Academic literature on the topic 'Polyethylends blends'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Polyethylends blends.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Polyethylends blends"
Wang, Kun Yuan, Qiu Ju Sun, Yan Liu, and Jie Lu. "Thermal Behavior, Mechanical Property and Microstructure of Low-Density Polyethylene Filled by Diatomite." Applied Mechanics and Materials 633-634 (September 2014): 413–16. http://dx.doi.org/10.4028/www.scientific.net/amm.633-634.413.
Full textIsmail, H., N. Z. Noimam, H. W. Woon, and J. N. M. Ridhwan. "The Effects of Carbon Black, Silica and Calcium Carbonate in Virgin PE/Recycle PE/EPDM Blends: Thermal Properties & Swelling Analysis." Advanced Materials Research 795 (September 2013): 372–76. http://dx.doi.org/10.4028/www.scientific.net/amr.795.372.
Full textYap, E. P., S. C. Koay, M. Y. Chan, H. L. Choo, T. K. Ong, and K. Y. Tshai. "Recycling Polymer Blend made from Post-used Styrofoam and Polyethylene for Fuse Deposition Modelling." Journal of Physics: Conference Series 2120, no. 1 (December 1, 2021): 012021. http://dx.doi.org/10.1088/1742-6596/2120/1/012021.
Full textHemsri, Sudsiri, Patthamas Bunsripirat, and Punnakit Nakkarat. "Effect of Plasticizers on Morphology, Mechanical Properties and Water Absorption of Wheat Gluten and Epoxidized Natural Rubber Blend." Key Engineering Materials 737 (June 2017): 287–93. http://dx.doi.org/10.4028/www.scientific.net/kem.737.287.
Full textSantos, Raquel M., Anna R. M. Costa, Yêda M. B. Almeida, Laura H. Carvalho, João M. P. Q. Delgado, Elisiane S. Lima, Hortência L. F. Magalhães, et al. "Thermal and Rheological Characterization of Recycled PET/Virgin HDPE Blend Compatibilized with PE-g-MA and an Epoxy Chain Extender." Polymers 14, no. 6 (March 12, 2022): 1144. http://dx.doi.org/10.3390/polym14061144.
Full textAldosari, Haia. "Investigation the Phase Separation in Metallocene Linear Low Density Polyethylene/Polypropylene Blends." Advanced Materials Research 1159 (September 2020): 1–18. http://dx.doi.org/10.4028/www.scientific.net/amr.1159.1.
Full textAlwaan, Ismaeel M., and Azman Hassan. "The effects of magnesium oxide on the thermal, morphological, and crystallinity properties of metallocene linear low-density polyethylene/rubbers composite." Journal of Polymer Engineering 33, no. 3 (May 1, 2013): 229–38. http://dx.doi.org/10.1515/polyeng-2013-0014.
Full textZhang, Lin, Libin Wang, Yujiao Shi, and Zhaobo Wang. "Dynamically vulcanized high-density polyethylene/nitrile butadiene rubber blends compatibilized by chlorinated polyethylene." Journal of Thermoplastic Composite Materials 32, no. 4 (February 28, 2018): 454–72. http://dx.doi.org/10.1177/0892705718761557.
Full textDikobe, DG, and AS Luyt. "Investigation of the morphology and properties of the polypropylene/low-density polyethylene/wood powder and the maleic anhydride grafted polypropylene/low-density polyethylene/wood powder polymer blend composites." Journal of Composite Materials 51, no. 14 (September 14, 2016): 2045–59. http://dx.doi.org/10.1177/0021998316668399.
Full textBaimark, Yodthong, and Theeraphol Phromsopha. "Controlling Crystallization, Mechanical Properties and Heat Resistance of Poly(L-lactide)-b-polyethylene glycol)-b-poly(L-lactide) Bioplastic by Melt Blending with Low Molecular Weight Poly(D-lactide)/Poly(L-lactide) Mixtures." Asian Journal of Chemistry 34, no. 7 (2022): 1857–62. http://dx.doi.org/10.14233/ajchem.2022.23791.
Full textDissertations / Theses on the topic "Polyethylends blends"
Desidera, Cassiane. "Blendas de poliamida reciclada e polietileno proveniente da recuperação de embalagens multicamadas." [s.n.], 2007. http://repositorio.unicamp.br/jspui/handle/REPOSIP/248790.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Quimica
Made available in DSpace on 2018-08-09T13:26:12Z (GMT). No. of bitstreams: 1 Desidera_Cassiane_D.pdf: 2267266 bytes, checksum: 9f026acbcd18caa17f017b257c7f0b46 (MD5) Previous issue date: 2007
Resumo: Blendas de poliamida e polietileno são exemplos de misturas imiscíveis e incompatíveis. Entretanto, a compatibilidade pode ser alcançada adicionando-se compatibilizantes ou promovendo a mistura reativa. Neste projeto teve-se como objetivo o preparo e a caracterização de blendas de poliamida-66 reciclada (rPA-66) e diferentes polietilenos, incluindo materiais virgens e reciclados: 1) vPEBD - polietileno de baixa densidade virgem, 2) vEMAA - poli(etileno-co-ácido metacrílico) virgem, 3) rPEBD - uma mistura reciclada contendo PEBD e EMMA, e 4) PEAI - uma mistura reciclada contendo PEBD, EMMA e alumínio particulado. As blendas foram preparadas em extrusora dupla rosca e os corpos de prova, obtidos por injeção, foram caracterizados por análise dinâmico-mecânica (DMA), microscopia eletrônica de varredura (SEM), calorimetria exploratória diferencial (DSC), análise termogravimétrica (TG), espectroscopia de infravermelho com transformada de Fourier (FTIR), ensaios de solubilidade seletiva, índice de fluidez (IF) e testes mecânicos de tração e de resistência ao impacto. Foi constatada a formação de um copolímero de enxertia (PE-g-rPA66) gerado in situ durante o processamento, o qual promoveu uma maior adesão interfacial para as blendas rPA-66/vEMAA, rPA-66/rPEBD e rPA-66/PEAI em relação à blenda rPA-66/vPEBD. A degradação prévia sofrida pelos polímeros reciclados (rPEBD e PEAI) durante sua vida útil e etapas de reciclagem, mostrou ser um fator importante para a obtenção do copolímero de enxertia. Em especial, o PEAI apresenta a maior susceptibilidade à degradação devido ao efeito catalítico das partículas de alumínio, fator este que levou a maior formação do copolímero PE-g-rPA-66 em relação aos outros polietilenos. De maneira geral, as blendas apresentaram resistência ao impacto e deformação na ruptura superiores às da poliamida e estabilidade térmica superior a do polietileno
Abstract: Polyamide and polyethylene blends are examples of immiscible and incompatible systems. However, the compatibility can be reached adding compatibilizer to the system or promoting the reactive blending. The aim of this work was to prepare and characterize blends of recycled polyamide-66 (rPA-66) with different grades of polyethylenes, including virgin and recycled materials obtained from recovered multilayer packaging: 1) vLDPE - virgin low density polyethylene, 2) vEMAA - virgin ethylene-methacrylic acid copolymer (EMAA), 3) rLDPE - a recycled mixture of two polymers: LDPE and EMAA and 4) PEAI - a mixture of three materials: LDPE, EMAA and aluminum particles. The blends were prepared in a twin screw extruder and characterized by dynamic-mechanical analysis (DMA), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier Transformed Infra Red Spectroscopy (FTIR), solubility tests, melt flow index (MFI) and impact and tensile tests. The grafted copolymer (PE-g-rPA66) was generated in situ during the processing. This copolymer provided higher interfacial adhesion of rPA-66/EMAA, rPA-66/rLDPE and rPA-66/PEAI blends in comparison with the PA-66/vLDPE blend. The previous degradation suffered by the recycled polymers (rLDPE and PEAI) in their usefull life and the recycling stages, as well their higher susceptibility to the thermal degradation in the processing step, seems to be an important factor for obtaining the grafted copolymer (PE-g-rPA66). The aluminum particles accelerated the LDPE degradation and also improved the grafting copolymerization in comparison with others polyethylenes. In general, the blends showed higher impact strength and elongation at break that polyamide and higher thermal stability that polyethylene
Doutorado
Físico-Química
Doutor em Ciências
Isik, Fatma. "Nanocomposites Based On Blends Of Polyethylene." Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/3/12606338/index.pdf.
Full textas organoclay Cloisite&
#61666
15A, Cloisite&
#61666
25A and Cloisite&
#61666
30B were used. All samples were prepared by a co-rotating twin screw extruder, followed by injection molding. Before producing the ternary nanocomposites, in order to determine the optimum amount of the organoclay and compatibilizer, binary mixtures of LDPE/organoclay and LDPE/compatibilizer blends with different compositions were prepared. Based on the results of the mechanical tests, compatibilizer and organoclay contents were determined as 5 wt. % and 2 wt % respectively. After that, ternary nanocomposites were prepared with each compatibilizer/organoclay system and characterization of these nanocomposites was performed. Among the investigated addition orders, mechanical test results showed that the best sequence of component addition was (PCoC), in which LDPE, compatibilizer and organoclay were simultaneously compounded in the first run of the extrusion. Considering the ternary nanocomposites, compositions of LDPE/E-MA-GMA/15A, LDPE/E-GMA/15A and LDPE/E-nBA-MAH/30B showed the highest improvement in mechanical properties. According to the DSC analysis, addition of organoclay and compatibilizer does not influence the melting behavior of the compositions and both compatibilizers and organoclay types have no nucleation activity in LDPE. In the X-Ray analysis, the highest increase of the basal spacing for ternary nanocomposites obtained for LDPE/E-BA-MAH/organoclay nanocomposites. This increase was 83 %, 198 %, and 206 % for samples containing 15A, 25A and 30B respectively.
Zhang, Ai Yang. "Physical property enhancement of polyethylene blends." Thesis, Brunel University, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.285090.
Full textFinlay, Joanna. "A study of polyolefin blends." Thesis, University of Bristol, 2003. http://hdl.handle.net/1983/765bb977-09b6-424e-970d-4c052a37f3f3.
Full textHosier, Ian L. "Morphology and electrical properties of polyethylene blends." Thesis, University of Reading, 1996. https://eprints.soton.ac.uk/265714/.
Full textMinick, Jill Suzanne. "Microstructural analysis of polyethylenes and their blends and copolymers." Case Western Reserve University School of Graduate Studies / OhioLINK, 1995. http://rave.ohiolink.edu/etdc/view?acc_num=case1058204252.
Full text陳仁英 and Din-eng Sy. "Reprocessing characteristics of polyethylene and its binary blends." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1996. http://hub.hku.hk/bib/B43893673.
Full textRabie, Allan John. "Blends with low-density polyethylene (LDPE) and plastomers." Thesis, Stellenbosch : Stellenbosch University, 2004. http://hdl.handle.net/10019.1/49870.
Full textENGLISH ABSTRACT: This study describes the design, building and optimization of a fully functional preparative TREF (Prep-TREF) apparatus. This apparatus allows for the fractionation of semicrystalline polyolefins according to the crystallizability of the molecules. Various factors, such as the sample cooling rate and the effect of on-support and off-support crystallization, are investigated. The preparative TREF is used to fractionate a commercial low-density polyethylene (LOPE), two commercially available plastomers (polyethylene-l-octene copolymers), as well as blends of the LOPE and the respective plastomers. It is shown that in each case the samples fractionated by crystallizability. The fractions recovered from the Prep-TREF were characterized by CRYSTAF, OSC and NMR analysis. It is shown how the results of this preparative fractionation allow for a better understanding of the molecular heterogeneity in the LOPE and plastomers. New ways of presenting the data from the preparative fractionation, in terms of 3- dimensional plots, are also investigated. These plots offer a novel way of presenting the molecular heterogeneity in the samples in terms of the molecular crystallizability. These plots highlight features that are difficult to detect in the conventional two-dimensional plots. In conclusion, the influences of various blending ratios of LOPE and plastomer on the morphological and physical properties of the blends, such as haze, clarity, and tear-and impact strength are determined.
AFRIKAANSE OPSOMMING: Die doel van hierdie studie was die ontwikkeling en optimisering van 'n ten volle funksionerende TREF. Hierdie tegniek word gebruik om polimeermengsels te fraksioneer deur gebruik te maak van die kristaliseerbaarheid van polimere. Verskeie faktore soos die afkoel spoed en die effect van met en sonder 'n ondersteuning(seesand) vir kristaliseering was ondersoek. Hierna is navorsing gedoen om 'n beter begrip ten opsigte van die meganiese, fisiese en optiese eienskappe van lae-digtheid poliëtileen (LDPE) te ontwikkel. Hierdie LDPE is met die affiniteitsreeks plastomere van die maatskappy, Dow Chemicals, gemeng om tendense in die gefraksioneerde polimere te indentifiseer. Een van Sasol se kommersiële LDPE produkte en twee van Dow Chemicals se plastomere is individueel gefraksioneer. Die mengsel van die twee ongefraksioneerde LDPE en plastomere is nog nooit voorheen op 'n molekulêre basis ondersoek nie. Dit is in hierdie studie gedoen deur van TREF gebruik te maak. Nuwe maniere is ontwikkel om data op 'n nuwe manier voor te stel deur middel van 3 Dimensionele grafieke te skep om resultate voor te stel wat andersins baie moelilik was om voor te stel in een dimensie agv die hoeveelheid data wat geinterpreteer word. Ten slotte is die invloed van die verskillende mengverhoudings van LDPE en plastomere op die morfologiese en fisiese eienskappe soos deursigtigheid, helderheid, skeur- en impaksterkte, ook ondersoek.
Koliada, Maksym, Viktoriia Plavan, and Bohdan Savchenko. "PROPERTIES OF COLLAGEN-BASED WASTE/POLYETHYLENE THERMOPLASTIC BLENDS." Thesis, Kaunas University of Technology, 2016. https://er.knutd.edu.ua/handle/123456789/4771.
Full textSy, Din-eng. "Reprocessing characteristics of polyethylene and its binary blends." Hong Kong : University of Hong Kong, 1996. http://sunzi.lib.hku.hk/hkuto/record.jsp?B17545754.
Full textBooks on the topic "Polyethylends blends"
Thomas, Jince, Sabu Thomas, and Zakiah Ahmad, eds. Crosslinkable Polyethylene Based Blends and Nanocomposites. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0486-7.
Full textVisakh, P. M., and María José Martínez Morlanes, eds. Polyethylene-Based Blends, Composites and Nanocomposites. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781118831328.
Full textPolyethylene-based blends, composites and nanocomposities. Hoboken, New Jersey: Wiley, 2015.
Find full textNouri, Mohammad Razavi. Thermal and mechanical properties of polypropylene, metallocene polyethylenes and their blends. Birmingham: University of Birmingham, 2002.
Find full textSteadman, Stuart Charles. The in-situ production of polyethylene fibres from polymer blends. Uxbridge: Brunel University, 1990.
Find full textMittal, Vikas. Polyethylene Based Blends and Composites. Central West Publishing, 2021.
Find full textVisakh, P. M., Cristina Della Pina, and Ermelinda Falletta. Polyaniline Blends, Composites, and Nanocomposites. Elsevier Science & Technology Books, 2017.
Find full textVisakh, P. M., Cristina Della Pina, and Ermelinda Falletta. Polyaniline Blends, Composites, and Nanocomposites. Elsevier, 2017.
Find full textM, Visakh P., and María José Martínez Morlanes. Polyethylene-Based Blends, Composites and Nanocomposities. Wiley & Sons, Incorporated, John, 2015.
Find full textM, Visakh P., and María José Martínez Morlanes. Polyethylene-Based Blends, Composites and Nanocomposities. Wiley & Sons, Limited, John, 2015.
Find full textBook chapters on the topic "Polyethylends blends"
Utracki, L. A. "Polyethylene blends." In Commercial Polymer Blends, 230–53. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5789-0_14.
Full textUtracki, Leszek A. "Polyethylenes and Their Blends." In Polymer Blends Handbook, 1559–732. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-6064-6_21.
Full textFink, Johannes. "Bio-Polyethylene and Polyethylene-Biopolymer Blends." In Handbook of Industrial Polyethylene and Technology, 1253–95. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119159797.ch50.
Full textMarchante, Veronica, and Maribel Beltrán. "Montmorillonite Polyethylene Nanocomposites." In Polyethylene-Based Blends, Composites and Nanocomposites, 257–80. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781118831328.ch8.
Full textUtracki, L. A. "Melt Flow of Polyethylene Blends." In ACS Symposium Series, 153–210. Washington, DC: American Chemical Society, 1989. http://dx.doi.org/10.1021/bk-1989-0395.ch007.
Full textFernandes, Emanuel M., João F. Mano, and Rui L. Reis. "Polyethylene Composites with Lignocellulosic Material." In Polyethylene-Based Blends, Composites and Nanocomposites, 117–61. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781118831328.ch5.
Full textPlesek, M., and Z. Malac. "POLYPROPYLENE MORPHOLOGY IN BLENDS WITH POLYETHYLENE." In Morphology of Polymers, edited by Blahoslav Sedláček, 347–54. Berlin, Boston: De Gruyter, 1986. http://dx.doi.org/10.1515/9783110858150-028.
Full textRay, Sudip, Ashveen Nand, and Paul A. Kilmartin. "Polyethylene-Based Conducting Polymer Blends and Composites." In Polyethylene-Based Blends, Composites and Nanocomposites, 93–116. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781118831328.ch4.
Full textLuo, Chuan, Shujun Dai, Fengping Ni, Chen Ruan, Haisong Ying, and Lifeng Yuan. "Determination of content of recycled polyethylene and polyethylene terephthalate blends." In Advances in Energy, Environment and Chemical Engineering Volume 1, 395–400. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003330165-57.
Full textVisakh, P. M., and María José Martínez Morlanes. "Polyethylene-Based Blends, Composites and Nanocomposites: State-of-the-Art, New Challenges and Opportunities." In Polyethylene-Based Blends, Composites and Nanocomposites, 1–19. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781118831328.ch1.
Full textConference papers on the topic "Polyethylends blends"
Balogun, Ademola, Toyin Odutola, and Yakubu Balogun. "Preventing Wax Deposition in Crude Oil Using Polyethylene Butene and Nano Zinc Oxide." In SPE International Conference on Oilfield Chemistry. SPE, 2021. http://dx.doi.org/10.2118/204317-ms.
Full textGawne, D. T., Y. Bao, and T. Zhang. "Influence of Polymer Composition on the Deposition of UHMWPE Coatings." In ITSC2003, edited by Basil R. Marple and Christian Moreau. ASM International, 2003. http://dx.doi.org/10.31399/asm.cp.itsc2003p1639.
Full textLiu, Y. H., and D. A. Zumbrunnen. "Toughness Enhancement in Blends of Dissimilar Polymers Due to the In-Situ Formation by Chaotic Mixing of Fine-Scale Extended Structures at Low Minor Phase Concentrations." In ASME 1997 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-0677.
Full textRizvi, Ali, and Chul B. Park. "Processing/Structure/Properties Relationships in Polymer Blends for the Development of Functional Polymer Foams." In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-50288.
Full textGherbaz, G., and A. S. Vaughan. "Polymer blend and nucleating agent: on structural evolution and space charge on polyethylene (PE) blends and Dibenzylidene Sorbitol." In 2007 IEEE International Conference on Solid Dielectrics. IEEE, 2007. http://dx.doi.org/10.1109/icsd.2007.4290867.
Full textPodzorova, M. V., Yu V. Tertyshnaya, P. V. Pantyukhov, S. G. Karpova, A. A. Popov, and S. G. Nikolaeva. "Photodegradation of films based on polylactide-polyethylene blends." In PROCEEDINGS OF THE ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES. Author(s), 2018. http://dx.doi.org/10.1063/1.5083484.
Full textDas, Shankar Swarup, and Prasun Chakraborti. "Tribological performance of high density polyethylene – Hydroxyapatite blends." In PROCEEDINGS OF ADVANCED MATERIAL, ENGINEERING & TECHNOLOGY. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0024368.
Full textJiang, Chen, Yaxin Hou, Jingzhe Yu, Zuojun Wei, Xiangrong Chen, and Hao Zhou. "Electrical treeing of polyethylene blends with/without voltage stabilizer." In 2018 12th International Conference on the Properties and Applications of Dielectric Materials (ICPADM). IEEE, 2018. http://dx.doi.org/10.1109/icpadm.2018.8401261.
Full textPassiniemi, P., and K. Vakiparta. "Characterization of polyaniline - polyethylene blends with AC impedance measurements." In International Conference on Science and Technology of Synthetic Metals. IEEE, 1994. http://dx.doi.org/10.1109/stsm.1994.834826.
Full textHelal, Emna, Nicole R. Demarquette, Eric David, and Michel F. Frechette. "Polyethylene/styrenic block copolymer blends: Morphology and dielectric properties." In 2014 IEEE Conference on Electrical Insulation and Dielectric Phenomena - (CEIDP 2014). IEEE, 2014. http://dx.doi.org/10.1109/ceidp.2014.6995902.
Full textReports on the topic "Polyethylends blends"
Wignall, G. D., J. D. Londono, R. G. Alamo, and L. Mandelkern. The morphology of blends of linear and branched polyethylenes in solid state by SANS. Office of Scientific and Technical Information (OSTI), March 1995. http://dx.doi.org/10.2172/34328.
Full textWignall, G. D., J. D. Londono, R. G. Alamo, L. Mandelkern, and F. C. Stehling. The morphology of blends of linear and branched polyethylenes in solid state by SANS. Office of Scientific and Technical Information (OSTI), December 1994. http://dx.doi.org/10.2172/225976.
Full textBraegelmann, Peter. Printability and Mechanical Properties of Polyethylene and Polyethylene/Nylon Blend Parts Made by Selective Laser Sintering. Office of Scientific and Technical Information (OSTI), September 2022. http://dx.doi.org/10.2172/1887106.
Full text