Contents
Academic literature on the topic 'Polyéthylène ultra'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Polyéthylène ultra.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Dissertations / Theses on the topic "Polyéthylène ultra"
Rochette, Annie. "Étude des composites de polyéthylène renforcés de fibres de polyéthylène à ultra hautes performances." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ55824.pdf.
Full textGai, Jing-Gang. "Etudes théoriques et expérimentales de la processabilité du polyéthylène à ultra-haute masse molaire." Thesis, Vandoeuvre-les-Nancy, INPL, 2009. http://www.theses.fr/2009INPL039N/document.
Full textThe development of new materials with improved properties seems to rely nowadays more on blending and compounding than on the synthesis of chemically new polymers. Mixing may have a great effect on the morphology and structure of multi-component polymer materials. Twin-screw extruders (TSE) are widely used as mixers/reactors for blending, compounding, and reactive processing. This work aimed at developing a new instrument to measure in real time the residence time distribution (RTD) which characterizes the axial mixing and transport abilities of different screw elements based on the analysis of the transient flow pattern and systematic evaluation of mixing theory in TSE. Distributive mixing of polymer melts is characterized by the generation of interfacial area, which is experimentally much more difficult to measure. This 3D numerical simulation based on CFD is adopted
Ravi, Kesavan. "Mechanistic understanding of high strain rate impact behavior of ultra-high molecular weight polyethylene and the mechanism of coating formation during cold spraying." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSEI008/document.
Full textRecent developments showed polymer coatings to be feasible by cold spray (CS) technique on different surfaces. This is especially important for Ultra-High Molecular Weight Polyethylene (UHMWPE) which cannot be classically processed. But the mechanisms behind coating formation was not largely understood. The thesis presents a mechanistic understanding of high strain rate impact behavior of Ultra-High Molecular Weight Polyethylene and the mechanism of coating formation during CS. The coating formation is first broken down into two major categories: 1. Interaction of UHMWPE with Al substrate (impacting particle-substrate interaction) during a high-speed impact and interaction of UHMWPE with already deposited UHMWPE particles (impacting particle-deposited particles) leading to a buildup in the coating. First stage of coating formation was understood from a technique developed for this work called Isolated Particle Deposition (IPD). In the experimental IPD process, effects of gas temperature and FNA content were calibrated empirically by depositing UHMWPE particles in an isolated manner on an Al substrate. The Deposition efficiency increased with gas temperature and FNA content. The use of an ultrafast video-camera helped to determine the particle velocity, and theoretical calculations helped to evaluate the temperature of UHMWPE particles before and during the impact process. Mechanical response of UHMWPE at different temperatures were understood by calculating elastic strain energy of UHMWPE which decreased with increasing material temperature and increased with the strain rate. Rebound of UHMWPE particles on Al surface depended upon whether UHMWPE particles after impact furnished a contact area with an interfacial bond stronger than elastic strain energy of the particle. External contributions like H-bonds on the FNA surface provide sufficiently strong extra bonds at the contact surface to increase the window of deposition at higher temperatures, which was otherwise very low. Second stage of coating formation was understood from the mechanism of welding of UHMWPE grains at different interfacial loading conditions and at varying FNA contents. The morphological and mechanical characterization showed that when UHMWPE was processed under high loading conditions (using classical sintering technique), FNA particles reinforced the UHMWPE interface. On the contrary, when UHMWPE was processed under low loading conditions, FNA particles weakened the interface. Last to be discussed in the thesis is the strain rate effect of UHMWPE using Split-Hopkinson Pressure Bar (SHPB) experiments, in order to approach comparable conditions to what happens during particle impacts. This part of the study discussed in detail the effects a high strain-rate compression has on UHMWPE by analyzing its stress-strain curves, with and without FNA. Thus, the mechanical response data with the inclusion 0%, 4% and 10% FNA to UHMWPE is also presented and discussed
Doucet, Nolwenn. "Compaction à Grande Vitesse de poudres de polymères semi-cristallins : mécanismes de frittage et modélisation du procédé." Thesis, Lyon, INSA, 2012. http://www.theses.fr/2012ISAL0053.
Full textHigh Velocity Compaction (HVC) is an efficient process to mold, in a short time, semicrystalline polymers powders any about their viscosity by starting from a temperature below melting point. Heating and melting occur by successive impacts at a preset energy that offers the possibility to set accurately the energy amount that we would bring to the material and the sintering quality. Partial melting of powder enable to take advantage of the high cristallinity of nascent powders, a compromise is possible between high elastic properties and high ductility. The flip-side of this efficiency is a delicate process settings. For the ultra high molecular weight polyethylene (UHMWPE), it has been shown that the process makes it possible a quasi abstraction of molecular weight effects. UHMWPE sintering needs only a short length reorganisation of chains that could be done in a really short time. Powder cohesion is essentially bring by cocrystallisation and by new entanglements creation. Process modelling allowed to understand how kinetic energy during hits is converted into heat in powder and it’s enable to define a HVC processability criterion. This processability criterion rests on the strainability of powder place in a die during a hit. It has to be sufficient to the dissipated energy in material allows his melting in less than one hundred impacts. This criterion allows to understand why the polyoxymethylene is hard to mold by HVC
Abou, Taha Mohammad. "Reversible modification of the surface properties of silica incorporated in ultra high molecular weight polyethylene : application to batteries separators." Electronic Thesis or Diss., Lyon, 2020. http://www.theses.fr/2020LYSE1299.
Full textNotwithstanding the growth of the market of the new lithium-ion batteries, lead-acid batteries still offer advantages that the new ones are not able to equate especially in terms of cost, manufacturing base and the actual market need. In this context, the aim of this work is to enhance the properties of lead-acid batteries PE- separators that predominate 90% of the market of lead-acid batteries separators. These porous membranes consist mainly of precipitated silica, a backbone of ultra-high molecular weight Polyethylene (UHMWPE) and they are processed using a thermally induced phase separation process (TIPS) with naphthenic oil that is subsequently extracted. The resulting porosity is thereafter infiltrated with the electrolyte of the battery. Yet, due to the limited wettability of the pores of the membrane by the polar electrolyte, only a fraction of the available porosity is efficient. This thesis focuses on the enhancement of such wettable porosity by the electrolyte in order to reduce the electrical resistivity of the separator. The wettability of the pores is not only related to the presence of silica but also to the nature of silica surface. Paradoxically, hydrophobic silica favors the blend and the dispersion of aggregates; while hydrophilic silica promotes the wettability of the porosity by the electrolyte. To fulfill these criteria and obtain a material as homogeneous as possible with maximum accessible porosity, a reversible modification of the surface of silica was realized by physical impregnation of surfactants or by chemical modification before the blending and the dispersion in the membrane. Therefore, rheological characterization of the suspensions, contact angle and sorption isotherms and other techniques were used to evaluate the change in the surface properties of the new silica. Then, these tuned silica were dispersed in membranes and the prorosity, the structure, the electrical and mechanical properties were investigated
Roiron, Coline. "Contribution à la caractérisation thermomécanique d’un polyéthylène auto-renforcé et de ses « recyclats » : Effet des paramètres du procédé de moulage par compression." Electronic Thesis or Diss., Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique, 2022. http://www.theses.fr/2022ESMA0004.
Full textReducing energy consumption is an essential issue for today's society. In order to achieve a sustainable energy transition, especially in the field of transportation, new and more demanding regulations are being implemented. The keywords are to increase the proportion of recycled and recyclable materials and lightening structural parts.The use of polymers can be a solution. However, to guarantee good mechanical resistance, the use of self-reinforced composites(SRP) is a lever for action. They are composed of a polymer or a family of polymers in two physical states, one to form the matrix and the second for the reinforcement. They present a low density, interesting mechanical behavior, and increased recyclability. To understand the behavior of a self-reinforced polyethylene and to be able to consider the use of this material for a given application,it is essential to understand the behavior of each of its components. If the behavior of more conventional composites, such as glass or carbon fiber reinforced thermoplastic matrix composites, is well understood, using thermoplastic reinforcements such as UHMWPE (Ultra-High Molecular Weight PolyEthylene) within the composite makes the understanding of the behavior of SRP more complex. The impact of temperature and time on the mechanical response of the reinforcements is then examined in a first step, and the observations are related to microstructural considerations. A test protocol has been proposed and validated before hand. A solid-phase transition is highlighted around 49°C and generates an abrupt behavior change.These UHMWPE reinforcements are integrated into composites. A compression molding process is suggested to process them in a single step from a matrix in granular form. The effect of different process parameters is evaluated to propose an optimal combination.The short and long-term mechanical response in tension and creep is then analyzed, and the interest of the SRPE thus designed is highlighted. Indeed, the benefit of its use is evident, especially at low temperatures. Moreover, the presence of thermoplastic reinforcements seems to introduce additional parameters that affect the behavior of the composites and, in particular, in creep. The precise characterization and the knowledge of the transition temperatures of the latter appeared then determining, mainly since the transitions depend on the microstructure of the reinforcement and thus on the type of stretching and the applied conditions. Finally, the recyclability of the implemented composites is studied since it constitutes a driving force for the development of SRP on the market
Deplancke, Tiana. "Approche des mécanismes de frittage du UHMWPE : étude du comportement mécanique à l’état solide et à l’état fondu." Thesis, Lyon, INSA, 2013. http://www.theses.fr/2013ISAL0143/document.
Full textOne of the main issues of ultra-high-molecular-weight polyethylene (UHMWPE) is to overcome its very high viscosity. Powder sintering is then often required instead of injection or extrusion. However, sintering mechanisms remain partially understood. Indeed, the two main mechanisms generally mentioned for interparticle welding, i.e. re-entanglement and cocrystallization, can hardly be observed separately. Fortunately, due to its very high molecular weight, UHMWPE exhibits an exceptionally broad rubbery plateau so that mechanical tensile tests can be easily performed both below and above the melting point. Four UHMWPE of molecular weight in the range of 0.6.106 g.mol-1 to 10.5.106 g.mol-1 have been processed by means of sintering of nascent powders. The interface consolidation or particle welding was carried out under pressure at various temperatures above the melting point and for various durations. Tensile drawing experiments performed either at room temperature or above the melting point enabled to discriminate the role of chain interdiffusion through the particle interface from that of cocrystallization in the mechanism of particle welding. It turned out that an efficient welding occurred within a very short time scale. The very weak influence of sintering time compared to that of sintering temperature gave evidence that chain interdiffusion was not governed by a reptation mechanism. The entropy-driven melting explosion of the “non-equilibrium” crystals in the nascent powder is suggested to be the main mechanism of the fast chain reentanglement and subsequent particle welding within a time scale much shorter than the reptation time. Cocrystallization is so much efficient in the interface consolidation in the solid state that it significantly hides the temperature-governed kinetics
Books on the topic "Polyéthylène ultra"
Kurtz, Steven M. UHMWPE Biomaterials Handbook: Ultra High Molecular Weight Polyethylene in Total Joint Replacement and Medical Devices. Elsevier Science & Technology Books, 2015.
Find full textUHMWPE Biomaterials Handbook: Ultra High Molecular Weight Polyethylene in Total Joint Replacement and Medical Devices. Elsevier Science & Technology Books, 2009.
Find full textUHMWPE Biomaterials Handbook: Ultra High Molecular Weight Polyethylene in Total Joint Replacement and Medical Devices. Elsevier Science & Technology Books, 2015.
Find full text