film Coatings by the Ionically Self-Assembled Monolayer Technique." Thesis, Virginia Tech, 1998. http://hdl.handle.net/10919/36560.

Full text
Abstract:
Nanocomposites of multilayer structures of zirconia/polymer thin-film coatings have been fabricated on quartz and single-crystal silicon substrates by the Ionically Self-Assembled Monolayer (ISAM) technique. Particle size distribution was measured to calculate the grain diameter of the zirconia particles. UV/Vis spectroscopy and ellipsometry were used to characterize the ISAM technique. SEM and AFM were used to observe the microscopic structure of the multilayer structures. Some mechanical properties were characterized by adhesion, abrasion, and nano-hardness tests. It was shown that an important distinction of this novel technique over conventional coating processes is the fabrication of excellent molecular-level uniform films with precise control of film thickness at the à ngström-level at ambient temperature and pressure conditions. It was also shown the maximum Vickers microhardness of ZrO2/polymer nanocomposite thin-film coatings prepared by this method was greater than 25 GPa.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
7

Yang, Hongjiang. "Synthesis, Processing and Characterization of Polymer Derived Ceramic Nanocomposite Coating Reinforced with Carbon Nanotube Preforms." Master's thesis, University of Central Florida, 2014. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/6387.

Full text
Abstract:
Ceramics have a number of applications as coating material due to their high hardness, wear and corrosion resistance, and the ability to withstand high temperatures. Critical to the success of these materials is the effective heat transfer through a material to allow for heat diffusion or effective cooling, which is often limited by the low thermal conductivity of many ceramic materials. To meet the challenge of improving the thermal conductivity of ceramics without lowering their performance envelope, carbon nanotubes were selected to improve the mechanical properties and thermal dispersion ability due to its excellent mechanical properties and high thermal conductivity in axial direction. However, the enhancements are far lower than expectation resulting from limited carbon nanotube content in ceramic matrix composites and the lack of alignment. These problems can be overcome if ceramic coatings are reinforced by carbon nanotubes with good dispersion and alignment. In this study, the well-dispersed and aligned carbon nanotubes preforms were achieved in the form of vertically aligned carbon nanotubes (VACNTs) and Buckypaper. Polymer derived ceramic (PDC) was selected as the matrix to fabricate carbon nanotube reinforced ceramic nanocomposites through resin curing and pyrolysis. The SEM images indicates the alignment of carbon nanotubes in the PDC nanocomposites. The mechanical and thermal properties of the PDC nanocomposites were characterized through Vickers hardness measurement and Thermogravimetric Analysis. The ideal anisotropic properties of nanocomposites were confirmed by estimating the electrical conductivity in two orthogonal directions.
M.S.M.E.
Masters
Mechanical and Aerospace Engineering
Engineering and Computer Science
Mechanical Engineering; Mechanical Systems Track
APA, Harvard, Vancouver, ISO, and other styles
8

Tong, Zhaohui. "Water-based suspension of polymer nanoclay composite prepared via miniemulsion polymerization." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/19763.

Full text
Abstract:
Thesis (Ph.D)--Chemical Engineering, Georgia Institute of Technology, 2008.
Committee Chair: Yulin Deng; Committee Member: Howard (Jeff) L. Empie; Committee Member: J. Carson Meredith; Committee Member: Jeffery S. Hsieh; Committee Member: Timothy Patterson.
APA, Harvard, Vancouver, ISO, and other styles
9

Santese, Francesca. "Molecular modeling of multi-functional nanostructured materials and coatings." Doctoral thesis, Università degli studi di Trieste, 2014. http://hdl.handle.net/10077/9974.

Full text
Abstract:
2012/2013
Materiali e rivestimenti nanostrutturati possono potenzialmente apportare significativi cambiante nel campo della nanoscienze, nonché offrire una nuova generazione di materiali con caratteristiche e performance migliori. A questo proposito le tecniche computazionali diventano uno strumento fondamentale, in grado di ridurre notevolmente i tempi che vanno dall’idea iniziale al prodotto finito. La simulazione molecolare permette infatti la previsione delle proprietà macroscopiche prima che i materiali vengano preparati e caratterizzati sperimentalmente; consente inoltre una migliore comprensione dei fenomeni fisici su scala nanometrica. In questo lavoro di tesi sono presentati alcuni casi studio in cui vengono proposte diverse procedure computazionali per affrontare importanti aspetti come la bagnabilità della superficie, l’effetto della dimensione e della forma delle nanoparticelle e i loro meccanismi di aggregazione/dispersione. In questo contesto, si è dimostrata la vasta applicabilità della modellazione molecolare evidenziando quindi come questa rappresenti un potente strumento per comprendere e controllare le proprietà finali di materiali nanostrutturati, aprendo così la strada ad una progettazione in silico di nuovi materiali.
Nanostructured materials and coatings have the potential to change materials science significantly, as well as to provide a new generation of materials with a quantum improvement in properties. In this regard computational materials science becomes a powerful tool. It is able to rapidly reduce the time from concept to end product. Molecular simulation enables the prediction of properties of these new materials before preparation, processing, and experimental characterization, as well as a better understanding of the physical phenomena at the nanoscale level. In this thesis we present several study cases in which we propose different computational recipes to deal with different important topics such as surface wettability, effect of nanoparticles size and shape and nanoparticles aggregation/dispersion. In this context, we demonstrate the broad applicability of the molecular modelling and we ascertain that molecular simulation represent a powerful tool to understand and control the nanomaterials properties thus opening avenues for the in silico design of new materials.
XXVI Ciclo
1985
APA, Harvard, Vancouver, ISO, and other styles
10

Xu, Jianhua. "Rheology of polymeric suspensions polymer nanocomposites and waterborne coatings /." Columbus, Ohio : Ohio State University, 2005. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1127317214.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Stevenson, Alexandra Rose. "Revision-Polyurethane-Graphene Nanocomposites for Corrosion-Resistant Coatings." DigitalCommons@CalPoly, 2015. https://digitalcommons.calpoly.edu/theses/1492.

Full text
Abstract:
Corrosion is a prevalent concern throughout the world, causing significant monetary and safety concerns. Research has been dedicated to developing cost-effective solutions for corrosion that will also meet increasingly stringent environmental regulations. The recently discovered nanomaterial graphene has been proposed as a potential component in anticorrosion technology due to its strong air and water barrier properties. However, graphene is a relatively expensive, difficult to synthesize material. By incorporating it into nanocomposites, its properties can be exploited even at low concentrations. Previous work has been conducted involving the preparation of anticorrosive polystyrene-graphene nanocomposites; these materials were found to be effective long-term barriers for corrosion. Although the polystyrene-graphene nanocomposites were effective in impeding corrosion on metal substrates, their ease of application left some room to be desired. Painting a substrate is currently the most commonly used method for corrosion prevention, but polystyrene is not typically used in paints due to its incompatible properties with these formulations. If somehow anticorrosive nanocomposites could be incorporated into coatings, the ease of application could be greatly improved. Polyurethanes are commonly used as binders for coatings, so the fabrication and characterization of polyurethane-graphene nanocomposites for use in anticorrosive coatings was chosen as the premise for this project. A number of different physical and chemical nanocomposites were prepared using lab-synthesized graphene and graphene oxide, as well as commercial graphene. Both two component waterborne and solventborne polyurethanes were employed, and nanocomposites were prepared by both physical and chemical methods. The nanocomposites were coated on cold-rolled steel panels and subjected to salt spray testing in conjunction with control panels in order to analyze their anticorrosive properties. Nanocomposite films were also characterized to determine how their thermal and mechanical performance compared to control coatings. Despite promising studies that supported the anticorrosive capabilities of graphene, this project found that graphene may not be ready for integration into viable coatings systems. Its complex structure and properties made uniform dispersion throughout polyurethane seemingly unachievable, no matter how many different formulations were attempted. To prepare well-dispersed polyurethane-graphene nanocomposite coatings, new components would definitely be required to prevent aggregation of graphene. These components may already be commercially available, but most likely would have to be developed specifically for these formulations. Without these components, the anticorrosive properties of polyurethane-graphene nanocomposites cannot be accurately studied.
APA, Harvard, Vancouver, ISO, and other styles
12

Geng, Kebin. "MECHANICAL EVALUATION OF NANOCOMPOSITE COATINGS." UKnowledge, 2006. http://uknowledge.uky.edu/gradschool_diss/395.

Full text
Abstract:
An anti-reflective (AR) lens is an ultrathin multilayered structure composing of AR coatings on a lens substrate. These coatings can be made by a spin-coating process with a nanocomposite of UV curable acrylic monomers and well dispersed metal oxide nanoparticles. The in-situ UV polymerization rate was reduced by oxygen inhibition and the absorption of UV energy by the metal oxide nanoparticles. There are few studies of the mechanical properties of ultrathin polymeric coatings that include the effects of substrates, the viscoelastic behaviors of polymers in submicron scales and the effects of multilayered coatings. With a coating system based on UV cured dipentaerythritol pentaacrylate on silicon wafer substrates, nanoindentation tests showed that the nominal reduced contact modulus increased with the indentation load and penetration depth due to the effect of the substrate, in quantitative agreement with an elastic contact model. Ultrathin polymeric coatings subjected to constant indentation loads exhibit shear-thinning during flow. None of the models examined completely described the elastic response of an ultrathin polymeric coating on a compliant plastic substrate. The effective modulus was a function of coating-substrate property, indenter tip size, coating thickness, adhesion and residual stress. It was logarithmic dependent on the ratio of the indentation depth to the coating thickness prior to coating fracture. An elastic model, assuming shear-lag and a plane-stress state, was used to estimate the interfacial strength between a submicron coating and a compliant substrate. The critical indentation load for the indentation-induced delamination of the coating from the substrate increased with the third power of the indentation depth and was a linear function of the reciprocal of the coating thickness. The interfacial strength was 70.4 MPa. Mechanical properties and fracture characteristics of CVD ceramic and nanocomposite coatings on polymer substrates were evaluated by nanoindentation and nanoscratching tests. The AR lenses made with polymer nanocomposite coatings have better mechanical properties due to the close match of properties between the coatings and the plastic substrate. The new approach to making AR lenses with polymer nanocomposites on plastic substrate is promising.
APA, Harvard, Vancouver, ISO, and other styles
13

MASOOD, MUHAMMAD TAMOOR. "Improving tribomechanical properties of polymeric nanocomposite coatings." Doctoral thesis, Università degli studi di Genova, 2018. http://hdl.handle.net/11567/930597.

Full text
Abstract:
Low friction, high wear resistance and strong adhesion in polymeric coatings employed in a variety of industrial and domestic processes such as in ball bearings, water repellent surfaces, antiadhesive coatings, and anticorrosion systems are of significant interest for energy saving and durability purposes. Even small increases in friction can have implications on energy efficiency, life time expectancy and performance of such coatings.
APA, Harvard, Vancouver, ISO, and other styles
14

König, Meike. "Functional Coatings with Polymer Brushes." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-126365.

Full text
Abstract:
The scope of this work is to fathom different possibilities to create functional coatings with polymer brushes. The immobilization of nanoparticles and enzymes is investigated, as well as the affection of their properties by the stimuli-responsiveness of the brushes. Another aspect is the coating of 3D-nanostructures by polymer brushes and the investigation of the resulting functional properties of the hybrid material. The polymer brush coatings are characterized by a variety of microscopic and spectroscopic techniques, with a special emphasis on the establishment of the combinatorial quartz crystal microbalance/spectroscopic ellipsometry technique as a tool to characterize the functional properties of the polymer brush systems insitu. The pH-responsive swelling of the polyelectrolyte brushes poly(acrylic acid) and poly(2-vinylpyridine), as well as the thermoresponsive swelling of poly(N-isopropylacryl amide) is studied in detail by this technique. Poly(2-vinylpyridine) and binary poly(N-isopropylacryl amide)-poly (2-vinylpyridine) brushes are used as templates for the insitu-synthesis of palladium and platinum nanoparticles with catalytic activity. As an example for the use of polymer brushes to immobilize enzymes, the model enzyme glucose oxidase is physically adsorbed to poly (2-vinylpyridine) and poly (acrylic acid) brushes and also covalently bound to poly (acrylic acid) brushes. In the last part of this thesis, sculptured thin films are coated with poly (acrylic acid) and poly (N-isopropylacryl amide) brushes and the swelling characteristics as well as the adsorption behavior of the model protein bovine serum albumin are investigated.
APA, Harvard, Vancouver, ISO, and other styles
15

Shan, Fei Shan. "SYSTEMATIC STUDIES ON HIGH PERFORMANCE FLAME RETARDANT OF THIAZOLE SUBSTITUTED POLYBENZOXAZINE AND POLYBENZOXAZINE-LAPONITE NANOCOMPOSITE CONTAINING HIGH NANOFILLER CONTENT." Case Western Reserve University School of Graduate Studies / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=case1522861786561848.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Mohomed, Kadine. "Thermal analyses of hydrophilic polymers used in nanocomposites and biocompatible coatings." [Tampa, Fla] : University of South Florida, 2006. http://purl.fcla.edu/usf/dc/et/SFE0001442.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Shah, Kunal G. "Conducting Polymers / Polyimide-Clay Nanocomposite Coatings for Corrosion Protection of AA-2024 Alloy." Cincinnati, Ohio : University of Cincinnati, 2004. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=ucin1083723910.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Fogelström, Linda. "Polymer Nanocomposites in Thin Film Applications." Doctoral thesis, KTH, Ytbehandlingsteknik, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-12400.

Full text
Abstract:
The introduction of a nanoscopic reinforcing phase to a polymer matrix offers great possibilities of obtaining improved properties, enabling applications outside the boundaries of traditional composites. The majority of the work in this thesis has been devoted to polymer/clay nanocomposites in coating applications, using the hydroxyl-functional hyperbranched polyester Boltorn® as matrix and montmorillonite clay as nanofiller. Nanocomposites with a high degree of exfoliation were readily prepared using the straightforward solution-intercalation method with water as solvent. Hard and scratch-resistant coatings with preserved flexibility and transparency were obtained, and acrylate functionalization of Boltorn® rendered a UV-curable system with similar property improvements. In order to elucidate the effect of the dendritic architecture on the exfoliation process, a comparative study on the hyperbranched polyester Boltorn® and a linear analogue of this polymer was performed. X-ray diffraction and transmission electron microscopy confirmed the superior efficiency of the hyperbranched polymer in the preparation of this type of nanocomposites. Additionally, an objective of this thesis was to investigate how cellulose nanofibers can be utilized in high performance polymer nanocomposites. A reactive cellulose “nanopaper” template was combined with a hydrophilic hyperbranched thermoset matrix, resulting in a unique nanocomposite with significantly enhanced properties. Moreover, in order to fully utilize the great potential of cellulose nanofibers as reinforcement in hydrophobic polymer matrices, the hydrophilic surface of cellulose needs to be modified in order to improve the compatibility. For this, a grafting-from approach was explored, using ring-opening polymerization of ε-caprolactone (CL) from microfibrillated cellulose (MFC), resulting in PCL-modified MFC. It was found that the hydrophobicity of the cellulose surfaces increased with longer graft lengths, and that polymer grafting rendered a smoother surface morphology. Subsequently, PCL-grafted MFC film/PCL film bilayer laminates were prepared in order to investigate the interfacial adhesion. Peel tests demonstrated a gradual increase in the interfacial adhesion with increasing graft lengths.
QC20100621
APA, Harvard, Vancouver, ISO, and other styles
19

Wang, Nannan. "Carbon-coated nanoparticles and their application in high performance polymer nanocomposites." Thesis, University of Exeter, 2018. http://hdl.handle.net/10871/33110.

Full text
Abstract:
Shrinking down into nanoscale, materials exhibit huge property advantages over their bulk form. New forms of carbon at nanoscale have occupied the prominent position in modern materials research. With a very long history accompanying our human civilisation, carbon as a wonder material has once again contributed to our technological advances, as evidenced by the discoveries and research attractions in the last a few decades. Research into fullerenes (C60, C70, etc.), carbon nanotubes (CNTs) and graphene has been continued raising, because of the numerous novel properties associated with these new carbon forms1-3. On top of their excellent electronical, physical and chemical properties, CNTs and graphene also exhibit excellent mechanical properties including ultra-high tensile strength, Young’s Modulus, as well as high thermal conductivities. Research into carbon has also promoted the flourish of many new non-carbon nanomaterials, and typical examples include the inorganic fullerene-like tungsten disulphide (IF-WS2) nanoparticles (NPs), numerous oxide NPs and nanowires that also exhibit various remarkable properties, such as high hardness and anti-oxidation stability. To combine the outstanding performances of both carbon and non-carbon nanomaterials by marrying nanoscale carbon with various metal oxide particles, which forms the backbone of my thesis by carrying out the intensive investigations. In my project it have further validated the advantages of the resulting new carbon-coated NPs in different polymeric matrix composites. The main findings are as follows: 1. A home-made rotary chemical vapour deposit (RCVD) system has been modified and this versatile facility has been applied successfully to produce different types of graphitic carbon-coated nanocomposite particles, from micro- down to nano-scale, including IF-WS2, TiO2, ZnO, Y2O3, Cr2O3, CeO2 and ZrO2 etc. The production can be up to 30 g/per batch, which is 10s times more than using a traditional static furnace, by avoiding severe agglomeration. 2. The resulting coating consists of a few layered graphitic carbon with lattice space 0.34 nm. The thickness of the coating is simply controllable between 1-5 nm, depending on the deposition time (10~60 min), precursor injection flow rate (1.2~2.4 ml/L) and heating temperature (700~900 oC). Furthermore, the oxide core of ZnO@C was removed by heating under the H2/Ar atmosphere, and have successfully generated nano- to micro-scale, hollow, closed, and all-carbon structures. 3. The commercial Nylon 12 is applied to fabricate the metal oxide polymer composite. Using ZnO@C-Nylon 12 composite as an example, at 2 wt% content, the composites have achieved with the ultimate tensile strength increased by 27% (from 47.9 to 59.6 MPa), In particular, at 4 wt% content, the ZnO@C showed an impressive improvement in thermal conductivity of nearly 50% (From 0.21 t0 0.31 W∙m-1∙K-1), comparing 16% improvement for ZnO-Nylon 12 composite. 4. Apart from investigations of nylon composite, intensive studies of the Poly ether ether ketone (PEEK), an important high performance engineering thermoplastics polymer, and its nanocomposites reinforced by IF-WS2 and IF-WS2@C have been carried out in this thesis. The IF-WS2/PEEK composites exhibited not only an improvements of 24% (From 77.6 to 96.7 MPa) in the tensile strength (2 wt%), but also showed an extraordinary increase in thermal conductivity by 190%, from 0.248 to 0.719 W∙m-1∙K-1 at 8 wt%, higher onset decomposing temperatures (54 oC) against the plain PEEK. 5. Moreover, owing to the better dispersal capacity of IF-WS2@C NPs, the ternary IF-WS2@C-PEEK nanocomposites produced in this thesis displayed impressive mechanical properties, increased by 51% (From 77.6 to 120.9 MPa, at 2 wt%), and extremely greater thermal conductivity, with 235% (From 0.248 to 0.831 W∙m-1∙K-1 at 8 wt%), and better stability than the comparison IF-WS2-PEEK composites. The parameters influencing the coating quality and thickness have also been investigated. Further, their interface studies based on the FTIR and XPS techniques have verified the formation of chemical bonding (C=S bonding and carbon π-π bonding), rather than physically bonded together. The successful application of the generic RCVD process can be further extended to the processing of many new particles for an ultrathin carbon coating. Considering the vast amount of literature focusing on carbon, the project further processing of carbon-coated materials in composites could easily be tailored to achieve desired surface contacts with different matrices and leading to the better desired performance, as verified in this thesis for the advanced binary and ternary composites. Finally, this research is expecting to expand the application potentials of PEEK-based nanocomposites in critical areas where thermal conductivity and thermal stability are important.
APA, Harvard, Vancouver, ISO, and other styles
20

Al-Kawaz, Ammar. "Development and rheological analysis of a surface polymer nanocomposite anti-friction." Thesis, Strasbourg, 2015. http://www.theses.fr/2015STRAE025/document.

Full text
Abstract:
L'objectif de cette thèse est l'identification de couplages (nanoparticules / matrice de poly(methyl-methacrylate) PMMA) qui renforcent la rigidité de surface du PMMA tout en conservant le maximum de transparence. Le choix s'est porté sur trois type de nanoparticules carbonées : du graphène multicouches (FLG), de l'oxyde de graphène (GO) et des nanotubes de carbones (MWCNT). Une première décrit la préparation et la fonctionnalisation de ces trois types de nanoparticules pour assurer une meilleure dispersion dans la matrice. Deux méthodes ont été retenues pour réaliser ces matériaux composites : la polymérisation en masse et le mélange en solution. Une seconde partie présente la caractérisation des propriétés mécaniques de ces revêtements en trois étapes : en volume, en surface et sous forme de revêtement en couches minces (15-20µm). Les résultats majeurs montrent que les nano-composites réalisés retardent l'apparition de la plasticité comparé à un PMMA pur, même à faible pourcentage, et permettent ainsi de limiter les effets de rayures de surfaces. Le faible pourcentage de renfort permet de conserver la transparence et plus l'épaisseur diminue plus on peut augmenter ce taux de renfort sans dégrader les propriétés mécaniques du revêtement. Les nanoparticules choisies comme agents de renfort de la matrice polymère s'avèrent être également de très bons candidats pour la diminution du frottement comparée à un plastifiant type Erucamide
The goal of this thesis is the identification of couplings (nanoparticles / matrix poly (methyl methacrylate) PMMA) which ensure PMMA surface rigidity while maintaining maximum transparency. The choice fell on three types of carbonaceous nanoparticles: Few layer graphene (FLG), graphene oxide (GO) and carbon nanotubes (MWCNT). A first part describes the preparation and functionalization of these three types of nanoparticles to provide a better dispersion in the matrix. Two methods were used to prepare nanocomposite materials: bulk polymerization and solution blending. A second part presents the characterization of the mechanical properties of these coatings in three stages: volume, surface and thin layer coating (15-20μm). The main results show that nanocomposites made delay the onset of plasticity compared with pure PMMA, even at a low percentage, and help to limit the effects of surface scratches. The small percentage of reinforcement keeps the transparency and the more the thickness decreases the more the rate of reinforcement can increase without degrading the mechanical properties of the coating. Moreover, nanoparticles chosen as the polymer matrix of reinforcing agents prove to be very good candidates for reduction in friction compared to a plasticizer such Erucamide
APA, Harvard, Vancouver, ISO, and other styles
21

Metzman, Jonathan Seth. "Nanoparticle Encapsulation and Aggregation Control in Anti-reflection Coatings and Organic Photovoltaics." Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/85580.

Full text
Abstract:
Nanoparticles present a myriad of physical, optical, electrical, and chemical properties that provide valuable functionality to thin-film technologies. In order to successfully exploit these aspects of nanoparticles, appropriate dispersion and stability measures must be implemented. In this dissertation, different types of nanoparticles are coated with polymer and metallic layers to enable their effectiveness in both anti-reflection coatings (ARCs) and organic photovoltaics (OPVs). Ionic self-assembled multilayers (ISAMs) fabrication of poly(allylamine hydrochloride) (PAH) and silica nanoparticles (SiO2 NPs) results in highly-transparent, porous ARCs. However, the ionic bonding and low contact area between the film constituents lack sufficient mechanical and chemical stability necessary for commercial application. Chemical stability was established in the film by the encapsulation of SiO2 NPs by a photo-crosslinkable polyelectrolyte, diazo-resin (DAR) to make modified silica nanoparticles (MSNPs). UV-irradiation induced decomposition of the diazonium group and the development of covalent bonds with polyanions. Crosslinked MSNP/poly(styrene sulfonate) (PSS) ISAMs exhibited excellent anti-reflectivity (transmittance >98%, reflectance <0.2% in the visible range) and chemical stability against dissolution in a ternary solvent. Mechanical stability was also achieved by the incorporation of two additional PAH and poly(acrylic acid) (PAA) layers to create PAH/PAA/PAH/SiO2 NP interlayer ISAM ARCs. Thermal crosslinking of PAH and PAA facilitates the formation of covalent amide bonds between the two polyelectrolytes, as confirmed by FTIR. Since PAH and PAA are both weak polyelectrolytes, adjustment of the solution pH causes significant variations in the polymer chain charge densities. At low PAA pH, the decreased chain charge densities caused large SiO2 NP encapsulation thicknesses in the film with great mechanical stability, but poor anti-reflection (≤97% transmittance). At high PAA pH, the high chain charge densities induced thin encapsulation layers, insufficient mechanical stability, but excellent anti-reflection. At trade-off between the two extremes was founded at a PAA pH of 5.2 with excellent anti-reflection (less than 99% transmittance) and sufficient mechanical stability. The normal force required for scratch initiation was increased by a factor of seven for films made from a pH of 5.2 compared to those made from a pH of 6.0. Organic photovoltaics (OPVs) are an attractive area of solar cell research due to their inexpensive nature, ease of large-scale fabrication, flexibility, and low-weight. The introduction of the bulk heterojunction greatly improved charge transport and OPV performance by the blending of the active layer electron donor and acceptor materials, poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), into an interpenetrating network with high interfacial area between adjacent nanodomains. However, constrained active layer thicknesses restrict the total optical absorption and device performance. The localized surface plasmon resonance (LSPR) of plasmonic nanoparticles, such as anisotropic silver nanoplates (AgNPs), provides large local field enhancements and in coupling with the active layer, substantial optical absorption improvements can be realized. AgNPs were first integrated into the hole-transport layer (PEDOT:PSS) by ISAM deposition. Here, PEDOT:PSS was used as a negatively-charged ISAM layer. Encapsulation of the AgNPs by PAH (ENPs) provided a positive surface charge and allowed for the creation of ENP/PEDOT:PSS ISAMs. Stability against acidic etching by PEDOT:PSS was imparted to the AgNPs by coating the edges with gold (AuAgNPs). The AuAgNP ISAMs substantially improved the optical absorption, but were ineffective at increasing the device performance. The dispersion effects of functionalized polymer coatings on AgNPs were also deeply investigated. Functionalized AgNPs were dispersed in methanol and spin-coated onto the active layer. When the AgNPs possessed hydrophilic properties, such as unfunctionalized or functionalized by poly(ethylene glycol) methyl ether thiol (PEG-SH), they formed large aggregates due to unfavorable interactions with the hydrophobic P3HT:PCBM layer. However, the hydrophobic functionalization of AgNPs with thiol-terminated polystyrene (PS-SH) (PS-AgNPs) resulted in excellent dispersion, optical absorption enhancements, and device performance improvements. At a PS-AgNP concentration of 0.57 nM, the device efficiency was increased by 32% over the reference devices.
Ph. D.
Investigations are presented on the quality of distribution or dispersion of functional inorganic (composed of silicon dioxide or silver) particles that have dimensions of less than 100 nanometers, called nanoparticles. The nanoparticle surfaces were covered with polymer layers, where polymers are organic materials with repeating molecular structures. The study of these nanoparticle distribution effects were first examined in anti-reflection coatings (ARCs). ARCs induce transparency of windows or glasses through a reduction in the reflection of light. Here, the ARCs were fabricated as self-assembled thin-films (films with thicknesses ranging from 1 to 2000 nanometers). The self-assembly process here was carried out by immersing a charged substrate (microscope slide) into a solution with an oppositely-charged material. The attraction of the material to the substrate leads to thin-film growth. The process can continue by sequentially immersing the thin-film into oppositely-charged solutions for a desired number of thin-film layers. This technique is called ionic self-assembled multilayers (ISAMs). ARCs created by ISAM with charged polymers (polyelectrolytes) and silicon dioxide nanoparticles (SiO2 NPs) can lead to highly-transparent films, but unfortunately, they lack the stability and scratch-resistance necessary for commercial applications. In this dissertation, we address the lack of stability in the ISAM ARCs by adding additional polyelectrolyte layers that can develop strong, covalent bonds, while also examining nanoparticle dispersive properties. First, SiO2 NP surfaces were coated in solution with a polyelectrolyte called diazo-resin, which can form covalent bonds by UV-light exposure of the film. After tuning the concentration for the added diazo-resin, the coated SiO2 NPs were used to make ARCs ISAM films. The ARCs had excellent nanoparticle dispersion, high levels of transparency, and chemical stability. Chemically stability entails that the integrity of the film was unaffected by exposure to polar organic solvents or strong polyelectrolytes. In a second method, two additional v polyelectrolyte layers were added into the original polyelectrolyte/SiO2 NP design. Here, heating of the film to 200 oC temperatures induced strong covalent bonding between the polyelectrolytes. Variation of the solution pH dramatically changed the polyelectrolyte thickness, the nanoparticle dispersion, the scratch-resistance, and the anti-reflection. An optimum trade-off was discovered at a pH of 5.2, where the anti-reflection was excellent (amount of transmitted light over 99%), along with a substantially improved scratch-resistance. A change of pH from 6.0 (highest tested pH) to 5.2 (optimal) caused a difference in the scratch-resistance by a factor of seven. In these findings, we introduce stability enhancing properties from films composed purely of polyelectrolytes into nanoparticle-containing ISAM films. We also show that a simple adjustment of solution parameters, such as the pH value, can cause substantial differences in the film properties. Nanoparticle dispersion properties were next investigated in organic photovoltaics (OPVs) OPVs use semiconducting polymers to convert sunlight into usable electricity. They have many advantages over traditional solar cells, including their simple processing, low-cost, flexibility, and lightweight. However, OPVs are limited by their total optical absorption or the amount of light that can potentially be converted to electricity. The addition of plasmonic nanoparticles into an OPV device is a suitable way to increase optical absorption without changing the other device properties. Plasmonic nanoparticles, which are composed of noble metals (such as silver or gold), act as “light antennas” that concentrate incoming light and radiate it around the particle. In this dissertation, we investigate the dispersion and stability effects of polymer or metallic layers on silver nanoplates (AgNPs). The stability of the AgNPs was found to be greatly enhanced by coating the nanoparticle edges with a thin gold layer (AuAgNPs). AuAgNPs could then be introduced into a conductive, acidic layer of the OPVs (PEDOT:PSS) to increase the overall light absorption, which otherwise would be impossible with uncoated AgNPs. Next, the AgNPs were distributed on top of the photoactive layer or the layer that is responsible for absorbing light. Coating the AgNPs with a polystyrene polymer layer (PS-AgNPs) allowed for excellent dispersion on this layer and contrastingly, dispersion of the uncoated AgNPs was poor. An increased amount PS-AgNPs added on top of the photoactive layer progressively increased the optical absorption of the OPV devices. However, trends were quite different for the power conversion efficiency or the ratio of electricity power to sunlight power in the OPV device. The greatest PCE enhancements (27 – 32%) were found at a relatively low coverage level (using a solution concentration of 0.29 to 0.57 nM) of the PS-AgNPs on the photoactive layer.
APA, Harvard, Vancouver, ISO, and other styles
22

Musino, Dafne. "Impact of surface modification on the structure and dynamics of silica-polymer nanocomposites." Thesis, Montpellier, 2017. http://www.theses.fr/2017MONTS015/document.

Full text
Abstract:
Les matériaux nanocomposites obtenus par la dispersion de charges nanométriques dans un polymère ont de nombreuses applications industrielles à cause de l’amélioration des propriétés des matrices. La dispersion des charges pendant le procès de préparation des nanocomposites est déterminée par les interactions entre charges et avec le polymère. L’état final de dispersion impacte les propriétés structurales, dynamiques et mécaniques du matériau.Dans ce travail de thèse, nous proposons l’étude de nanocomposites produits par dispersion de billes de silice hydrophiles dans une matrice de polymère hydrophobe, i.e., styrene-butadiene (SB), couramment utilisé dans les pneumatiques. Nous avons notamment étudié l’impact des agents de recouvrement - des silanes réagissant avec la surface des charges – qui sont utilisés afin de promouvoir la compatibilité entre la silice et le SB.Dans un premier temps, nous avons étudié des matériaux composites industriels simplifiés obtenus par l’incorporation de silice hautement dispersible dans le SB. En couplant des expériences de diffusion des rayons-X aux petits angles (DXPA) avec de la microscopie, nous avons montré que : i) la présence d’un catalyseur (DPG) amplifie l’effet de l’agent de recouvrement; ii) l'augmentation de la quantité de silane favorise la réduction de la taille des agrégats de silice. De plus, un système modèle équivalent au système industriel simplifié a été développé, mais avec une silice colloïdale. Nous avons mis au point une nouvelle méthode pour modifier la surface des billes de silice en suspensions dans en mélange eau/éthanol. Ces nanoparticules sont ensuite stabilisées dans le même solvant utilisé pour la dissolution du SB, le MEK. Enfin, le composite modèle est obtenu par évaporation du solvant. La dispersion des billes de silice greffées a été étudiée en suspension (i.e., dans le mélange eau/éthanol et MEK) et dans le nanocomposite, en couplant DXPA avec des simulations de Monte-Carlo inverse. Nous avons montré que la qualité de la dispersion dépend du type de silane utilisé et qu’elle est transférée du solvant (MEK) au composite. De plus, l’impact des agents de recouvrement sur les propriétés dynamiques (relaxation α) du système modèle a été étudié par spectroscopie diélectrique, BDS. Nous avons découvert que les agents de recouvrement peuvent plastifier le SB pur, en induisant une baisse significative de la température de transition vitreuse. Dans les composites, la modification de l’état de surface des billes par l’agent de recouvrement n’altère pas la relaxation α. Cependant, la présence de molécules de silane libres dans la matrice polymère du nanocomposite peut également induire un effet de plastification
Nanocomposite materials made by dispersion of nano-scale fillers in a soft polymer matrix attract industrial interest because of their enhanced properties. During their formulation, filler-filler and filler-polymer interactions affect the dispersion of the particles, and thus the final nanocomposite structure. The filler dispersion as well as dynamical properties control many material properties and in particular the mechanical response of these materials.In this PhD work, we propose the study of nanocomposites made by dispersion of nano-metric hydrophilic silica particles in a soft hydrophobic polymer matrix of styrene/butadiene (SB), which is commonly used in car tire manufacturing. Since coating agents can react with the filler surface tuning the silica-silica and the silica-polymer interactions, they have been used to promote the compatibility between silica and SB. Firstly, we investigate “simplified industrial nanocomposites” obtained by solid mixing of SB and millimetric silica pellets. By a multiscale approach (microscopy and X-ray scattering, SAXS) we show that: i) the presence of a catalyzer (DPG) unambiguously amplifies the action of the coating agent; ii) the increase of silane content induces the progressive decrease of silica aggregate size. The study of the simplified industrial nanocomposites has been extended to a silica/SB model system. We developed an efficient method to surface-modify colloidal silica NPs in ethanol/water, to stabilize them in the same solvent (MEK) used to dissolve the polymer, and to obtain the final model nanocomposite by solvent casting. For the structural characterization of this multi-step system, we propose a combined SAXS-reverse Monte Carlo approach which allows to investigate the dispersion state of surface-modified silica NPs in precursor solvents (i.e., ethanol/water and MEK) and in the polymer matrix. The filler dispersion is influenced by the characteristics of the grafted silane molecule (varying hydrophobicity, grafting function, and density) and it is shown the quality of the dispersion state is maintained from the precursor suspension to the nanocomposite. Moreover, Broadband Dielectric Spectroscopy (BDS) has been used to investigate the role of silane coating agents in the segmental dynamics of model nanocomposites. We show that the silane molecules can act as plasticizers in pure styrene-butadiene matrices, inducing a significant decrease of the glass transition temperature. We also prove that the chemical surface-modification of the fillers does not affect the segmental dynamics (α-relaxation) in nanocomposites, whereas the presence of “free” silane molecules in the polymer bulk can induce a detectable plasticization effect
APA, Harvard, Vancouver, ISO, and other styles
23

Laine, Guy C. "CHARACTERIZATION OF AND CONTROLLING MORPHOLOGY OF ULTRA-THIN NANOCOMPOSITES." UKnowledge, 2013. http://uknowledge.uky.edu/cme_etds/23.

Full text
Abstract:
Ultrathin film nanocomposites are becoming increasingly important for specialized performance of commercial coatings. Critical challenges for ultrathin film nanocomposites include their synthesis and characterization as well as their performance properties, including surface roughness, optical properties (haze, refractive index as examples), and mechanical properties. The objective of this work is to control the surface roughness of ultrathin film nanocomposites by changing the average particle size and the particle volume fraction (loading) of monomodal particle size distributions. This work evaluated one-layer and two-layer films for their surface properties. Monodispersed colloidal silica nanoparticles were incorporated into an acrylate-based monomer system as the model system. Ultrathin nanocomposites were prepared with three different size colloidal silica (13, 45, and 120 nm nominal diameters) at three different particle loadings (20, 40, and 50 vol. % inorganic solids). Silica particles were characterized using DLS and TEM. AFM was used to measure the root mean square roughness (Rq), ΔZ, and location-to-location uniformity of one-layer and two-layer nanocomposite coatings. Developing an understanding about the properties affected by the type and amount of particles used in a nanocomposite can be used as a tool with nanocharacterization techniques to quickly modify and synthesize desired ultrathin film coatings.
APA, Harvard, Vancouver, ISO, and other styles
24

Chunder, Anindarupa. "FABRICATION OF FUNCTIONAL NANOSTRUCTURES USING POLYELECTROLYTE NANOCOMPOSITES AND REDUCED GRAPHENE OXIDE ASSEMBLIES." Doctoral diss., University of Central Florida, 2010. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3082.

Full text
Abstract:
A wide variety of nanomaterials ranging from polymer assemblies to organic and inorganic nanostructures (particles, wires, rods etc) have been actively pursued in recent years for various applications. The synthesis route of these nanomaterials had been driven through two fundamental approaches -  Top down and  Bottom up . The key aspect of their application remained in the ability to make the nanomaterials suitable for targeted location by manipulating their structure and functionalizing with active target groups. Functional nanomaterials like polyelectrolyte based multilayered thin films, nanofibres and graphene based composite materials are highlighted in the current research. Multilayer thin films were fabricated by conventional dip coating and newly developed spray coating techniques. Spray coating technique has an advantage of being applied for large scale production as compared to the dip coating technique. Conformal hydrophobic/hydrophilic and superhydrophobic/hydrophilic thermal switchable surfaces were fabricated with multilayer films of poly(allylaminehydrochloride) (PAH) and silica nanoparticles by the dip coating technique, followed by the functionalization with thermosensitive polymer-poly(N-isopropylacrylamide)(PNIPAAM) and perfluorosilane. The thermally switchable superhydrophobic/ hydrophilic polymer patch was integrated in a microfluidic channel to act as a stop valve. At 70 degree centigrade, the valve was superhydrophobic and stopped the water flow (close status) while at room temperature, the patch became hydrophilic, and allowed the flow (open status). Spray-coated multilayered film of poly(allylaminehydrochloride) (PAH) and silica nanoparticles was fabricated on polycarbonate substrate as an anti-reflection (AR) coating. The adhesion between the substrate and the coating was enhanced by treating the polycarbonate surface with aminopropyltrimethoxylsilane (APTS) and sol-gel. The coating was finally made abrasion-resistant with a further sol-gel treatment on top of AR coating, which formed a hard thin scratch-resistant film on the coating. The resultant AR coating could reduce the reflection from 5 to 0.3% on plastic. Besides multilayered films, the fabrication of polyelectrolyte based electrospun nanofibers was also explored. Ultrathin nanofibers comprising 2-weak polyelectrolytes, poly(acrylic acid) (PAA) and poly(allylaminehydrochloride) (PAH) were fabricated using the electrospinning technique and methylene blue (MB) was used as a model drug to evaluate the potential application of the fibers for drug delivery. The release of MB was controlled in a nonbuffered medium by changing the pH of the solution. Temperature controlled release of MB was obtained by depositing temperature sensitive PAA/poly(N-isopropylacrylamide) (PNIPAAM) multilayers onto the fiber surfaces. The sustained release of MB in a phosphate buffered saline (PBS) solution was achieved by constructing perfluorosilane networks on the fiber surfaces as capping layers. The fiber was also loaded with a real life anti-depressant drug (2,3-tertbutyl-4-methoxyphenol) and fiber surface was made superhydrophobic. The drug loaded superhydrophobic nanofiber mat was immersed under water, phosphate buffer saline and surfactant solutions in three separated experiments. The rate of release of durg was monitored from the fiber surface as a result of wetting with different solutions. Time dependent wetting of the superhydrophobic surface and consequently the release of drug was studied with different concentrations of surfactant solutions. The results provided important information about the underwater superhydrophobicity and retention time of drug in the nanofibers. The nanostructured polymers like nanowires, nanoribbons and nanorods had several other applications too, based on their structure. Different self-assembled structures of semiconducting polymers showed improved properties based on their architectures. Poly(3-hexylthiophene) (P3HT) supramolecular structures were fabricated on P3HT-dispersed reduced graphene oxide (RGO) nanosheets. P3HT was used to disperse RGO in hot anisole/N, N-dimethylformamide solvents, and the polymer formed nanowires on RGO surfaces through a RGO induced crystallization process. The Raman spectroscopy confirmed the interaction between P3HT and RGO, which allowed the manipulation of the composite's electrical properties. Such a bottom-up approach provided interesting information about graphene-based composites and inspired to study the interaction between RGO and the molecular semiconductor-tetrasulphonate salt of copper phthalocyanine (TSCuPc) for nanometer-scale electronics. The reduction of graphene oxide in presence of TSCuPc produced a highly stabilized aqueous composite ink with monodispersed graphene sheets. To demonstrate the potential application of the donor (TSCuPc) acceptor (graphene) composite, the RGO/TSCuPc suspension was successfully incorporated in a thin film device and the optoelectronic property was measured. The conductivity (dark current) of the composite film decreased compared to that of pure graphene due to the donor molecule incorporation, but the photoconductivity and photoresponsivity increased to an appreciable extent. The property of the composite film overall improved with thermal annealing and optimum loading of TSCuPc molecules.
Ph.D.
Department of Chemistry
Sciences
Chemistry PhD
APA, Harvard, Vancouver, ISO, and other styles
25

COLOMBO, ANNALISA. "Synthesis and characterization of TiO2 polymeric nanocomposites with tailorable optical properties." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2012. http://hdl.handle.net/10281/28632.

Full text
Abstract:
Main aim of this work was the fabrication and characterization of polymeric TiO2 hybrid nanocomposites. When dispersed at the nanoscale level, TiO2 can tune the optical properties of the polymeric matrix, such as the UV absorption and the increase of refractive index, preserving the transparency in the visible and the flexibility of the polymer. TiO2 nanopaticles were modified on the surface with different molecules; they were then dispersed in MMA and polymerized in bulk, in order to obtain optically transparent TiO2/Poly-methylmethacrylate (PMMA) sheets. The application of these objects was in the solid-state lighting field, where the nanoparticles play the role of light diffusers according to Rayleigh Scattering. Films based on poly 2-ethyl-2-oxazoline (PEOX) and TiO2 nanoparticles with concentrations up to 44 % in weight were also prepared by casting from water solutions. Nanocomposites films remained highly transparent in the visible, and absorbed UV radiation up to the proximity of the visible range. The refractive indices of the films raised from about 1.52 to 1.65 with increasing of TiO2 concentration. The good optical properties and the solubility in water of these materials could allow their application in the paint and coating industry, and in the field of conservation of cultural heritage as consolidants or varnishes of paintings.
APA, Harvard, Vancouver, ISO, and other styles
26

Zhu, Honggang. "Development of epoxy-organoclay nanocomposite as high performance coating and as matrix material of durable GFRP composite for civil engineering applications /." View abstract or full-text, 2009. http://library.ust.hk/cgi/db/thesis.pl?CIVL%202009%20ZHU.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Prandato, Emeline. "Relations structure-propriétés et résistance à l’endommagement de vernis acrylate photo-polymérisables pour substrats thermoplastiques : évaluation de monomères bio-sourcés et de nano-charges." Thesis, Lyon, INSA, 2013. http://www.theses.fr/2013ISAL0103/document.

Full text
Abstract:
L’objectif de ces travaux a été de développer des vernis acrylate photo-polymérisables à 100% d’extrait sec, destinés à protéger des pièces thermoplastiques en polycarbonate contre les endommagements mécaniques, en particulier contre la rayure. Les relations entre la composition, la structure et les propriétés de ces revêtements ont été explorées. Pour ce faire ont été étudiées la morphologie, les propriétés thermomécaniques ainsi que la résistance à la rayure des matériaux. Cette dernière a été évaluée par des tests de micro-scratch. La cinétique de formation des réseaux polymères a elle aussi été étudiée, par photo-DSC. Tous les matériaux étudiés présentent, en analyse thermomécanique dynamique, un module élevé à l’état caoutchoutique ainsi qu’une large relaxation mécanique. Un vernis pétro-sourcé à 100% d’extrait sec, qualifié de standard, a servi de point de départ à ces travaux. Il a tout d’abord été comparé à un vernis commercial solvanté photo-polymérisable, spécialement conçu pour la protection de pièces thermoplastiques. Celui-ci s’est avéré être plus efficace en termes de résistance à la rayure. Dans un deuxième temps, a été étudiée l’influence sur les propriétés du vernis standard pétro-sourcé d’un monomère multicyclique entrant dans sa composition. La modification de son pourcentage n’a permis d’apporter aucun bénéfice en termes de résistance à la rayure. Des nanoparticules de silice, d’alumine ou de zircone, disponibles sous forme de dispersion dans un monomère acrylate, ont ensuite été incorporées dans le vernis standard pétro-sourcé. Une organisation particulière de la nano-silice et de la nano-alumine au sein des matériaux étudiés a pu être observée par microscopie électronique en transmission. Il a été constaté que le taux de charge doit être élevé pour observer une augmentation du module élastique et une amélioration de la résistance à la rayure du vernis (≥15% massique dans le cas de la nano-silice). Par ailleurs, l’ajout de 5% massique de nano-silice dans le vernis n’a conduit à aucune modification de sa cinétique de photo-polymérisation. Enfin, une partie des composés acrylate pétro-sourcés du vernis standard a été substituée par des acrylates bio-sourcés disponibles industriellement. La cinétique de photo-polymérisation des deux types de vernis est similaire. Les conclusions de la comparaison entre les vernis bio-sourcés et le vernis standard pétro-sourcé en termes de résistance à la rayure dépendent de l’épaisseur des revêtements étudiés. L’ajout d’un composé monoacrylate bio-sourcé à la formulation des vernis tend à améliorer la recouvrance élastique des revêtements de faible épaisseur. L’acrylate d’isobornyle est en particulier intéressant, car il a aussi tendance à retarder l’apparition des craquelures au cours de la rayure
The aim of this work was to develop 100% solids photo-polymerizable acrylate coatings, intended to protect thermoplastic pieces made of polycarbonate against mechanical damage, in particular scratches. The relationships between the composition, the structure and the properties of these coatings were examined. For this purpose the morphology, the thermomechanical properties and the scratch resistance of the materials, assessed by micro-scratch tests, were studied. The kinetics of the polymer network formation was also studied by photo-DSC experiments. All the materials feature a high elastic modulus and a broad mechanical relaxation in dynamic thermomechanical analysis. A 100% solids petro-based coating (standard) constituted the starting point of this work. First it was compared to a commercial photo-polymerizable coating containing solvents, specially designed to protect thermoplastic pieces. This commercial coating turned out to be more efficient against scratches. In a second time was studied the influence of the percentage of a multicyclic monomer, taking part in the composition of the standard petro-based coating, on the properties of the latter. The modification of its proportion does not bring any advantage concerning the scratch resistance. Silica, alumina and zirconia nanoparticles, dispersed in an acrylate monomer, were then incorporated in the standard petro-based coating. A particular organization of the silica or alumina nanoparticles in the materials could be observed by transmission electron microscopy. A high filler content is required to observe an increase in the elastic modulus and an enhancement of the scratch resistance of the coating (≥15% by weight for the nano-silica). Moreover, no change of the photo-polymerization kinetics was noticed through the addition of 5% by weight of nano-silica in the coating. Finally, some of the petro-based acrylate compounds of the standard coating were substituted by commercially available bio-based acrylate monomers. Both types of coatings feature similar polymerization kinetics. The conclusions concerning the comparison of the scratch resistance of the bio-based and standard petro-based coatings depend on their thickness. The incorporation of a bio-based monoacrylate compound in low thickness coatings tends to improve the elastic recovery. Isobornyl acrylate is particularly interesting since it also tends to delay the apparition of cracks along the scratch
APA, Harvard, Vancouver, ISO, and other styles
28

Swartz, Natasja Alexandria. "Rational Design of Materials for the Protection of Outdoor Metalworks." PDXScholar, 2015. https://pdxscholar.library.pdx.edu/open_access_etds/2488.

Full text
Abstract:
Protective coatings are commonly used to protect culturally significant works, such as outdoor sculptures and architectural elements. Given the valuable nature of such metalworks, there is a surprising lack of environmentally sustainable coatings available for their conservation. High performance clear coatings are not developed or thoroughly tested for compatibility and longevity on outdoor sculptures. This can make the implementation of both methods and materials, no matter how promising in a lab, a significant hurdle for the conservation science community. This dissertation work initially aims to replace high-VOC formulations such as acrylic lacquers and waxes currently used as protective coatings for bronze with a waterborne coating by investigating the film formation differences between coating types. Such differences likely have implications for initial film barrier properties as well as long-term performance. For coating any large-scale metal object, cost-effectiveness limits applicable coatings to commercially available resins with some minor adjustments. Additional requirements for protective coatings for artwork require they must also be transparent, reversible, easily applied and environmentally sustainable. The chemical and physical properties of polymeric coatings with nanoclays modifiers were investigated as they may offer superior weatherability and act as better barriers to water absorption than commonly used lacquers and waxes. This work ultimately finds that nanocomposites with poly(vinylidene fluoride) latex and chemically stabilized nanoclays significantly improved performance and may be a viable option in the protection of material cultural heritage. Protection of high value objects where aesthetics is also important, such as airplanes, buildings, and sculptures are among the possible applications for this research.
APA, Harvard, Vancouver, ISO, and other styles
29

Lima, Kelly Santana. "Estudo de nanocompósitos poli(metacrilato de hidroxietila) / laponita para revestimento de sementes." Pós-Graduação em Química, 2018. http://ri.ufs.br/jspui/handle/riufs/7941.

Full text
Abstract:
Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq
The search for more productive seeds and with better transport and storage conditions has developed the interest of companies and researchers. In this section, nanotechnology, in particular, polymer / clay nanocomposites has proved to be an excellent alternative. By means of these nanomaterials it is possible to transport assets that allow the plant to better growth, productivity and germination rates, through the transport of fertilizers, agrochemicals or even essential micronutrients. The aim of this work was to synthesize and study nanocomposites polymer / clay; poly (hydroxyethyl methacrylate), pure laponite (pHEMA / Lap) and enriched with manganese micronutrients (pHEMA / LapMn). These materials aim to provide water and concomitantly provide nutrients to the seeds. The best formulation for the samples, amounts of polymer and clay was studied, and from this the micronutrient was incorporated into the formulation. The materials were characterized by absorption spectroscopy in the infrared region (FTIR), X-ray diffractometry (XRD) and thermogravimetry (TG). In addition, the water uptake capacity of the samples was evaluated. TG results showed an increase in thermal stability due to the interaction of the polymer chain with the clay. The XRD study showed that pure Lap and Lap Mn presented similar basal spacing to that found in the literature and that the nanocomposite had an exfoliated structure of the materials. The observation of the degree of swelling of the samples showed that the nanocomposites showed a capacity of water absorption 10% higher than the pure hydrogel. The seed coating affected the germination rate of the seeds, showing an optimization of this process.
A busca por sementes mais produtivas e com melhores condições de transporte e armazenamento tem desenvolvido o interesse de empresas e pesquisadores. Nesta vertente, a nanotecnologia, em especial, os nanocompósitos polímero/argila tem se mostrado uma excelente alternativa. Por meio destes nanomateriais é possível transportar ativos que possibilitem a planta melhor crescimento, produtividade e taxas de germinação, por meio do transporte de fertilizantes, agroquímicos ou até micronutrientes essenciais. Neste trabalho buscou-se sintetizar e estudar nanocompósitos polímero/argila; poli(metacrilato de hidroxietila) (pHEMA), laponita pura (pHEMA/Lap) e enriquecida com micronutrientes manganês (pHEMA/LapMn). Estes materiais tem por objetivo fornecer água e concomitantemente fornecer nutrientes para as sementes. Estudou-se qual a melhor formulação para as amostras, quantidades de polímero e de argila e a partir desta incorporou-se o micronutriente a formulação. Os materiais foram caracterizados por espectroscopia de absorção na região do infravermelho (FTIR), difratometria de raios X (DRX) e termogravimetria (TG). Além disso, a capacidade de absorção de água das amostras foi avaliada. Houve aumento da estabilidade térmica decorrente da interação da cadeia polimérica com a argila. O estudo por DRX mostrou que a Lap pura e a Lap Mn apresentaram espaçamento basal similar ao encontrado na literatura e que o nanocompósito apresentou estrutura esfoliada dos materiais. A observação do grau de intumescimento das amostras mostrou que os nanocompósitos apresentaram uma capacidade de absorção de água 10% superior à do hidrogel puro. O revestimento das sementes prejudicou a taxa de germinação das mesmas mostrando-se necessário uma otimização deste processo.
São Cristóvão, SE
APA, Harvard, Vancouver, ISO, and other styles
30

Augry, Ludivine. "Contrôle des mécanismes d’interactions nanocharge/polymère en milieu solvant : application aux revêtements à base de PVC et de PAI." Thesis, Lyon, INSA, 2011. http://www.theses.fr/2011ISAL0027.

Full text
Abstract:
Ce travail de thèse a consisté à améliorer certaines propriétés de revêtements fonctionnels à base de polychlorure de vinyle (PVC) plastifié et de polyamide-imide (PAI) par incorporation de nanocharges inorganiques préformées, lamellaires ou divisées. La compatibilisation des nanocharges avec la matrice dans laquelle elles ont été incorporées s’est avérée indispensable pour obtenir des films nanocomposites avec une distribution homogène et un état de dispersion le plus fin possible. Différentes stratégies de compatibilisation ont été étudiées, comme la physisorption, la chimisorption, l’intercalation ou encore la chélation d’agents compatibilisants judicieusement choisis et adaptés à chacun des systèmes. Les nouvelles nanocharges ainsi modifiées ont été caractérisées en vue de leur introduction dans la matrice. Les films nanocomposites « compatibilisés » ont été élaborés en voie solvant et/ou par polymérisation in-situ, suivie d’une gélification physique pour le PVC ou d’une réticulation chimique pour le PAI. La caractérisation morphologique des films, réalisée par DRX et MEB/MET, ainsi que les propriétés thermiques et thermomécaniques des films, évaluées par ATG, DSC et DMA, mettent en évidence l’importance de deux paramètres : la chimie de surface des nanocharges, à l’origine des interactions interfaciales nanocharge/polymère, et le procédé d’élaboration du nanocomposite
This study aims at improving some properties of functional PVC- and PAI- based coatings by adding preformed inorganic lamellar or spherical nanofillers. The compatibilization of nanofiller with the polymer matrix in which they are introduced, is required in order to obtain nanocomposite films with an homogeneous distribution and a dispersion state as fine as possible. Different compatibilization strategies, well-suited for each system, have been studied: compatibilizer physisorption, chemisorption, intercalation or chelation. The new modified nanofillers have been characterized before their introduction into the matrix. Various strategies have been considered to obtain the “compatibilized” nanocomposite films such as the solution mixing and/or the in-situ polymerization, followed by a physical gelation or curing step for PVC- or PAI-based nanocomposites, respectively. The morphological characterization of the films, through XRD and SEM/TEM analysis, and the thermal and thermomecanical properties, evaluated by TGA, DSC and DMA, underlined the importance of two parameters: the nanofiller surface chemistry, responsible for the nanofiller/polymer interfacial interactions, and the elaboration process of the nanocomposite
APA, Harvard, Vancouver, ISO, and other styles
31

Martínez, Sanz Marta. "Bacterial cellulose nanowhiskers to enhance the properties of plastics and bioplastics of interest in food packaging." Doctoral thesis, Universitat Politècnica de València, 2013. http://hdl.handle.net/10251/30312.

Full text
Abstract:
El presente trabajo tiene por objetivo estudiar las aplicaciones de los nanocristales o ¿nanowhiskers¿ extraídos mediante hidrólisis ácida de celulosa bacteriana (BCNW) para el desarrollo de materiales poliméricos y biopoliméricos con propiedades mejoradas para su uso en aplicaciones de envasado de alimentos. En primer lugar se estudió y optimizó el proceso de extracción de BCNW. Se desarrolló un procedimiento de extracción con ácido sulfúrico, que permitió obtener nanocristales con elevada relación de aspecto y cristalinidad y al mismo tiempo, un elevado rendimiento de extracción. Este procedimiento comprende una posterior etapa de neutralización que resultó ser necesaria para garantizar la estabilidad térmica de los nanocristales. El siguiente paso consistió en la formulación de materiales nanocompuestos con propiedades mejoradas incorporando BCNW en diferentes matrices plásticas, en concreto copolímeros de etileno-alcohol vinílico (EVOH), ácido poliláctico (PLA) y polihidroxialcanoatos (PHAs). Mediante las técnicas de electroestirado y estirado por soplado se generaron fibras híbridas de EVOH y PLA con BCNW. La incorporación de BCNW en las disoluciones empleadas para producir fibras modificó significativamente sus propiedades (viscosidad, tensión superficial y conductividad) y por tanto, la morfología de las fibras se vio afectada. Además, se generaron fibras con propiedades antimicrobianas mediante la incorporación de aditivos, maximizando el efecto antimicrobiano con la adición de sustancias de carácter hidrofílico. Seguidamente, se produjeron nanocompuestos por mezclado en fundido y se desarrollaron técnicas de pre-incorporación de BCNW para evitar la aglomeración de los mismos no sólo en matrices hidrofílicas como el EVOH, sino también en matrices hidrofóbicas como el PLA. La dispersión óptima de BCNW resultó en una mejora de las propiedades mecánicas y de barrera de los nanocompuestos. También se estudió la modificación de la superficie de los nanocristales mediante copolimerización con poli(glicidil metacrilato) para mejorar la compatibilidad de BCNW con una matriz hidrofóbica como el PLA. Se incluyen además los primeros resultados obtenidos en cuanto a la producción de nanobiocompuestos sintetizados por microorganismos, que consisten en PHAs con diferentes contenidos de hidroxivalerato reforzados con BCNW. Por último, se desarrollaron películas con propiedades de alta barrera basadas en películas de BCNW recubiertas con capas hidrofóbicas. El recubrimiento mediante la deposición de fibras por electrospinning seguido de homogeneización por calentamiento garantizó una buena adhesión entre las diferentes capas, protegiendo así las películas de BCNW del efecto negativo de la humedad.
Martínez Sanz, M. (2013). Bacterial cellulose nanowhiskers to enhance the properties of plastics and bioplastics of interest in food packaging [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/30312
TESIS
Premiado
APA, Harvard, Vancouver, ISO, and other styles
32

Shelemin, Artem. "Plasma polymers in the nanostructured and nanocomposite coatings." Doctoral thesis, 2017. http://www.nusl.cz/ntk/nusl-379655.

Full text
Abstract:
Title: Plasma polymers in the nanostructured and nanocomposite coatings Author: Artem Shelemin Department / Institute: Department of the Macromolecular Physics Supervisor of the doctoral thesis: Prof. RNDr. Hynek Biederman, DrSc. Abstract: The thesis represents the main results of my research work aimed to study nanostructured and nanocomposite films of plasma polymer. A few alternative experimental approaches were developed and investigated which ranged from low pressure (gas aggregation cluster sources and glancing angle deposition) to atmospheric pressure (dielectric barrier discharge and plasma jet) plasma processing. The metal/metal oxide Ti/TiOx, AlOx and plasma polymer SiOx(CH), Nylon 6,6 nanoparticles were prepared. The analysis of morphology of deposited plasma polymer coatings was performed by AFM and SEM. The chemical composition of films was studied by XPS and FTIR. Keywords: plasma polymer, nanoparticle, thin film, nanostructures
APA, Harvard, Vancouver, ISO, and other styles
33

Jagadeshvaran, P. L. "Smart textiles with Tuneable Architectures for Multifunctional Applications." Thesis, 2022. https://etd.iisc.ac.in/handle/2005/6106.

Full text
Abstract:
Innovations in electronics and the rapid developments in communication systems have been unprecedented and made life easier. One such advancement is wireless electronics, where gadgets operate in gigahertz frequencies – transmitting and receiving signals in the form of EM waves during their operation. The increased presence of EM waves in the atmosphere has led to electromagnetic (EM) pollution. With the miniaturization of devices, there is an increased volume of complex circuitry in a limited space – causing interference between them during operation, termed “electromagnetic interference” (EMI). EMI concerns are rising as they are considered severe threats to devices and their functioning. Different shielding materials were developed to combat this issue, from metals and ferrites to polymer-based nanocomposites. As the filler loading in a polymer-based nanocomposite is limited by processing and the accompanying stiffness, textiles have emerged as alternative materials with a broad design scope. This thesis entitled, “Smart textiles with tuneable architectures for multifunctional applications,” attempts to develop novel multilayer-like architectures based on coatings to target EMI shielding primarily. Different materials and processes were adopted to maximize EMI shielding effectiveness, UV blocking, and fire protection. The thesis consists of 7 chapters. Chapter 1 is an introductory note on EMI shielding and textile-based EMI shielding materials. It discusses the terminologies used in EMI shielding, the fundamental shielding mechanisms, and the different phenomena causing attenuation. It presents a comprehensive overview of the evolution of textile-based EMI shields with time and explains the inherent advantages of using textiles as EMI shields over other materials. Chapter 2 is the roadmap of the thesis. It delves into the rationale behind selecting the materials and processes adopted. It explains the advancements in the different chapters, highlighting the critical aspects of each. In Chapter 3, thermoplastic polyurethane (TPU)-based coatings containing iron titanate (FT) and multiwalled carbon nanotubes (CNT) were coated onto cotton fabrics by a dip coating process. The coated fabrics showed an EMI SE of -12 dB at a thickness of 1.1 mm, working on an absorption-driven mechanism amounting to around ca. 92% of the total attenuation. They also demonstrated a 99.9% UV blocking and a limiting oxygen index (LOI) of 20%. In Chapter 4, water-borne coatings were used on pretreated cotton fabrics. Here, water-borne polyurethane (WPU) was used as the matrix for dispersing chemically coupled CNT and FT. The coating was subsequently coated onto polyaniline-coated cotton fabric (PANi-CF) prepared by an in-situ polymerization route. The coated fabrics exhibited an EMI SE of -40 dB at a thickness of 2.4 mm, with the absorption contribution being 83%. They also demonstrated a 99.99% UV blocking and an LOI of 23%. Further, in Chapter 5, an attempt was made to study the effect of different conducting polymer pretreatments on cotton fabric on EMI shielding. Using a facile in-situ polymerization technique, two different conducting polymers, polyaniline and polypyrrole, were coated onto cotton fabrics to give PANi-CF and PPy-CF, respectively. A carbonaceous layer containing graphene nanoplatelets (GNP) and carbon nanofibers (CNF) dispersed in WPU was coated on both the pretreated cotton fabrics. PPy-CF showed better EMI SE (-22 dB), UV blocking (99.99%), and LOI (25%) than PANi-CF. The plausible reasons for the enhancement in properties are explained in this chapter. Chapter 6 adopted a facile mussel-inspired electroless deposition to deposit metallic silver on cotton fabric (giving Ag-CF). The deposition process was optimized by varying the seeding time to enhance the silver loading on the fabric surface. The Ag-CF was coated with the same carbonaceous layer mentioned above (GNP and CNF dispersed in WPU) to give a ‘hybrid textile.’ The hybrid textile showed an EMI SE of -50 dB, the maximum obtained in this thesis, due to ‘absorption-reflection-absorption’ with absorption percentages going as high as 94%. The UV blocking and LOI values also reached 99.999% and 27%, respectively. Chapter 7 presents a consolidated summary of the results obtained from the different chapters. It also suggests a possible extension of the work that could be done to enhance the multifunctional aspects of the coated fabric.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography