To see the other types of publications on this topic, follow the link: Polydepsipeptides.

Journal articles on the topic 'Polydepsipeptides'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 31 journal articles for your research on the topic 'Polydepsipeptides.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Feng, Yakai, and Jintang Guo. "Biodegradable Polydepsipeptides." International Journal of Molecular Sciences 10, no. 2 (February 13, 2009): 589–615. http://dx.doi.org/10.3390/ijms10020589.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

MAMMI, STEFANO, and MURRAY GOODMAN. "Polydepsipeptides. 13." International Journal of Peptide and Protein Research 28, no. 1 (January 12, 2009): 29–44. http://dx.doi.org/10.1111/j.1399-3011.1986.tb03227.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dijkstra, Pieter J., and Jan Feijen. "Synthetic pathways to polydepsipeptides." Macromolecular Symposia 153, no. 1 (March 2000): 67–76. http://dx.doi.org/10.1002/1521-3900(200003)153:1<67::aid-masy67>3.0.co;2-f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Becktel, W. J., G. Wouters, D. M. Simmons, and Murray Goodman. "Polydepsipeptides. 11. Conformational analysis of polydepsipeptides containing methyl, isopropyl, and isobutyl side chains." Macromolecules 18, no. 4 (July 1985): 630–34. http://dx.doi.org/10.1021/ma00146a009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dijkstra, Pieter J., and Jan Feijen. "ChemInform Abstract: Synthetic Pathways to Polydepsipeptides." ChemInform 31, no. 47 (November 21, 2000): no. http://dx.doi.org/10.1002/chin.200047264.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mammi, Stefano, and Murray Goodman. "Polydepsipeptides. A systematic investigation of guest-host effects." Journal of Peptide Science 11, no. 5 (2005): 273–77. http://dx.doi.org/10.1002/psc.665.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ohya, Yuichi, Hidetoshi Yamamoto, Koji Nagahama, and Tatsuro Ouchi. "Effects of polydepsipeptide side-chain groups on the temperature sensitivity of triblock copolymers composed of polydepsipeptides and poly(ethylene glycol)." Journal of Polymer Science Part A: Polymer Chemistry 47, no. 15 (June 12, 2009): 3892–903. http://dx.doi.org/10.1002/pola.23456.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yoshida, Masaru, Masaharu Asano, Minoru Kumakura, Ryoichi Katakai, Tooru Mashimo, Hisako Yuasa, Kyoichi Imai, and Hidetoshi Yamanaka. "Sequential polydepsipeptides as biodegradable carriers for drug delivery systems." Journal of Biomedical Materials Research 24, no. 9 (September 1990): 1173–84. http://dx.doi.org/10.1002/jbm.820240904.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ouchi, Tasuro, Tatsuya Nozaki, Yoshifumi Okamoto, Masahiro Shiratani, and Yuichi Ohya. "Synthesis and enzymatic hydrolysis of polydepsipeptides with functionalized pendant groups." Macromolecular Chemistry and Physics 197, no. 6 (June 1996): 1823–33. http://dx.doi.org/10.1002/macp.1996.021970604.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yoshida, Masaru, Masaharu Asano, Minoru Kumakura, Ryoichi Katakai, Tooru Mashimo, Hisako Yuasa, and Hidetoshi Yamanaka. "Sequential polydepsipeptides containing tripeptide sequences and α-hydroxy acids as biodegradable carriers." European Polymer Journal 27, no. 3 (January 1991): 325–29. http://dx.doi.org/10.1016/0014-3057(91)90113-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Katakai, Ryoichi, Kyoko Kobayashi, Keiichi Yamada, Hiroyuki Oku, and Nobu Emori. "Synthesis of sequential polydepsipeptides utilizing a new approach for the synthesis of depsipeptides." Biopolymers 73, no. 6 (2004): 641–44. http://dx.doi.org/10.1002/bip.20013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Franz, Nadja, and Harm-Anton Klok. "Synthesis of Functional Polydepsipeptides via Direct Ring-Opening Polymerization and Post-Polymerization Modification." Macromolecular Chemistry and Physics 211, no. 7 (February 1, 2010): 809–20. http://dx.doi.org/10.1002/macp.200900521.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Makino, Akira, Eri Hara, Isao Hara, Ryo Yamahara, Kensuke Kurihara, Eiichi Ozeki, Fumihiko Yamamoto, and Shunsaku Kimura. "Control of in vivo blood clearance time of polymeric micelle by stereochemistry of amphiphilic polydepsipeptides." Journal of Controlled Release 161, no. 3 (August 2012): 821–25. http://dx.doi.org/10.1016/j.jconrel.2012.05.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

John, George, and Mikio Morita. "Biodegradable cross-linked microspheres from poly- (ε-caprolactone-co-glycolic acid-co-L-serine) based polydepsipeptides." Macromolecular Rapid Communications 20, no. 5 (May 1, 1999): 265–68. http://dx.doi.org/10.1002/(sici)1521-3927(19990501)20:5<265::aid-marc265>3.0.co;2-j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Zavradashvili, Nino, Jordi Puiggali, and Ramaz Katsarava. "Artificial Polymers made of α-amino Acids - Poly(Amino Acid)s, Pseudo-Poly(Amino Acid)s, Poly(Depsipeptide)s, and Pseudo-Proteins." Current Pharmaceutical Design 26, no. 5 (March 20, 2020): 566–93. http://dx.doi.org/10.2174/1381612826666200203122110.

Full text
Abstract:
Degradable polymers (DPs) - “green materials” of the future, have an innumerable use in biomedicine, particularly in the fields of tissue engineering and drug delivery. Among these kind of materials naturally occurring polymers - proteins which constituted one of the most important “bricks of life” - α-amino acids (AAs) are highly suitable. A wide biomedical applicability of proteins is due to special properties such as a high affinity with tissues and releasing AAs upon biodegradation that means a nutritive potential for cells. Along with these positive characteristics proteins as biomedical materials they have some shortcomings, such as batch-to-batch variation, risk of disease transmission, and immune rejection. The last limitation is connected with the molecular architecture of proteins. Furthermore, the content of only peptide bonds in protein molecules significantly restricts their material properties. Artificial polymers with the composition of AAs are by far more promising as degradable biomaterials since they are free from the limitations of proteins retaining at the same time their positive features - a high tissue compatibility and nutritive potential. The present review deals with a brief description of different families of AA-based artificial polymers, such as poly(amino acid)s, pseudo-poly(amino acid)s, polydepsipeptides, and pseudo-proteins - relatively new and broad family of artificial AA-based DPs. Most of these polymers have a different macromolecular architecture than proteins and contain various types of chemical links along with NH-CO bonds that substantially expands properties of materials destined for sophisticated biomedical applications.
APA, Harvard, Vancouver, ISO, and other styles
16

Ochkhikidze, Natia, Giorgi Titvinidze, Marekhi Gverdtsiteli, Giuli Otinashvili, David Tugushi, and Ramaz Katsarava. "Synthesis of AABB-polydepsipeptides, poly(ester amide)s and functional polymers on the basis of O,O′-diacyl-bis-glycolic acids." Journal of Macromolecular Science, Part A 57, no. 12 (August 17, 2020): 854–64. http://dx.doi.org/10.1080/10601325.2020.1800411.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Samyn, Celest, and Marcel van Beylen. "Polydepsipeptides: Ring-opening polymerization of 3-Methyl-2, 5-Morpholinedione, 3,6-Dimethyl-2,5-morpholinedione and copolymerization thereof with D, L-Lactide." Makromolekulare Chemie. Macromolecular Symposia 19, no. 1 (June 1988): 225–34. http://dx.doi.org/10.1002/masy.19880190119.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Ohya, Yuichi, Megumi Toyohara, Mitsuhiro Sasakawa, Hidetoshi Arimura, and Tatsuro Ouchi. "Thermosensitive Biodegradable Polydepsipeptide." Macromolecular Bioscience 5, no. 4 (April 19, 2005): 273–76. http://dx.doi.org/10.1002/mabi.200400221.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Ouchi, Tatsuro, Hidenori Seike, Tatsuya Nozaki, and Yuichi Ohya. "Synthesis and characteristics of polydepsipeptide with pendant thiol groups." Journal of Polymer Science Part A: Polymer Chemistry 36, no. 8 (June 1998): 1283–90. http://dx.doi.org/10.1002/(sici)1099-0518(199806)36:8<1283::aid-pola11>3.0.co;2-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Wang, Weiwei, Toufik Naolou, Nan Ma, Zijun Deng, Xun Xu, Ulrich Mansfeld, Christian Wischke, Manfred Gossen, Axel T. Neffe, and Andreas Lendlein. "Polydepsipeptide Block-Stabilized Polyplexes for Efficient Transfection of Primary Human Cells." Biomacromolecules 18, no. 11 (October 20, 2017): 3819–33. http://dx.doi.org/10.1021/acs.biomac.7b01034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Yoshida, M., M. Asano, M. Kumakura, R. Katakai, T. Mashimo, H. Yuasa, K. Imai, and H. Yamanaka. "A new biodegradable polydepsipeptide microsphere for application in drug delivery systems." Colloid & Polymer Science 268, no. 8 (August 1990): 726–30. http://dx.doi.org/10.1007/bf01411103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

MASHIMO, TOORU, HISAKO YUASA, KYOICHI IMAI, HIDETOSHI YAMANAKA, MASAHARU ASANO, MASARU YOSHIDA, ISAO KAETSU, KEIZI SUZUKI, and RYOICHI KATAKAI. "NECROSIS OF THE RAT KIDNEY TISSUE CAUSED BY A POLYDEPSIPEPTIDE FORMULATION CONTAINING CIS-PLATINUM." KITAKANTO Medical Journal 38, no. 3 (1988): 149–55. http://dx.doi.org/10.2974/kmj1951.38.149.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Battig, Alexander, Bernhard Hiebl, Yakai Feng, Andreas Lendlein, and Marc Behl. "Biological evaluation of degradable, stimuli-sensitive multiblock copolymers having polydepsipeptide- and poly(ε-caprolactone) segments in vitro." Clinical Hemorheology and Microcirculation 48, no. 1-3 (2011): 161–72. http://dx.doi.org/10.3233/ch-2011-1391.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Makino, Akira, Shinae Kizaka-Kondoh, Ryo Yamahara, Isao Hara, Tatsuya Kanzaki, Eiichi Ozeki, Masahiro Hiraoka, and Shunsaku Kimura. "Near-infrared fluorescence tumor imaging using nanocarrier composed of poly(l-lactic acid)-block-poly(sarcosine) amphiphilic polydepsipeptide." Biomaterials 30, no. 28 (October 2009): 5156–60. http://dx.doi.org/10.1016/j.biomaterials.2009.05.046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Yamamoto, Fumihiko, Ryo Yamahara, Akira Makino, Kensuke Kurihara, Hideo Tsukada, Eri Hara, Isao Hara, et al. "Radiosynthesis and initial evaluation of 18F labeled nanocarrier composed of poly(L-lactic acid)-block-poly(sarcosine) amphiphilic polydepsipeptide." Nuclear Medicine and Biology 40, no. 3 (April 2013): 387–94. http://dx.doi.org/10.1016/j.nucmedbio.2012.12.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Zhao, Yanlei, Juan Li, Hua Yu, Guangji Wang, and Wen Liu. "Synthesis and characterization of a novel polydepsipeptide contained tri-block copolymer (mPEG–PLLA–PMMD) as self-assembly micelle delivery system for paclitaxel." International Journal of Pharmaceutics 430, no. 1-2 (July 2012): 282–91. http://dx.doi.org/10.1016/j.ijpharm.2012.03.043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Mammi, Stefano, and Murray Goodman. "Polydepsipeptides: A Systematic Investigation of Guest—Host Effects." ChemInform 36, no. 42 (October 18, 2005). http://dx.doi.org/10.1002/chin.200542271.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Enomoto, Junko, Yukiko Toba, Haruka Yamazaki, Masaki Kanai, Hiroyuki Mizuguchi, and Hayato Matsui. "Development of a 3D Cell Culture System Using Amphiphilic Polydepsipeptides and Its Application to Hepatic Differentiation." ACS Applied Bio Materials, September 8, 2021. http://dx.doi.org/10.1021/acsabm.1c00816.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Katakai, Ryoichi. "Synthesis of sequential polydepsipeptides involving depsipeptide formation by the 2-nitrophenylsulphenyl N-carboxy α-amino acid anhydride (Nps–NCA) method." J. Chem. Soc., Perkin Trans. 1, 1987, 2249–51. http://dx.doi.org/10.1039/p19870002249.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Feng, Yakai, Doris Klee, and Hartwig Höcker. "Biodegradable copolymers based on poly(ethylene oxide), polylactide and polydepsipeptide sequences with functional groups." e-Polymers 1, no. 1 (December 1, 2001). http://dx.doi.org/10.1515/epoly.2001.1.1.4.

Full text
Abstract:
AbstractFor the purpose of increasing the hydrophilicity of polylactide, new block copolymers with protected functional groups, poly(lactide-co-(S)-b-benzyl aspartate)-poly(ethylene oxide)-poly(lactide-co-(S)- b-benzyl aspartate), were synthesized via ring-opening polymerization of D,L-lactide and (3S, 6R,S)-3- [(benzyloxycarbonyl)methyl]-6-methylmorpholine-2,5-dione in the presence of hydroxyltelechelic poly(ethylene oxide) (PEO) as an initiator at 140 °C for 24 h. The benzyl protective groups of the block copolymers were completely removed to give poly(lactide-co-(S)-aspartic acid)-PEO-poly(lactide-co-(S)-aspartic acid), (poly(DLLA-co-Asp)-b-PEO-b-poly(DLLA-co-Asp)). This shows lower crystallization and melting temperature compared with the polymers before deprotection. Poly(DLLA-co-Asp)-b-PEO-b-poly(DLLA-co-Asp) with 55.6 wt.-% of PEO is more hydrophilic, shows higher water absorption and is degraded faster than with 39.5 wt.-% of PEO.
APA, Harvard, Vancouver, ISO, and other styles
31

Uji, Hirotaka, Naoki Watabe, Tatsuya Komi, Tomoki Sakaguchi, Ryo Akamatsu, Kenta Mihara, and Shunsaku Kimura. "Downsizing to 25-nm reverse polymeric micelle composed of AB3-type polydepsipeptide with comprising siRNA." Chemistry Letters, January 21, 2022. http://dx.doi.org/10.1246/cl.210704.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography