Dissertations / Theses on the topic 'Polymer materials'

To see the other types of publications on this topic, follow the link: Polymer materials.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Polymer materials.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Kuruwita-Mudiyanselage, Thilini D. "Smart Polymer Materials." Bowling Green State University / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1223652552.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mohagheghian, Iman. "Impact response of polymers and polymer nanocomposites." Thesis, University of Cambridge, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.648854.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Johnson, Joseph Casey. "Peptidic Materials: Nature Inspired Mechanical Enhancement." Case Western Reserve University School of Graduate Studies / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=case1403197488.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Petsagkourakis, Ioannis. "High performance polymer and polymer/inorganic thermoelectric materials." Thesis, Bordeaux, 2016. http://www.theses.fr/2016BORD0351/document.

Full text
Abstract:
Les polymères conducteurs ont attiré l'attention de la communauté scientifique en raison de leur utilisation potentielle dans les applications thermoélectriques [1, 2]. En particulier, il a été prouvé qu'un paramètre important pour accorder les propriétés thermoélectriques et le comportement de transport de charge du polymères, est la forme du DOS dans le bord de bande. Dans la présente étude, la corrélation entre la structure du matériau, la structure électronique et les propriétés électroniques / thermoélectriques, est étudiée par une conception soigneuse et rigoureux du matériau, vers un matériau polymère, thermoélectrique efficace. En outre, les dispositifs hybrides ont été fabriqués comme un moyen alternatif pour améliorer encore l'efficacité thermoélectrique du matériau
Conducting polymers (CPs) have recently gained the attention of the scientific community due to their prospective use in thermoelectric applications [1,2]. Particularly, it has been proven that an important parameter for tuning the thermoelectric properties and the charge transport behavior of the CP is the shape of the DOS in the band edge, where a more steep band edge would be translated in a semi-metallic behavior for the system, with higher thermoelectric efficiencies. In the present study the correlation between material structure, electronic structure and electronic/ thermoelectric properties, is investigated through careful material design, towards an efficient thermoelectric polymer material. Additionally, the hybrid devices were fabricated as an alternative means to further enhance the thermoelectric efficiency of the material
APA, Harvard, Vancouver, ISO, and other styles
5

Lin, Yinan. "Electrospinning Polymer Fibers for Design and Fabrication of New Materials." University of Akron / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=akron1310997689.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kumpfer, Justin Richard. "Utilizing Metallosupramolecular Polymers as Smart Materials." Case Western Reserve University School of Graduate Studies / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=case1333553702.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sakahara, Rogério Massanori. "Estudo da formação da fase cristalina beta nos compósitos de polipropileno contendo anidrido maléico e carbono de cálcio." Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/3/3133/tde-04072013-153850/.

Full text
Abstract:
Este trabalho estuda a influência do carbonato de cálcio (CaCO3) nas propriedades mecânicas e na formação da fase cristalina beta do polipropileno (PP). Com o intuito de produzir amostras para o estudo, foi feita uma análise preliminar sobre o enxerto do anidrido maléico no polipropileno, porque este material graftizado (PP-g-MA) contribui significativamente em blendas e compósitos ao melhorar a adesão superficial entre o PP e o CaCO3. Foram estudados dois métodos de obtenção deste produto (PP-g-MA) utilizando-se peróxido orgânico e os produtos obtidos foram caracterizados e comparados. Apesar dos resultados das análises feitas por calorimetria diferencial exploratória (DSC), análise termogravimétrica (TGA), microscopia eletrônica de varredura (MEV) e espectroscopia de energia dispersiva (EDS) indicarem importantes diferenças entre os dois métodos, a análise por espectroscopia no infravermelho (FTIR) trouxe conclusões sobre a eficácia dos métodos de graftização. Duas séries de compósitos a base de PP contendo CaCO3 foram produzidos por mistura intensiva em fusão (misturador Drais), uma contendo PP-g-MA e a outra sem. Quatro tipos de CaCO3 foram utilizados, diâmetros de 0,9 µm, 2,5 µm e 3 µm, sendo que o CaCO3 0,9 µm apresentou-se com superfície tratada e não-tratada. A concentração de CaCO3 foi mantida em 5% e a de PP-g-MA em 5% quando presente. Os compósitos foram submetidos a testes de resistência à tração, módulo na flexão e resistência ao impacto em duas temperaturas. As amostras contendo menores tamanhos de partículas de CaCO3 e PP-g-MA apresentaram melhora sinérgica na resistência mecânica, em que aumentos da resistência a impacto e da resistência a flexão foram observados. A análise da fase cristalina beta nestas amostras foi feita utilizando-se DSC e difratometria de raios-x. Também foi analisada a influência da adesão superficial entre a carga e a matriz de PP, quanto maior a adesão superficial e menor o tamanho de partícula do CaCO3, maior a formação da fase cristalina beta, o que contribuiu para a sinergia entre todas as propriedades mecânicas avaliadas neste trabalho.
This study aimed at improving the comprehension of the influence of calcium carbonate (CaCO3) in the formation of the beta crystalline phase of polypropylene (PP), as well as the changes in the mechanical properties of this polymer. A preliminary analysis of the grafting of the maleic anhydride in the polypropylene was carried out in order to produce specimens for the study, owing to the fact that this grafted polypropylene (PP-g-MA) contributes substantially to change the polarity of the polymer and therefore, enhance the superficial adhesion between PP and CaCO3. Two grafting methods using organic peroxide were studied. The grafted copolymers were analyzed by DSC, TGA, SEM, EDS, and FTIR. Two series of PP composites containing CaCO3 were produced by intensive melt mixing (Drais mixer), one of them having MA-g-PP. Four types of CaCO3 were used, which diameters were 0.9 µm, 2.5 µm and 3 µm, though the CaCO3 0.9 µm was surface-treated and non-treated. The concentration of CaCO3 was maintained at 5% and PP-g-MA at 5 % also, when present. The composites were tested for tensile strength, flexural modulus and impact strength (at two temperatures). Samples containing smaller particle sized CaCO3 and PP-g-MA showed synergistic improvement in the mechanical strength, and increases in the impact resistance and flexural strength were observed. Analysis of the beta crystal phase in these samples was performed using DSC and x-ray diffractometry. The influence of superficial adhesion between CaCO3 and PP was also analyzed, higher concentration of the beta crystalline phase was observed for better surface adhesion and smaller CaCO3 particle size, which contributed to the synergy between all the mechanical properties evaluated in this work.
APA, Harvard, Vancouver, ISO, and other styles
8

Liu, Liu. "Durability of Polymer Composite Materials." Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/14002.

Full text
Abstract:
The purpose of this research is to examine structural durability of advanced composite materials under critical loading conditions, e.g., combined thermal and mechanical loading and shear fatigue loading. A thermal buckling model of a burnt column, either axially restrained or under an axial applied force was developed. It was predicted that for a column exposed to the high heat flux under simultaneous constant compressive load, the response of the column is the same as that of an imperfection column; the instability of the burnt column happens. Based on the simplified theoretical prediction, the post-fire compressive behavior of fiberglass reinforced vinyl-ester composite columns, which have been exposed to high heat flux for a certain time was investigated experimentally, the post-fire compressive strength, modulus and failure mode were determined. The integrity of the same column under constant compressive mechanical loading combined with heat flux exposure was examined using a specially designed mechanical loading fixture that mounted directly below a cone calorimeter. All specimens in the experiments exhibited compressive instability. The experimental results show a thermal bending moment exists and has a significant influence on the structural behavior, which verified the thermal buckling model. The trend of response between the deflection of the column and exposure time is similar to that predicted by the model. A new apparatus was developed to study the monotonic shear and cyclic-shear behavior of sandwich structures. Proof-of-concept experiments were performed using PVC foam core polymeric sandwich materials. Shear failure occurred by the extension of cracks parallel to the face-sheet/core interface, the shear modulus degraded with the growth of fatigue damage. Finite element analysis was conducted to determine stress distribution in the proposed specimen geometry used in the new technique. Details for a novel apparatus used for the fatigue testing of thin films and face sheets are also provided.
APA, Harvard, Vancouver, ISO, and other styles
9

Vukicevic, Uros. "TiO2 nanorod polymer composite materials." Thesis, Imperial College London, 2009. http://hdl.handle.net/10044/1/7669.

Full text
Abstract:
The remarkable characteristics of Ti02 are widely used, from everyday life applications (pigments, food/cosmetics additives) to more specialised systems, including photovoltaics and structural composites. Use in polymers is substantial (25% of all Ti02 produced), but most applications and research focus on commercial powders. A new generation of Ti02 nanoparticles has emerged, based on very small, single-crystals, with well-defined morphology and phase. A limited number of papers report the use of this new nanoscale Ti02 in polymer nanocomposites, and indicate improved properties. Although the synthesis of anisotropic nanoparticles (e. g. nanorods) has been well-reported, use in polymer nanocomposites remains largely unreported. This thesis broadly covers three topics: (1) synthesis of Ti02 nanorods using different sol-gel routes in presence of structure directing agents, (2) modification of the nanorod surface chemistry in order to control dispersion and surface properties and (3) fabrication of titania nanorod-polymer composites. Singlecrystal anatase nanorods were produced with variable aspect ratio (3-12), depending on the specific structure directing agent (SDA) used during synthesis. Due to organic functionalisation at the nanorod surface, nanorods could be well dispersed in chloroform. A new procedure, based on the self-cleaning ability of Ti02 under UV, was developed for removal of organics from the nanorod surface, without compromising the nanorod morphology, crystallinity or dispersibility. This powerful tool can be used to change the surface character of the nanorods to generate aqueous TNR dispersions. Stable dispersions were achieved using quaternary ammonium hydroxides to modify the surface electrostatically and sterically. Once dispersed individually, the surface can be further modified by sol-gel chemistry. Composite work involved blending both organic and water-soluble polymers with nanorod dispersions in chloroform and water, respectively, to produce composite films of exceptional optical transparency, even for nanorod loadings up to 30 wt%. The films possess very strong, wavelength-tuneable UV absorbance, which could be used in UV filters and optical limiting. The presence of SDAs or dispersants at the nanorodpolymer interface hinders strong adhesion, as evidenced by marginally lower tensile strength and thermal stability of the nanocomposites. The photo-stability of the nanorod composites is comparable to that of the pure polymer and better than that of composites with commercial equiaxed TiO2 nanoparticles.
APA, Harvard, Vancouver, ISO, and other styles
10

Fuller, Kristin M. "Bridging the Gap: Developing Synthetic Materials with Enzymatic Levels of Complexity and Function." Case Western Reserve University School of Graduate Studies / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=case1595941048642725.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Monemian, Seyedali. "Tuning Mechanics of Bio-Inspired Polymeric Materials through Supramolecular Chemistry." Case Western Reserve University School of Graduate Studies / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=case1467882025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Fan, Weizheng. "Development of Photoresponsive Polymers and Polymer/Inorganic Composite Materials Based on the Coumarin Chromophore." University of Akron / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=akron1366903513.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Lee, Jung-Hyun. "Interface engineering in zeolite-polymer and metal-polymer hybrid materials." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/37120.

Full text
Abstract:
Inorganic-polymer hybrid materials have a high potential to enable major advances in material performance in a wide range of applications. This research focuses on characterizing and tailoring the physics and chemistry of inorganic-polymer interfaces in fabricating high-performance zeolite-polymer mixed-matrix membranes for energy-efficient gas separations. In addition, the topic of novel metal nanoparticle-coated polymer microspheres for optical applications is treated in the Appendix. In zeolite/polymer mixed-matrix membranes, interfacial adhesion and interactions between dope components (zeolite, polymer and solution) play a crucial role in determining interfacial morphology and particle dispersion. The overarching goal is to develop accurate and robust tools for evaluating adhesion and interactions at zeolite-polymer and zeolite-zeolite interfaces in mixed-matrix membrane systems. This knowledge will be used ultimately for selecting proper materials and predicting their performance. This project has two specific goals: (1) development of an AFM methodology for characterizing interfacial interactions and (2) characterization of the mechanical, thermal, and structural properties of zeolite-polymer composites and their correlation to the zeolite-polymer interface and membrane performance. The research successfully developed an AFM methodology to determine interfacial interactions, and these were shown to correlate well with polymer composite properties. The medium effect on interactions between components was studied. We found that the interactions between two hydrophilic silica surfaces in pure liquid (water or NMP) were described qualitatively by the DLVO theory. However, the interactions in NMP-water mixtures were shown to involve non-DLVO forces arising from bridging of NMP macroclusters on the hydrophilic silica surfaces. The mechanism by which nanostructured zeolite surfaces enhanced in zeolite-polymer interfacial adhesion was demonstrated to be reduced entropy penalties for polymer adsorption and increased contact area. ¡¡¡¡¡¡Metal nanoparticle (NP)-coated polymer microspheres have attracted intense interest due to diverse applications in medical imaging and biomolecular sensing. The goal of this project is to develop a facile preparation method of metal-coated polymer beads by controlling metal-polymer interactions. We developed and optimized a novel solvent-controlled, combined swelling-heteroaggregation (CSH) technique. The mechanism governing metal-polymer interaction in the fabrication was determined to be solvent-controlled heteroaggregation and entanglement of NPs with polymer, and the optical properties of the metal/polymer composite beads were shown to make them useful for scattering contrast agent for biomedical imaging and SERS (Surface-Enhanced Raman Scattering) substrates.
APA, Harvard, Vancouver, ISO, and other styles
14

Liu, Ruofan. "A Novel Methodology for Durability Assessment of Rubber Materials." University of Akron / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=akron1525784654741047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Chirowodza, Helen. "Polymer-clay nanocomposites prepared by RAFT-supported grafting." Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/71914.

Full text
Abstract:
Thesis (PhD)--Stellenbosch University, 2012.
ENGLISH ABSTRACT: In materials chemistry, surface-initiated reversible deactivation radical polymerisation (SI-RDRP) has emerged as one of the most versatile routes to synthesising inorganic/organic hybrid materials consisting of well-defined polymers. The resultant materials often exhibit a remarkable improvement in bulk material properties even after the addition of very small amounts of inorganic modifiers like clay. A novel cationic reversible addition–fragmentation chain transfer (RAFT) agent with the dual purpose of modifying the surface of Laponite clay and controlling the polymerisation of monomer therefrom, was designed and synthesised. Its efficiency to control the polymerisation of styrene was evaluated and confirmed through investigating the molar mass evolution and chain-end functionality. The surface of Laponite clay was modified with the cationic chain transfer agent (CTA) via ion exchange and polymerisation performed in the presence of a free non-functionalised CTA. The addition of the non-functionalised CTA gave an evenly distributed CTA concentration and allowed the simultaneous growth of surface-attached and free polystyrene (PS). Further analysis of the free and grafted PS using analytical techniques developed and published during the course of this study, indicated that the free and grafted PS chains were undergoing different polymerisation mechanisms. For the second monomer system investigated n-butyl acrylate, it was apparent that the molar mass targeted and the monomer conversions attained had a significant influence on the simultaneous growth of the free and grafted polymer chains. Additional analysis of the grafted polymer chains indicated that secondary reactions dominated in the polymerisation of the surface-attached polymer chains. A new approach to separating the inorganic/organic hybrid materials into their various components using asymmetrical flow field-flow fractionation (AF4) was described. The results obtained not only gave an indication of the success of the in situ polymerisation reaction, but also provided information on the morphology of the material. Thermogravimetric analysis (TGA) was carried out on the polymer-clay nanocomposite samples. The results showed that by adding as little as 3 wt-% of clay to the polymer matrix, there was a remarkable improvement in the thermal stability.
AFRIKAANSE OPSOMMING: Oppervlakgeïnisieerde omkeerbare deaktiveringsradikaalpolimerisasie (SI-RDRP) is een van die veelsydigste roetes om anorganiese/organiese hibriedmateriale (wat bestaan uit goed-gedefinieerde polimere) te sintetiseer. Die produk toon dikwels ʼn merkwaardige verbetering in die makroskopiese eienskappe – selfs na die toevoeging van klein hoeveelhede anorganiese modifiseerders soos klei. ʼn Nuwe kationiese omkeerbare addisie-fragmentasie kettingoordrag (RAFT) middel met die tweeledige doel om die modifisering van die oppervlak van Laponite klei en die beheer van die polimerisasie van die monomeer daarvan, is ontwerp en gesintetiseer. Die klei se doeltreffendheid om die polimerisasie van stireen te beheer is geëvalueer en bevestig deur die molêre massa en die funksionele groepe aan die einde van die ketting te ondersoek. Die oppervlak van Laponite klei is gemodifiseer met die kationiese kettingoordragmiddel (CTA) deur middel van ioonuitruiling en polimerisasie wat uitgevoer word in die teenwoordigheid van ʼn vrye nie-gefunksionaliseerde CTA. Die toevoeging van die nie-gefunksionaliseerde CTA het ʼn eweredig-verspreide konsentrasie CTA teweeggebring en die gelyktydige groei van oppervlak-gebonde en vry polistireen (PS) toegelaat. Verdere ontleding van die vrye- en geënte PS met behulp van analitiese tegnieke wat ontwikkel en gepubliseer is gedurende die verloop van hierdie studie, het aangedui dat die vry- en geënte PS-kettings verskillende polimerisasiemeganismes ondergaan. n-Butielakrilaat is in die tweede monomeer-stelsel ondersoek en dit was duidelik dat die molêre massa wat geteiken is en die geënte polimeerkettings. ʼn Nuwe benadering tot die skeiding van die anorganiese/organiese hibriedmateriale in hulle onderskeie komponente met behulp van asimmetriese vloeiveld-vloei fraksionering (AF4) is beskryf. Die resultate wat verkry is, het nie net 'n aanduiding gegee van die sukses van die in-situ polimerisasiereaksie nie, maar het ook inligting verskaf oor die morfologie van die materiaal. Termogravimetriese analise (TGA) is uitgevoer op die polimeer-klei nanosaamgestelde monsters. Die resultate het getoon dat daar 'n merkwaardige verbetering in die termiese stabiliteit was na die toevoeging van so min as 3 wt% klei by die polimeermatriks.
APA, Harvard, Vancouver, ISO, and other styles
16

Chang, Kaiguo. "Synthesis and characterization of conducting polymer-inorganic composite materials /." View online ; access limited to URI, 2000. http://0-wwwlib.umi.com.helin.uri.edu/dissertations/dlnow/3108646.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Razgoniaev, Anton. "Design, synthesis, and characterization of photoresponsive materials usingcoordination bonds and other supramolecular interactions." Bowling Green State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1510918007338796.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Liu, Yi. "Mesoporous silica/polymer nanocomposites." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/31739.

Full text
Abstract:
Thesis (Ph.D)--Polymer, Textile and Fiber Engineering, Georgia Institute of Technology, 2010.
Committee Chair: Jacob. Karl; Committee Member: Griffin. Anselm; Committee Member: Tannenbaum. Rina; Committee Member: Thio. Yonathan S; Committee Member: Yao. Donggang. Part of the SMARTech Electronic Thesis and Dissertation Collection.
APA, Harvard, Vancouver, ISO, and other styles
19

Mahaffy, Rachel Elaine. "The quantitative characterization of the viscoelastic properties of cells and polymer gels /." Full text (PDF) from UMI/Dissertation Abstracts International, 2000. http://wwwlib.umi.com/cr/utexas/fullcit?p3004328.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Harton, Shane Edward. "Investigation of Polymer Phase Behavior at Heterogeneous Polymer-Polymer Interfaces using Secondary Ion Mass Spectrometry." NCSU, 2006. http://www.lib.ncsu.edu/theses/available/etd-03012006-131419/.

Full text
Abstract:
Changes in the thermodynamic behavior of polymer blends from bulk to heterogeneous interfaces is investigated using secondary ion mass spectrometry (SIMS). The use of a magnetic sector spectrometer (CAMECA IMS-6f) is fully explored in order to determine the optimal conditions in which to probe polymer surfaces and heterogeneous interfaces using three bilayer film systems, namely polystyrene (PS) with poly(methyl methacrylate) (PMMA), poly(cyclohexyl methacrylate) (PCHMA) with PMMA, and PS with poly(2-vinylpyridine) (P2VP). Two primary ion beams have been employed, O2+ with detection of positive secondary ions, and Cs+ with detection of negative secondary ions. It was found that each polymer thin film system must be closely investigated in order to determine the optimal conditions for depth profiling using SIMS. Three types of systems were further investigated using SIMS.
APA, Harvard, Vancouver, ISO, and other styles
21

Sasanaluckit, Piyamol Nuttanun. "Bone biocompatibilty of polymer based materials." Thesis, University of Liverpool, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.386914.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Ben, Sghaier Asma. "Hybrides polymer materials organic/inorganic nanoparticule." Thesis, Paris Est, 2018. http://www.theses.fr/2018PESC1163.

Full text
Abstract:
La chimie d'interface du diazonium a progressé au cours des dernières années et s'est pratiquement impliquée dans tous les domaines de la science et technologie des matériaux. L’utilisation des sels de diazonium est justifiée par le fait qu’ils adhèrent aux surfaces avec de fortes énergies de liaison, en particulier sur le carbone sp², ce qui en fait d’excellents agents de couplage pour les polymères aux surfaces. Dans ce contexte, nous avons travaillé sur deux types de nanohybrides de nanotubes de carbone (NTC) : NTC-polytriazole (NTC-PTAz) et NTC-colorant. Le nanohybride NTC-PTAz a été synthétisé par polymérisation « click » en surface. Pour ce faire, les NTCs ont été greffés de groupes 4-azidophényle à partir du sel de diazonium correspondant. Le NTC modifié (NTC-N3) a servi de support pour une polymérisation confinée en surface de type polyaddition générant ainsi le nanohybride NTC-PTAz. Ce matériau a été caractérisé par ATG, XPS, IR et Raman. Ses applications potentielles sont dans le développent d’adsorbants de métaux lourds, l’immobilisation de nanocatalyseurs ou pour le stockage des gaz. La seconde partie de la thèse est plus étoffée et porte sur les nanotubes de carbone greffés de colorants diazotés Rouge Neutre (NR), Azure A (AA) et Rouge Congo (CR). L’analyse fine de ces matériaux a révélé une très forte adhésion des colorants aux NTCs et les couches superficielles ont des épaisseurs de 2 à 6 nm, sont homogènes et continues. Les NTC-colorant ont été incorporés dans des matrices élastomères de type EVA pour la réalisation d’actionneurs opto-thermiques implantés dans des pads pour non-voyant. Dans les matrices EVA, les NTCs greffés de colorants servent à capter la lumière et induire un changement de forme dans le pad qui soit palpable par le non voyant (250 µm). Les matrices EVA renforcées de nos nanotubes greffés de colorants ont été réalisées et testées par analyse mécanique dynamique. Les composites NTC/colorant-EVA sont flexibles et prometteurs pour le développement de nouveaux types des pads tactiles pour les non-voyants. Les nanohybrides NTC-NR ont servi comme capteurs chémo-résistifs pour la reconnaissance moléculaire de l’acétone.Dans une dernière application, le nanohybride CNT-CR a été étudié en tant qu’électrocatalyseur pour l’oxydation directe du méthanol. Des résultats intéressants ont été obtenus avec ces nanohybrides mais des améliorations significatives (rapport 3) des propriétés électrocatalytiques ont été obtenues avec des CNT-CR décorés avec des nanoparticules d'or. Le système électrocatalytique nouvellement conçu pourrait être considéré pour différentes applications prometteuses, notamment les capteurs, les biocapteurs, les catalyseurs hétérogènes pour les piles à combustible. Pour résumer, les nanohybrides à base de CNT nouvellement conçus présentent des performances uniques attribuées à la polyvalence de la chimie d'interface du diazonium pour la fixation efficace de couches moléculaires et macromoléculaires fonctionnelles. Les nanohybrides novateurs servent de blocs de construction pour la conception de matériaux nanocomposites à hautes performances potentiellement utiles dans les nouveaux défis socio-économiques tels que l’environnement, la biomédecine et l’énergie
Diazonium interface chemistry has progressed over the last few years and practically involved in all areas of materials science and engineering. The rationale for employing diazonium salts is that they attach to surfaces with remarkable bond energies, particularly on sp² carbon materials, making them an ideal coupling agent for polymers to surfaces In this context, novel CNT-polytriazole (CNT-PTAz) and CNT-dye nanohybrids were designed and thoroughly characterized. First, CNT-PTAz nanohybrid was prepared by click polymerization: multiwalled carbon nanotubes (CNTs) were modified with azidophenyl groups (CNT-N3) from 4-azidobenzenediazonium precursor and served as nanoscale platform for the surface confined polyaddition. The CNT-PTAz nanohybrid was characterized by TGA, XPS, IR, and Raman. The robust CNT-PTAz is robust and has potential in developing heavy metal adsorbents, nanosupport for catalysts or for gas storage. In the second major part, we grafted CNT with diazotized Neutral red (NR), Azure A (AA) and Congo Red (CR) dyes by simple, spontaneous reaction of the diazonium salts and CNTs in water, at RT. A thorough investigation of the nanohybrids showed that the adhesion is strong (CNT-dye C-C bond energy higher than 150 kJ/mol), and the layer is uniform. These nanohybrids further served to reinforce ethylene-vinyl acetate (EVA) an elastomeric matrix. The reinforced matrix is flexible and serves as optothermal actuators where the grafted dye catches the light to induce mechanical changes in the matrix monitored by dynamic mechanical analysis. CNT/dye-reinforced EVA is a promising flexible composite for developing new types of visual-aid tablet for visually impaired people. The versatile CNT-dye nanohybrids are also unique chemiresistive gas sensors for the molecular recognition of acetone vapours. In a final application, CNT-CR nanohybrid was investigated as an electrocatalyst for the Direct Oxidation of Methanol. Interesting results were obtained with these nanohybrids but significant improvements (3-fold) of the electrocatalytic properties were achieved with CNT-CR decorated with gold nanoparticles. The newly designed electrocatalytic system could be regarded for different promising applications most likely as for sensors, biosensors, heterogeneous catalysts for fuel cells and for nanotechnology To summarize, newly designed CNT-based nanohybrids have unique performances ascribed to the versatility of the diazonium interface chemistry in efficiently attaching functional molecular and macromolecular layers. The novel nanohybrids serve as building blocks for designing high performance nanocomposite materials relevant to challenging timely social economic issues, namely environment, biomedicine and energy
APA, Harvard, Vancouver, ISO, and other styles
23

Hall, David Steven. "Metal polymer adhesion for packaging materials." Thesis, Oxford Brookes University, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.245702.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Ma, Xiaolu. "Bis (trialkoxysilyl) telechelic polymer materials for adhesive applications." Thesis, Rennes 1, 2016. http://www.theses.fr/2016REN1S123.

Full text
Abstract:
Les travaux portent sur la synthèse des (co)polyoléfines bis(trialcoxysilyle) téléchéliques, liquides à température ambiante, pour des applications adhésives. La première approche est consacrée à la combinaison de la polymérisation par ouverture de cycle par métathèse (ROMP) et de la métathèse croisée (CM) d'une cyclooléfine ou d'un mélange de cyclooléfines en présence d'une oléfine trialcoxysilyle monofonctionnelle ou difonctionnelle agissant comme agent de transfert (CTA) et d'un catalyseur à base de ruthénium. Il est montré que l'efficacité de la réaction et la sélectivité / fonctionnalité des polymères dépendent notamment de la nature du solvant, du CTA, du catalyseur, et de l'utilisation (ou pas) de benzoquinone comme additif inhibiteur de l'isomérisation. Une très grande productivité catalytique (turnover number, TON, jusque 100 000) a été obtenue avec les conditions optimisées. La viscosité du copolymère a été contrôlée par ajustement de la nature et du ratio des co-monomères. La deuxième approche est consacrée à la dépolymérisation du polybutadiène (PBD) liquide à haute teneur en 1,4-cis en présence d'un CTA et d'un catalyseur au ruthénium. L'efficacité et la sélectivité de la réaction ont été optimisées en variant la méthode de la purification du PBD commercial, la nature du catalyseur et le protocole opératoire. Cette approche est néanmoins moins efficace que la première
The work presented focuses on the synthesis of liquid (at room temperature) bis(trialkoxysilyl) telechelic polyolefins for adhesive applications. The first approach relies on the combined ring-opening metathesis polymerization/cross metathesis (ROMP/CM) of a cycloolefin or a mixture of cycloolefins using a trialkoxysilyl mono- or difunctionalized alkene acting as a chain transfer agent (CTA) and a ruthenium-based catalyst. The efficiency of the reaction and selectivity of the polymer functionality were found to depend much on the nature of the CTA, the catalyst, the solvent and the use of benzoquinone additive as isomerization inhibitor. A high catalytic productivity with a turnover number (TON) up to 100 000 was obtained under optimized conditions. The viscosity of polymers was controlled by adjusting the nature and the ratio of comonomers. The second approach is dedicated to the depolymerization of liquid high 1,4-cis polybutadiene (PBD) in the presence of a CTA and a ruthenium catalyst. The catalytic productivity and selectivity were optimized by changing the method of purification of the commercial PBD, the nature of catalyst and the reaction protocol. This second approach remains, however, less efficient than the first one
APA, Harvard, Vancouver, ISO, and other styles
25

Moran, Stephanie E. (Stephanie Elizabeth). "Polymer coated superparamagnetic beads walking on polymer coated surface." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/76123.

Full text
Abstract:
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2012.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 30-31).
Biology has provided us with many organisms that are able to propel themselves through a fluid using cilia or flagella. This provides inspiration to create controllable systems that cannot only propel an organism or device through a fluid but can also create a fluid flow. Research has focused on how to mimic the mechanisms of these organisms for the use in microfluidic devices or drug delivery. This work examines walkers that are created using superparamagnetic beads placed in a rotating external magnetic field. Dipoles align in the beads so they assemble into rotors. These rotors follow the rotating magnetic field and are able to translate across a surface. This work looks at the effect of coating the beads and the surface with a polymer, Polyethylene Glycol(PEG). PEG has been shown to undergo a transition from an expanded state to a collapsed state under certain salt concentrations and temperature ranges. By looking at this transition we can see if the use of a polymer could affect the velocity of the rotors and if PEG could be used to control the velocity of the rotors or to initiate a transition. This transition is only seen by recording the velocity of the rotors, future research using other experimental procedures might be helpful in finalizing the transition of PEG in NaCl. It was unclear from these experiments whether the velocity of the rotors is dependent on the state of the polymer.
by Stephanie E. Moran.
S.B.
APA, Harvard, Vancouver, ISO, and other styles
26

Ju, Lin. "Non-Covalent Interactions in Polymeric Materials: From Ionomers to Polymer Blends." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/102651.

Full text
Abstract:
Conventional studies of ionomers have focused on ionomers bearing monovalent carboxylate or sulfonate pendant ions. There are relatively fewer studies on ionomers containing multivalent pendant ions, such as divalent phosphonate. In this dissertation, poly(ethylene terephthalate) (PET) and polystyrene ionomers with divalent phosphonate pendant ions have been synthesized, and the influence of divalent phosphonate pendant ions on the structure-morphology-property relationship has been compared to the ionomers with monovalent sulfonate pendant ions. The phosphonate groups generated a stronger physically crosslinked network in phosphonated ionomers as compared to sulfonated analogues. Higher plateau modulus, longer relaxation time, and significantly higher zero-shear viscosity were noted for phosphonated ionomers by a dynamic melt rheology study. Compared to the ionic aggregates generated from sulfonate groups, larger ionic aggregates with associated phosphonate groups have been observed. Furthermore, phosphonated ionomers displayed significantly higher glass transition temperatures than sulfonated ionomers. Ionomers have proven to be attractive, interfacially active compatibilizers for a number of polymer blend systems because of specific interactions that may develop between the ionic groups and complementary functional groups on other polar polymers within the blends. The successful compatibilization of polyester/polyamide blends (prepared by solution mixing and melt blending methods) using phosphonated PET ionomers as a minor-component compatibilizer has been demonstrated. The phase-separated polyamide domain dimension decreased with increasing mol % phosphonated monomers and this decrease was attributed to the specific interactions between the ionic phosphonate groups on the polyester ionomer and the amide linkages of polyamide. More importantly, the divalent phosphonate pendant ions are more effective at compatibilizing polyester/polyamide blends in comparison to the monovalent sulfonate pendant ions. Phosphonated PET ionomer-compatibilized polyester/polyamide blends required 6 times fewer ionic monomers to achieve domain dimension < 1 μm as compared to sulfonated PET-containing blends. Deep eutectic solvents (DES) have been reported to be the next generation solvents due to the superior biocompatibility, biodegradability, and sustainability as compared to ionic liquids. Two types of deep eutectic solvents, choline chloride : malic acid (ChCl:MA) and L-arginine : levulinic acid (Arg:LA), have been demonstrated as effective plasticizers for poly(vinyl alcohol) (PVOH) films. The plasticization effects on the properties of PVOH films were evidenced by lower crystallizability and improved film ductility. In addition, ChCl:MA deep eutectic solvent was more effective in plasticizing PVOH as compared to propylene glycol, one of the most widely studied alcohol-type plasticizers. From an applied perspective, DES-plasticized PVOH film is a promising candidate in the packaging market of heath-related products.
Doctor of Philosophy
APA, Harvard, Vancouver, ISO, and other styles
27

Chen, Biqiong. "Polymer-clay nanocomposites." Thesis, Queen Mary, University of London, 2004. http://qmro.qmul.ac.uk/xmlui/handle/123456789/1854.

Full text
Abstract:
Polymer-clay nanocomposites are attracting global interest principally because property enhancements are obtained at low clay particle loadings (1-5 wt%). However there is lack of fundamental understanding of such composites. The aim of this work is to provide an insight into the interaction between polymer and clay. This includes the driving force for intercalation, the reinforcement mechanisms and property-volume fraction relationships. Functionalised poly(ethylene glycol)-clay, poly(c-caprolactone)-clay and thermoplastic starch-clay nanocomposites with a range of polymer molecular weights, clay volume fractions and with different clays were prepared using solution methods, melt-processing methods, and in situ polymerisation. A reliable X-ray diffraction technique for low angle basal plane spacing of clay, the essential parameter for structure determination, was established obtaining ±0.005 Mn between three diffractometers. The basal plane spacing was found to be unaffected by polymer molecular weight and preparation method but was affected by the nature of the polymer and clay. Increasing clay loading could lead to a lower spacing. As a cautionary observation, poly(ethylene glycol) with high molecular weight (2: 10,000) was found to undergo degradation readily during preparation of nanocomposites with and without clay. Competitive sorption experiments for molecular weight showed that high molecular weight fractions of polymer intercalate preferentially into clay during solution preparation. Thermodynamic studies on the intercalation process found that significant enthalpic change occurred during intercalation, which is coincident with the observation that heat-treated clays without interlayer water can intercalate polymer. The calculation of true volume fraction against nominal volume fraction provided reasonable explanation of property enhancement and helps understand the relation between nanocomposites and conventional composites. At a given clay loading, nanocomposites with better dispersion gave more property enhancement than those with lower dispersion or conventional composites. The crystallinity of semicrystalline polymer was also affected by varying extents of dispersion of clay. The use of X-ray diffraction with an internal standard was explored for quantitative analysis of intercalation and exfoliation.
APA, Harvard, Vancouver, ISO, and other styles
28

Creusen, Guido [Verfasser], and Andreas [Akademischer Betreuer] Walther. "Bottom-up materials design with defined polymer and polymer-DNA structures." Freiburg : Universität, 2021. http://d-nb.info/124147222X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Mazzoccoli, Jason Paul. "ULTRASONICATION OF POLYSACCHARIDE MATERIALS." Cleveland, Ohio : Case Western Reserve University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=case1262572128.

Full text
Abstract:
Thesis (Doctor of Philosophy)--Case Western Reserve University, 2010
Department of Chemical Engineering Title from PDF (viewed on 2010-05-25) Includes abstract Includes bibliographical references and appendices Available online via the OhioLINK ETD Center
APA, Harvard, Vancouver, ISO, and other styles
30

Barris, Peña Cristina. "Serviceability behaviour of fibre reinforced polymer reinforced concrete beams." Doctoral thesis, Universitat de Girona, 2011. http://hdl.handle.net/10803/7772.

Full text
Abstract:
El uso de materiales compuestos de matriz polimérica (FRP) emerge como alternativa al hormigón convencionalmente armado con acero debido a la mayor resistencia a la corrosión de dichos materiales. El presente estudio investiga el comportamiento en servicio de vigas de hormigón armadas con barras de FRP mediante un análisis teórico y experimental. Se presentan los resultados experimentales de veintiséis vigas de hormigón armadas con barras de material compuesto de fibra de vidrio (GFRP) y una armada con acero, todas ellas ensayadas a flexión de cuatro puntos. Los resultados experimentales son analizados y comparados con algunos de los modelos de predicción más significativos de flechas y fisuración, observándose, en general, una predicción adecuada del comportamiento experimental hasta cargas de servicio. El análisis de sección fisurada (CSA) estima la carga última con precisión, aunque se registra un incremento de la flecha experimental para cargas superiores a las de servicio. Esta diferencia se atribuye a la influencia de las deformaciones por esfuerzo cortante y se calcula experimentalmente.
Se presentan los aspectos principales que influyen en los estados límites de servicio: tensiones de los materiales, ancho máximo de fisura y flecha máxima permitida. Se presenta una metodología para el diseño de dichos elementos bajo las condiciones de servicio. El procedimiento presentado permite optimizar las dimensiones de la sección respecto a metodologías más generales.
Fibre reinforced polymer (FRP) bars have emerged as an alternative to steel for reinforced concrete (RC) elements in aggressive environments due to their non-corrosive properties. This study investigates the short-term serviceability behaviour of FRP RC beams through theoretical and experimental analysis. Twenty-six RC beams reinforced with glass-FRP (GFRP) and one steel RC beam are tested under four-point loading. The experimental results are discussed and compared to some of the most representative prediction models of deflections and cracking for steel and FRP RC finding that prediction models generally provide adequate values up to the service load. Additionally, cracked section analysis (CSA) is used to analyse the flexural behaviour of the specimens until failure. CSA estimates the ultimate load with accuracy, but it underestimates the experimental deflection beyond the service load level. This increment is mainly attributed in this work to shear induced deflection and it is experimentally calculated.
A discussion on the main aspects of the SLS of FRP RC is introduced: the stresses in materials, maximum crack width and the allowable deflection. A methodology for the design of FRP RC at the serviceability requirements is presented, which allows optimizing the overall depth of the element with respect to more generalised methodologies.
APA, Harvard, Vancouver, ISO, and other styles
31

Bo, Ni. "Design, Synthesis and Self-assembly of Polyhedral Oligomeric Silsesquioxane (POSS) Based Hybrid Materials." University of Akron / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=akron152130982499385.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Tangvijitsakul, Pattarasai. "Methoxy Poly (Ethylene Glycol) Methacrylate- Based Copolymers on the Applications of Concrete Admixtures, Mesoporous Materials, and Rheology Modifiers." University of Akron / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=akron1442440564.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Li, Weiyao. "Understanding UV Protection Mechanism of Natural and Synthetic Eumelanin." University of Akron / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=akron1491930546268438.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Zhou, Wenxuan. "Stoichiometry and Crystal Structure of Poly (Lactic Acid) (PLA) Stereocomplex (SC) in Cold-crystallization and Solution-grown Crystals as Studied by Solid-state NMR and 13C Isotope Labeling." University of Akron / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=akron1522239647112751.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Shokouhi, Mehr Hamideh. "Application of High-Performance Polyimides in Additive Manufacturing and Powder Coating." University of Akron / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=akron1574204777058183.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Ren, Xianjie ren. "Improving sustainability of rubber composites with renewable additives and epoxidized guayule natural rubber." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1574440536318129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Mawhinney, Kaitlyn Elizabeth. "Design and Characterization of Emulsion-Templated Macroporous-Mesoporous Polyurea Gels and Aerogels." University of Akron / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=akron1597401264429047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Wang, Menghong. "Degradation of Photovoltaic Packaging Materials and Power Output of Photovoltaic Systems: Scaling up Materials Science with Data Science." Case Western Reserve University School of Graduate Studies / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=case1595416965256375.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Marcus, Kashif. "Micromechanisms of polymer sliding wear." Doctoral thesis, University of Cape Town, 1993. http://hdl.handle.net/11427/22408.

Full text
Abstract:
A study has been made concerning the tribological behaviour of ultrahigh molecular weight polyethylene (UHMWPE) during water-lubricated reciprocating sliding wear. The experimental work has been extended to study also the effect of molecular weight, fillers, lubrication, counterface roughness and sliding configuration on the polymer's transfer characteristics. The wear behaviour of polytetrafluoroethylene (PTFE) has been included for comparative studies. The worn material was studied using stylus profilometry, optical microscopy, scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDS), Transmission electron microscopy (TEM), X-ray fluorescence (XRF), X-ray diffraction (XRD), differential scanning calorimetry (DSC), infrared spectroscopy (IR) and mass spectrometry. The effect of two fillers, namely glass beads and a titanium-based inorganic filler on the friction and wear behaviour of UHMWPE has been investigated as a function of counterface roughness (Rₐ). It was found that the filled material exhibited lower wear rates than the unfilled material on the rougher counterface. The filled material was also found to be more sensitive to a change in Rₐ and showed higher wear rates than the unfilled polymer on the smooth counterface. A uniform and coherent transfer film is found on the rougher counterface but the transfer film for the titanium-based filler was patchy on the smooth counterface. No coherent transfer film was found when sliding was conducted parallel to the grinding direction on the steel counterface, resulting in relatively high wear rates. Polymer transfer was patchy, the amount increasing as the sliding distance increased. The observed phenomena are explained in terms of mechanical interlocking and chemical bonding of the polymeric material with the metal counterface. An increase in molecular weight did not significantly improve the wear resistance of the UHMWPE. Small variations in counterface roughness values (Rₐ) were found to have a much greater effect on the wear rates than changes in molecular weight. The steady-state wear rate of the polymer was furthermore found to be more dependent on an adherent transfer film rather than a change in bulk morphology. Although PTFE exhibited low friction coefficients, the high wear rates obtained by this polymer is explained by the polymer's inability to form a transfer film under water lubrication, while any film that forms under dry sliding wear is easily peeled off the surface. Significant improvements in wear are found when fillers are added to the polymer. The wear rates for PTFE under dry sliding are similar to those obtained for UHMWPE under water lubrication. Transfet of UHMWPE material to the metal counterface during sliding wear involves interlamellar shear of the polymer and results in the development of a highly oriented transfer film. Significant differences have been found in the degree of crystallinity, crystallite size and orientation in the deformed surface layers of the polymer and debris compared with those of the bulk polymer. The worn surface of the polymer shows slightly increased crystallinity but the crystallinity of the debris is much higher than that of the bulk whilst the crystallite size is much reduced.
APA, Harvard, Vancouver, ISO, and other styles
40

Dahlen, Anfrid. "Plastic deformation and fracture of polymer materials." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for konstruksjonsteknikk, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-15968.

Full text
Abstract:
Polymer materials are known to dilate during plastic deformation. This thesis is a study on some of the mechanisms behind the volume change and how it is affected by triaxiality in stress. The goal was to assess how the current hyperelastic-viscoplastic constitutive material model for thermoplastics made at Structural Impact Laboratory (SIMLab) could be developed further. The volume change was studied by conducting tension tests on axisymmetric smooth and notched specimens made of high-density polyethylene (HDPE) and polyvinyl chloride (PVC). In order to change the stress triaxiality, the notched specimens had four different notch radii. All tests were monitored by a digital charge-coupled device (CCD) camera. To map the deformations of the specimens, the images were postprocessed in a custom-made digital image correlation (DIC) algorithm that was created in the numerical computing environment and programming language MATLAB. Further, simulations of the tests were run in the finite element software LS-DYNA, using the implemented material model for thermoplastics developed at SIMLab. SIMLab's material model is currently based on the Raghava yield surface and plastic potential. Amodification of the model, employing the Gurson - Tvergaard - Needleman (GTN) yield surface and plasticpotential incorporating the evolution of voids during deformation of the material, was also evaluated. A relationship between the stress triaxiality and the volume strain during plastic deformations was found from the tests. The stress triaxiality was also found to affect the yield stress, the local strain rate, the radial strain,the equivalent plastic fracture strain and the fracture surface. The tests also suggest that nucleation of voids should be described as strain controlled. Comparing the tests to the simulations it was evident that thevolume change in the materials was not captured properly with the model employing the Raghava potential.The simulations using the GTN potential however, showed far better estimations of the volume strain.Adjustments of the model employing the GTN yield surface and plastic potential are still required to simulatethe strain softening properly.
APA, Harvard, Vancouver, ISO, and other styles
41

Boudara, Victor Ange Henri. "Supramolecular and entangled polymer materials : rheological models." Thesis, University of Leeds, 2017. http://etheses.whiterose.ac.uk/19802/.

Full text
Abstract:
This thesis is concerned with the dynamics and rheology of polymers, and in particular on the influence of entanglements and supramolecular “sticky” groups. The text is organised as follows: In Part I, we consider these effects in isolation. We begin with an introductory chapter detailing established theory for unentangled polymers, unentangled sticky polymers, and entangled polymers. In Chapter 2, we develop a stochastic model for linear rheology of unentangled polymers with stickers along the backbone that we then compare with experimental data and the “classic” sticky Rouse model. In Chapter 3, we explore the nonlinear rheology of a mixture of entangled polymeric chains of various lengths (polydisperse) based on coupled equations of similar form the to Rolie-Poly model [Likhtman and Graham, J. Nonnewton. Fluid Mech. 114, 1–12 (2003)]. Part II of this thesis describes the development and testing of a “toy” nonlinear rheology model for entangled supramolecular polymeric materials. We describe three stages in development and testing of this model [Boudara and Read, J. Rheol. 61, 339–362 (2017)]: Chapter 4, presents a simplified stochastic model for the rheology of entangled telechelic star polymers. In both linear and nonlinear regimes, we produce maps of the whole parameter space, indicating the parameter values for which qualitative changes in response to the applied flow are predicted. Preaveraging the stochastic equations described above, we obtain a set of non-stochastic coupled equations that produce very similar predictions. This is detailed in Chapter 5. Finally, in Chapter 6, we use the preaveraged model to explore complex flow behaviour. In Chapters 4 and 5, we observed that for some parameter values, the steady state stress versus shear rate curve is non-monotonic, which is a signature of shear banding [Fielding, J. Rheol. 60, 821–834 (2016)]. Our simulations confirm shear banding. Surprisingly, for some parameter values, the system never reaches a steady state but instead it oscillates in time between homogeneous state and recoil (coexistence of positive and negative shear rates). We investigate the mechanism behind this oscillatory behaviour.
APA, Harvard, Vancouver, ISO, and other styles
42

Wang, Peng-zhu. "Investigation of scratch damage on polymer materials." Thesis, University of Cambridge, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.620732.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Kashfipour, Marjan Alsadat. "Thermal Conductivity Enhancement Of Polymer Based Materials." University of Akron / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=akron156415885613422.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Lorenzana, Chad. "Fiber reinforced polymer strengthening in construction materials." Thesis, Washington University of Washington, 2006. http://hdl.handle.net/10945/2329.

Full text
Abstract:
CIVINS
The United States has experienced an increase in the need for structural repair, especially in its public transportation infrastructure. At the same time, societal requirements to keep these structures open have placed pressure on facility engineers to perform rapid retrofits which entail minimal disruption to these systems. This need has brought the use of Fiber Reinforced Polymers (FRP) to the forefront, as its properties have proven to be invaluable in other industries such as boating, aircraft, and recreation. Its high strength-to-weight ratio, non-corrosive nature, relatively simple application techniques, and non-invasive application procedures have moved FRPs to the top of the list compared to its strengthening contemporaries, mainly steel, in terms of structural retrofits.
Contract number: N62271-97-G-0075.
CIVINS
APA, Harvard, Vancouver, ISO, and other styles
45

Gurun, Bilge. "Deformation studies of polymers and polymer/clay nanocomposites." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/37118.

Full text
Abstract:
Polymer clay nanocomposites have been a popular area of materials research since they were first introduced in the 1990s. The inclusion of clays into many different host polymers has been shown to improve the properties of matrix polymers in a number of ways including increased mechanical strength, thermal stability and improved barrier properties while keeping the composite light weight and transparent. Although there is a great deal of published work on the preparation and property measurements of polymer clay nanocomposites, there is no model to design a nanocomposite with a given set of properties for a specific end-use. While it is important to know the structure property relationships of materials, the understanding of how nanocomposites reach their final forms and properties is equally important. A thorough understanding of processing effects on the final structure of polymer clay nanocomposites is still missing. With this perspective, this thesis addresses building structure-processing relationships of polymer clay nanocomposites by analyzing multiaxial deformation behavior using in-situ x-ray scattering techniques. This thesis can be divided into two distinct parts. The first part concerns the design of the in-situ multiaxial deformation device (IMDD) used to create the deformation conditions that polymers go through during processing such as blow molding and thermoforming. The device was designed to overcome several concerns with in situ measurement by maintaining constant sample to detector distance, minimizing the material between the incident beam and the detectors, as well as exposing the same point on the sample throughout deformation. A new design to create biaxial deformation, termed in-situ biaxial deformation device (IBDD), is also introduced in this part of the thesis.. In addition, a new heating unit, attached to IBDD, is designed for higher temperature studies, up to 150°C, to imitate industrial processing conditions more closely. The second part of the thesis addresses the effect of strain, strain rate, and temperature as well as the amount of clay on the polymer morphology evolution during multiaxial deformation.. Two different polymer/clay systems were studied: poly(ethylene)/clay and poly(propylene)/clay. It was observed that the morphological evolution of polyethylene and polypropylene is affected by the existence of clay platelets as well as the deformation temperature and the strain rate. Martensitic transformation of orthorhombic polyethylene crystals into monoclinic crystal form was observed under strain but is hindered in the presence of clay nanoplatelets. The morphology evolution of poly(propylene) crystal structure during multiaxial deformation was more subtle where the most stable α-crystalline form went through strain induced melting. This was more noticeable in the nanocomposites with clays up to 5 wt%. It was also noted that the thickness of the interlamellar amorphous region increased with increasing strain at room temperature due to the elongation of the amorphous chains. The increase in the amorphous layer thickness is slightly higher for the poly(ethylene)/clay nanocomposites compared to neat poly(ethylene) while the increase in the lamellar long spacing is slightly higher for the neat poly(propylene) compared to poly(propylene)/clay nanocomposites. The rate of change in the characteristic repeat distance in both poly(ethylene) and poly(propylene) systems is higher at faster strain rates, at room temperature, where it remained constant during higher temperature deformations. Time dependent recovery after deformation studies have shown that poly(ethylene)/clay system reverts back to its initial configuration. The recovery in the amorphous chains was however observed to take longer in the clay added poly(ethylene)s. Crystalline relaxation was observed to happen almost instantly in the poly(ethylene)/clay system. On the other hand, amorphous chains in the poly(propylene)/clay system did not revert back to the initial configuration in the period of time that the recovery observations were performed while the crystalline configuration recovered back almost fully in the given time.
APA, Harvard, Vancouver, ISO, and other styles
46

Harish, Muthuraman. "Processing and Study of Carbon Nanotube / Polymer Nanocomposites and Polymer Electrolyte Materials." Master's thesis, University of Central Florida, 2007. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4247.

Full text
Abstract:
The first part of the study deals with the preparation of carbon nanotube/polymer nanocomposite materials. The dispersion of multi-walled carbon nanotubes (MWNTs) using trifluoroacetic acid (TFA) as a co-solvent and its subsequent use in polymer nanocomposite fabrication is reported. The use of carbon nanotube/ polymer nanocomposite system for the fabrication of organic solar cells is also studied. TFA is a strong but volatile acid which is miscible with many commonly used organic solvents. Our study demonstrates that MWNTs can be effectively purified and readily dispersed in a range of organic solvents including dimethyl formamide (DMF), tetrahydrofuran (THF), and dichloromethane when mixed with 10 vol% trifluoroacetic acid (TFA). X-ray photoelectron spectroscopic analysis revealed that the chemical structure of the TFA-treated MWNTs remained intact without oxidation. The dispersed carbon nanotubes in TFA/THF solution were mixed with poly(methyl methacrylate) (PMMA) to fabricate polymer nanocomposites. A good dispersion of nanotubes in solution and in polymer matrices was observed and confirmed by SEM and optical microscopy study. Low percolation thresholds of electrical conductivity were observed from the fabricated MWNT/PMMA composite films. A carbon nanotube/ polymer nanocomposites system was also used for the fabrication of organic solar cells. A blend of single-wall carbon nanotubes (SWNTs) and poly3-hexylthiophene (P3HT) was used as the active layer in the device. The device characteristics showed that the fabrication of the solar cells was successful without any shorts in the circuit. The second part of the study deals with the preparation and characterization of electrode and electrolyte materials for lithium ion batteries. A system of lithium trifluoroacetate/ PMMA was used for its study as the electrolyte in lithium battery. A variety of different processing conditions were used to prepare the polymer electrolyte system. The conductivity of the electrolyte plays a critical role in the high power output of a battery. A high power output requires fast transport of lithium ions for which the conductivity of the electrolyte must be at least 3 x 10^-4 S/cm. Electrochemical Impedance Spectroscopy (EIS) was used to determine the conductivity of the polymer electrolyte films. Among the different processing conditions used to prepare the polymer electrolyte material, wet films of PMMA/salt system prepared by using 10vol% of TFA in THF showed the best results. At about 70wt% loading of the salt in the polymer, the conductivity obtained was about 1.1 x 10^-2 S/cm. Recently, the use of vanadium oxide material as intercalation host for lithium has gained widespread attention. Sol-gel derived vanadium oxide films were prepared and its use as a cathode material for lithium ion battery was studied. The application of carbon nanotubes in lithium ion battery was explored. A carbon nanotube /block copolymer (P3HT-b-PS) composite was prepared and its potential as an anode material was evaluated.
M.S.M.S.E.
Department of Mechanical, Materials and Aerospace Engineering;
Engineering and Computer Science
Materials Science & Engr MSMSE
APA, Harvard, Vancouver, ISO, and other styles
47

Lin, Jian. "Novel Lithium Salt and Polymer Electrolytes for Polymer Lithium Batteries." Case Western Reserve University School of Graduate Studies / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=case1215572988.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Malan, Mareta. "Novel materials for VOC analysis." Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/71646.

Full text
Abstract:
Thesis (MSc)--Stellenbosch University, 2012.
ENGLISH ABSTRACT: The need to analyse and detect volatile organic compounds (VOCs) at trace levels has led to the development of specialized sample preparation techniques. The requirement for trace analysis of VOCs stems from the negative effects they have on the environmental and human health. Methods for the analysis of non-polar VOCs commonly found as trace contaminants in water and analysis of more polar oxygenated compounds commonly found in zero-VOC water-based paints were developed. Solid phase micro extraction (SPME) was employed and extraction of the majority of the target analytes could be achieved at levels below 0.3 μg.l-1. In an attempt to further improve the detection of these two target analyte groups, novel materials based on poly(dimethyl siloxane) (PDMS) were investigated as possible extraction phases for VOCs, with the focus specifically on the analysis of the polar analytes in paint. Conventional free radical polymerization was used to synthesize poly(methyl methacrylate-graft-poly(dimethyl siloxane) (PMMA-g-PDMS), poly(methacrylic acid)-graft-poly(dimethyl siloxane) (PMAA-g-PDMS), polystyrene-graftpoly( dimethyl siloxane) (PSty-g-PDMS) and poly(butyl acrylate)-graft–poly(dimethyl siloxane) (PBA-g-PDMS). These polymers have a copolymer functionality which presents a series of different polarities. The MMA-g-PDMS and MAA-g-PDMS as well as the homopolymers were electrospun into nanofibers. The low glass transition temperature and molecular weight of the PBAg- PDMS meant that this polymer could not be electrospun. Scanning electron microscopy (SEM) was used to study the fiber morphology of the electrospun fibers and the non-beaded fibers were further investigated. Polyacrylonitrile-graft-poly(dimethyl siloxane) (PAN-g-PDMS) previously synthesized and electrospun by another member of the group were also investigated for use as possible extraction material in volatile analysis. The thermal stability of the nanofibers at 200°C was studied using thermal gravimetric analysis (TGA). This property is important since after the target analytes are extracted using the nanofibers, elevated temperatures are used to thermally desorp the volatile analytes from the extraction materials prior to GC analysis. The PAN-g-PDMS, MMA-g-PDMS and PMMA showed no significant weight loss during thermal evaluation, however, it was observed that the PMMA and PMMA-g-PDMS nanofibers looses their nanostructure and that the PAN-g-PDMS nanofibers changes colour from white to yellow to rust brown. The polymers based on MAA showed weight losses of more than 10% after one hour of exposure to the elevated temperatures, but the nanostructure remained intact. The PAN-g-PDMS, PMAA-g-PDMS and PMAA nanofibers were evaluated as possible extraction materials for VOC analysis. The nanofibers were evaluated using a similar approach to that of stir bar sorptive extraction (SBSE). Headspace sorptive extraction (HSSE) using a commercially available PDMS stir bar and the novel materials were used to evaluate the extraction efficiency of the different materials. The optimized extraction method developed using SPME were employed for the extraction using the nanofibers and PDMS stir bar. It was noted that the nanofibers lose their extraction capabilities during the first extraction/desorption cycle possibly due to thermal degradation therefore each of the materials can only be used in a single extraction. The majority of the non-polar analytes were extracted using the nanofibers at levels of 500 μg.l-1, however it was noted that the commercially available SPME extraction materials and the PDMS stir bar had superior extraction efficiencies for the specific target analytes. In the evaluation of the nanofibers for extraction of the more polar oxygenated analytes it was noted that 2-Ethylhexylacrylate was the only analyte to be extracted by all of the materials. The PAN-g-PDMS extracted three of the four analytes at levels of 100 μg.l-1. At lower analyte concentrations of 10 μg.l-1 only two of the four acrylate compounds were detected using the PAN-g-PDMS nanofibers. Ethyl acrylate was not extracted by any of the novel materials, whereas in SPME using the CAR/PDMS fiber, the LOD was determined to be below 1 μg.l-1. Although these materials were not superior to the commercially available phases, this is only the case for the specific target analytes analyzed.
AFRIKAANSE OPSOMMING: Die behoefte vir die analiese van vlugtige organiese verbindings (VOS) op spoorvlak, het gelei tot die ontwikkeling van gespesialiseerde monster voorbereidingstegnieke. Die vereiste vir die spoor analiese van die VOS het ontstaan uit die negatiewe uitwerking wat hierdie stowwe het op die omgewing en menslike gesondheid. Metodes vir die analiese van nie-polêre VOS wat algemeen voorkom as spoorkontaminante in water en polêre suurstofryke verbindings wat algemeen voorkom in nul-VOS water-gebaseerde verf was ontwikkel. Soliede fase mikro-ekstraksie (SFME) was gebruik, en die ekstraksie van die meerderheid van die teikenstowwe kon gedoen word op vlakke laer as 0,3 μg.l-1. In 'n poging om die opsporing van hierdie twee teiken analietgroepe verder te verbeter, is nuwe materiale gebaseer op polidimetielsiloksaan (PDMS), ondersoek as moontlik ekstraksiefases vir VOS, met die fokus spesifiek op die analiese van die polêre stowwe in verf. ’n Konvensionele vrye radikaal polimerisasieproses was gebruik om poli (metiel- metakrilaat)-entpoli( dimetielsiloksaan) (PMMA-g-PDMS), poli(metakrilaatsuur)-ent–poli (dimetielsiloksaan) (PMAA-g-PDMS), polistireen-ent-poli(dimetielsiloksaan) (PSty-g-PDMS) en poli(butielakrilaat)- ent-poli(dimetielsiloksaan) (PBA-g-PDMS) te sintetiseer. Hierdie ko-polimere het 'n kopolimeer funksionaliteit wat 'n reeks van verskillende polariteite bied. Die MMA-g-PDMS en MAA-g-PDMS sowel as die homopolimere was ge-elektrospin in orde om nanovesels te vorm. Die lae glasoorgangstemperatuur en molekulêre gewig van die PBA-g-PDMS het beteken dat hierdie polimeer nie elektrospin kon word nie. Skandeerelektronmikroskopie (SEM) was gebruik om die veselmorfologie van die ge-elektrospinde vesels te bestudeer en die nanovesels wat ’n eweredige oppervlak gehad het, was verder ondersoek. Poliakrilonitriel-ent-poli(dimetielsiloksaan) (PAN-g- PDMS) wat voorheen gesintetiseer en ge-elektrospin was deur 'n ander lid van die groep is ook ondersoek vir gebruik as moontlik ekstraksiemateriaal vir die analiese van vlugtige stowwe. Die termiese stabiliteit van die nanovesels was by 200°C bestudeer met behulp van ‘n termiese gravimetriese analiese (TGA) instrument. Hierdie eienskap is belangrik, aangesien die teikenstowwe by hoë temperature van die nanovesels gedesorbeer word voor die GC-analiese. Die PAN-g-PDMS, MMA-g-PDMS en PMMA het geen beduidende gewigsverlies tydens termiese evaluering gehad nie, alhoewel dit egter waargeneem was dat die PMMA en PMMA-g-PDMS nanovesels hulle nanostruktuur verloor en dat die PAN-g-PDMS nanovesels se kleur verander van wit na geel na roesbruin gedurende die termiese analiese. Die polimere wat gebaseer was op MAA het ’n gewigs-verlies van meer as 10% getoon na 'n uur van blootstelling aan die verhoogde temperature, maar die nanostruktuur het ongeskonde gebly. Die PAN-g-PDMS, PMAA-g-PDMS en PMAA nanovesels was geëvalueer as moontlike ekstraksiemateriale vir VOS-analiese. Die nanovesels was geëvalueer met 'n soortgelyke benadering tot dié van “stir bar“ sorpsie ekstraksie (SBSE). Bo-ruimte sorpsie ekstrasie is gebruik om die ekstraksie-doeltreffendheid van die verskillende materiale (kommersiële PDMS en nanovesels) te evalueer. Die geoptimaliseerde ekstraksiemetode ontwikkel in SFME was gebruik vir die ekstraksie van die VOS met die nanovesels en die PDMS “stir bar“. Dit was waargeneem dat die nanovesels hul ekstraksievermoë verloor tydens die eerste ekstraksie/desorpsie siklus, moontlik as gevolg van termiese degradasie dus, kon die materiale slegs ‘n enkele maal gebruik word vir die ekstraksie. Die meerderheid van die nie-polêre stowwe was ge-ëkstraeer deur gebruik te maak van die nanovesels op vlakke van 500 μg.l -1, maar die kommersieel beskikbare SFME ekstraksie materiale en die PDMS “stir bar“ se ekstraksie-doeltreffendheid vir die spesifieke stowwe was beter. In die evaluering van die nanovesels vir die ekstraksie van die meer polêre suurstofryke stowwe was daar waargeneem dat 2- etielheksielakrilaat die enigste analiet was wat ge-ëkstraeer was deur al die materiale. Die PAN-g- PDMS kon drie van die vier polêre stowwe op vlakke van 100 μg.l-1 opspoor. By laer analietkonsentrasies van 10 μg.l-1 kon slegs twee van die vier akrilaat verbindings opgespoor word deur gebruik te maak van hierdie nanovesels. Etielakrilaat was nie ge-ëkstraeer deur enige van die nuwe materiale nie, terwyl in SFME met die gebruik van die CAR/ PDMS vesel, die analiet op vlakke onder 1 μg.l-1 opgespoor kon word. Alhoewel hierdie nuwe materiale nie beter is as die kommersieel beskikbare ekstraksiemateriale nie is dit net die geval vir die spesifieke teiken analietgroepe wat ondersoek was in hierdie studie.
APA, Harvard, Vancouver, ISO, and other styles
49

Masson, Jean-François. "Cellulosesynthetic-polymer blends." Thesis, McGill University, 1990. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=74661.

Full text
Abstract:
Blends of cellulose (CELL) with polyvinyl pyrrolidone (PVP), poly(4-vinyl pyridine) (P$ sb4$VPy), polyvinyl alcohol (PVA), polyacrylonitrile (PAN), poly($ epsilon$-caprolactone) (PCL), and nylon 6 (Ny6), and of chitosan with PVA were investigated in an attempt to gain some insight into the factors that affect the miscibility of cellulose with synthetic polymers. The miscibility and the scale of mixing of the various blends were studied by differential scanning calorimetry, dynamic mechanical analysis, infrared and NMR spectroscopy, and proton spin-lattice relaxation measurements. The CELL/PVP, CELL/P$ sb4$VPy, and chitosan/PVA blends were shown to be homogeneous at the molecular level, while the CELL/PAN blends were shown to mix on a larger scale. In contrast the CELL/PCL and CELL/Ny6 blends were essentially immiscible; from this it was concluded that the potential for strong inter-molecular interactions is not a sufficient condition for miscibility to occur in cellulose/synthetic-polymer blends.
APA, Harvard, Vancouver, ISO, and other styles
50

Liu, Jing. "Carbon nanotube/polymer composites and novel micro- and nano-structured electrospun polymer materials." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/22673.

Full text
Abstract:
Thesis (Ph. D.)--Textile and Fiber Engineering, Georgia Institute of Technology, 2007.
Committee Chair: Kumar, Satish; Committee Member: Carr, Wallace; Committee Member: Graham, Samuel; Committee Member: Griffin, Anselm; Committee Member: Yao, Donggang.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography