Journal articles on the topic 'Polydentate ligands'

To see the other types of publications on this topic, follow the link: Polydentate ligands.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Polydentate ligands.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Bukov, N. N., and V. T. Panyushkin. "AMBIDENTICITY OF POLYDENTATE LIGANDS." Science in the South of Russia 14, no. 1 (2018): 51–58. http://dx.doi.org/10.23885/2500-0640-2018-14-1-51-58.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Senft, Laura, Jamonica L. Moore, Alicja Franke, Katherine R. Fisher, Andreas Scheitler, Achim Zahl, Ralph Puchta, et al. "Quinol-containing ligands enable high superoxide dismutase activity by modulating coordination number, charge, oxidation states and stability of manganese complexes throughout redox cycling." Chemical Science 12, no. 31 (2021): 10483–500. http://dx.doi.org/10.1039/d1sc02465e.

Full text
Abstract:
Manganese complexes with polydentate quinol-containing ligands are found to catalyze the degradation of superoxide through inner-sphere mechanisms. The redox activity of the ligand stabilizes higher-valent manganese species.
APA, Harvard, Vancouver, ISO, and other styles
3

Rheingold, Arnold L., Brian S. Haggerty, Louise M. Liable-Sands, and Swiatoslaw Trofimenko. "N,O-Polydentate Scorpionate Ligands." Inorganic Chemistry 38, no. 26 (December 1999): 6306–8. http://dx.doi.org/10.1021/ic990881e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Burton, Stephanie G., Perry T. Kay, and Kevin Wellington. "Designer Ligands. Part 5.1Synthesis of Polydentate Biphenyl Ligands." Synthetic Communications 30, no. 3 (February 2000): 511–22. http://dx.doi.org/10.1080/00397910008087347.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Volpi, Giorgio, Stefano Zago, Roberto Rabezzana, Eliano Diana, Emanuele Priola, Claudio Garino, and Roberto Gobetto. "N-Based Polydentate Ligands and Corresponding Zn(II) Complexes: A Structural and Spectroscopic Study." Inorganics 11, no. 11 (November 10, 2023): 435. http://dx.doi.org/10.3390/inorganics11110435.

Full text
Abstract:
Herein, the structural and photophysical features of two N-based polydentate ligands and the corresponding Zn(II) complexes are investigated. The obtained compounds were characterized using different spectroscopic techniques and their optical properties are discussed in relation to their chemical structure, defined by single-crystal X-ray diffraction and mass spectrometry. The spontaneous and quantitative complexation, investigated by UV-Vis, fluorescence, NMR, IR spectroscopies and mass spectrometry, makes these N-based polydentate ligands interesting candidates for possible applications in chelation therapy and in Zn(II) sensors.
APA, Harvard, Vancouver, ISO, and other styles
6

Ure, Andrew D., Isabel Abánades Lázaro, Michelle Cotter, and Aidan R. McDonald. "Synthesis and characterisation of a mesocyclic tripodal triamine ligand." Organic & Biomolecular Chemistry 14, no. 2 (2016): 483–94. http://dx.doi.org/10.1039/c5ob01556a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Shopov, Dimitar Y., Liam S. Sharninghausen, Shashi Bhushan Sinha, Julia E. Borowski, Brandon Q. Mercado, Gary W. Brudvig, and Robert H. Crabtree. "Synthesis of pyridine-alkoxide ligands for formation of polynuclear complexes." New Journal of Chemistry 41, no. 14 (2017): 6709–19. http://dx.doi.org/10.1039/c7nj01845b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Coxall, Robert A., Steven G. Harris, David K. Henderson, Simon Parsons, Peter A. Tasker, and Richard E. P. Winpenny. "Inter-ligand reactions: in situ formation of new polydentate ligands." Journal of the Chemical Society, Dalton Transactions, no. 14 (2000): 2349–56. http://dx.doi.org/10.1039/b001404o.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ruan, Wenqing, Jiatao Mao, Shida Yang, Chuan Shi, Guochen Jia, and Qing Chen. "Designing Cr complexes for a neutral Fe–Cr redox flow battery." Chemical Communications 56, no. 21 (2020): 3171–74. http://dx.doi.org/10.1039/c9cc09704j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Matyuska, Ferenc, Attila Szorcsik, Nóra V. May, Ágnes Dancs, Éva Kováts, Attila Bényei, and Tamás Gajda. "Tailoring the local environment around metal ions: a solution chemical and structural study of some multidentate tripodal ligands." Dalton Transactions 46, no. 26 (2017): 8626–42. http://dx.doi.org/10.1039/c7dt00104e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Neumajer, Gábor, Gergő Tóth, Szabolcs Béni, and Béla Noszál. "Novel ion-binding C3 symmetric tripodal triazoles: synthesis and characterization." Open Chemistry 12, no. 1 (January 1, 2014): 115–25. http://dx.doi.org/10.2478/s11532-013-0351-z.

Full text
Abstract:
AbstractNovel C3 symmetric tripodal molecules were synthesized from cyclohexane 1,3,5-tricarboxylic acid. Utilizing click and Sonogashira reactions, ion-binding triazole and pyridazin-3(2H)-one units were incorporated to form polydentate ligands for ion complexation. The structures of the novel C3 symmetric derivatives were extensively characterized by 1H, 13C and 2D NMR techniques along with HRMS and IR. The copper(I)-binding potentials of these ligands were investigated by using them as additives in model copper(I)-catalysed azide-alkyne cycloaddition (CuAAC) reactions. The copper(I) complexation ability of our compound was also proved by different spectroscopic methods, such as mass spectrometry, UV and NMR spectroscopy. Based on the mass spectrometric data all of the C3 symmetric ligands formed 1:1 complex with copper(I) ion. The specific role of C3 symmetric polydentate form in the complexation process was also discussed
APA, Harvard, Vancouver, ISO, and other styles
12

Kaye, Perry T., and Kevin W. Wellington. "DESIGNER LIGANDS. VI. SYNTHESIS OF 1,10-PHENANTHROLINE-BASED POLYDENTATE LIGANDS." Synthetic Communications 31, no. 6 (January 2001): 799–804. http://dx.doi.org/10.1081/scc-100103312.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Șalgău, Cătălin, Andrea Dobri, and Anca Silvestru. "New mercury(II) complexes of polydentate ligands." Studia Universitatis Babeș-Bolyai Chemia 66, no. 3 (September 30, 2021): 175–85. http://dx.doi.org/10.24193/subbchem.2021.3.10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Fedulin, Andrey I., Yurii F. Oprunenko, Sergey S. Karlov, Galina S. Zaitseva, and Kirill V. Zaitsev. "Tetrylenes based on polydentate sulfur-containing ligands." Mendeleev Communications 31, no. 6 (November 2021): 850–52. http://dx.doi.org/10.1016/j.mencom.2021.11.027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Asirvatham, S., M. A. Khan, and K. M. Nicholas. "A Decairon Cluster Devoid of Polydentate Ligands." Inorganic Chemistry 39, no. 9 (May 2000): 2006–7. http://dx.doi.org/10.1021/ic9911668.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Solache-Rios, Marcos, and Alfred G. Maddock. "Some complexes of protactinium with polydentate ligands." Journal of the Less Common Metals 122 (August 1986): 347–51. http://dx.doi.org/10.1016/0022-5088(86)90430-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Fern�ndez, Eva, Ar�nzazu L�pez de la Calle, and Mar�a J. Gonz�lez Garmendia. "Oxovanadium(IV) complexes with polydentate nitrogen ligands." Transition Metal Chemistry 12, no. 6 (December 1987): 536–38. http://dx.doi.org/10.1007/bf01023843.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Wang, Le, Yong Ye, Shang Bin Zhong, and Yu Fen Zhao. "Polydentate cyclotriphosphazene ligands: Design, synthesis and bioactivity." Chinese Chemical Letters 20, no. 1 (January 2009): 58–61. http://dx.doi.org/10.1016/j.cclet.2008.10.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Burlov, A. S., V. G. Vlasenko, D. A. Garnovskii, A. I. Uraev, Yu V. Koshchienko, E. I. Mal’tsev, D. A. Lypenko, and A. V. Dmitriev. "Luminescent Metal Complexes of Polydentate Azomethine Ligands." Russian Journal of Coordination Chemistry 49, S1 (December 2023): S49—S67. http://dx.doi.org/10.1134/s1070328423600845.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Barroso, Raquel, María-Paz Cabal, Azucena Jiménez, and Carlos Valdés. "Cascade and multicomponent synthesis of structurally diverse 2-(pyrazol-3-yl)pyridines and polysubstituted pyrazoles." Organic & Biomolecular Chemistry 18, no. 8 (2020): 1629–36. http://dx.doi.org/10.1039/c9ob02691f.

Full text
Abstract:
A wide diversity of polyheterocyclic systems including polysubstituted pyrazoles and pyridopyrazole polydentate ligands are readily assembled through cascade multicomponent processes from terminal alkynes and N-tosylhydrazones.
APA, Harvard, Vancouver, ISO, and other styles
21

Levason, William, and Gillian Reid. "Early Transition Metal Complexes of Polydentate and Macrocyclic Thio- and Seleno-Ethers." Journal of Chemical Research 2002, no. 10 (October 2002): 467–72. http://dx.doi.org/10.3184/030823402103170501.

Full text
Abstract:
Recent work on the syntheses, structures and properties of complexes of polydentate and macrocyclic thio- and seleno-ether ligands with Groups 3-6 metals in positive oxidation states (≥3) is described.
APA, Harvard, Vancouver, ISO, and other styles
22

Ma, Yanan, Xiaoping Yang, Zhiyin Xiao, Xiaoming Liu, Dongliang Shi, Mengyu Niu, and Desmond Schipper. "One high-nuclearity Eu18 nanoring with rapid ratiometric fluorescence response to dipicolinic acid (an anthrax biomarker)." Chemical Communications 57, no. 59 (2021): 7316–19. http://dx.doi.org/10.1039/d1cc01706c.

Full text
Abstract:
One 18-metal Eu(iii) nanoring was constructed by using two types of polydentate organic ligands, and it shows a rapid ratiometric fluorescence response to 2,6-dipicolinic acid with high sensitivity and selectivity.
APA, Harvard, Vancouver, ISO, and other styles
23

Munshi, Sandip, Rahul Dev Jana, and Tapan Kanti Paine. "Oxidative degradation of toxic organic pollutants by water soluble nonheme iron(iv)-oxo complexes of polydentate nitrogen donor ligands." Dalton Transactions 50, no. 16 (2021): 5590–97. http://dx.doi.org/10.1039/d0dt04421k.

Full text
Abstract:
A series of water soluble iron(ii) complexes of polydentate nitrogen donor ligands are reported to perform the oxidative degradation of polyhalogenated phenols and persistent organic pollutants using ceric ammonium nitrate as the oxidant.
APA, Harvard, Vancouver, ISO, and other styles
24

Xiong, Rulin, Likun Cheng, Yu Tian, Weijun Tang, Kehan Xu, Yuan Yuan, and Aiguo Hu. "Hyperbranched polyethylenimine based polyamine-N-oxide-carboxylate chelates of gadolinium for high relaxivity MRI contrast agents." RSC Advances 6, no. 33 (2016): 28063–68. http://dx.doi.org/10.1039/c6ra03589b.

Full text
Abstract:
Polydentate amine-N-oxide carboxylates were used as ligands for the formation of Gd(iii) complexes with high relaxivity as MRI contrast agents. Cytotoxicity assays revealed good cytocompatibility of these complexes for clinical applications.
APA, Harvard, Vancouver, ISO, and other styles
25

Burton, Stephanie G., Perry T. Kaye, and Kevin Wellington. "ChemInform Abstract: Designer Ligands. Part 5. Synthesis of Polydentate Biphenyl Ligands." ChemInform 31, no. 24 (June 8, 2010): no. http://dx.doi.org/10.1002/chin.200024160.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Fu, Hongru, Yuying Jiang, Fei Wang, and Jian Zhang. "The Synthesis and Properties of TIPA-Dominated Porous Metal-Organic Frameworks." Nanomaterials 11, no. 11 (October 21, 2021): 2791. http://dx.doi.org/10.3390/nano11112791.

Full text
Abstract:
Metal-Organic Frameworks (MOFs) as a class of crystalline materials are constructed using metal nodes and organic spacers. Polydentate N-donor ligands play a mainstay-type role in the construction of metal−organic frameworks, especially cationic MOFs. Highly stable cationic MOFs with high porosity and open channels exhibit distinct advantages, they can act as a powerful ion exchange platform for the capture of toxic heavy-metal oxoanions through a Single-Crystal to Single-Crystal (SC-SC) pattern. Porous luminescent MOFs can act as nano-sized containers to encapsulate guest emitters and construct multi-emitter materials for chemical sensing. This feature article reviews the synthesis and application of porous Metal-Organic Frameworks based on tridentate ligand tris (4-(1H-imidazol-1-yl) phenyl) amine (TIPA) and focuses on design strategies for the synthesis of TIPA-dominated Metal-Organic Frameworks with high porosity and stability. The design strategies are integrated into four types: small organic molecule as auxiliaries, inorganic oxyanion as auxiliaries, small organic molecule as secondary linkers, and metal clusters as nodes. The applications of ratiometric sensing, the adsorption of oxyanions contaminants from water, and small molecule gas storage are summarized. We hope to provide experience and inspiration in the design and construction of highly porous MOFs base on polydentate N-donor ligands.
APA, Harvard, Vancouver, ISO, and other styles
27

Saraswathi, Mandapati, and Jack M. Miller. "Study of formation and fragmentation of ionic complexes of polydentate ligands with Al(III) and glycerol by fast atom bombardment mass spectrometry. Part 1: Polydentate ligands." Canadian Journal of Chemistry 74, no. 11 (November 1, 1996): 2221–28. http://dx.doi.org/10.1139/v96-250.

Full text
Abstract:
The complexation reactions of aluminum ions with polydentate ligands such as 12-crown-4,15-crown-5,18-crown-6, 1,10-dithia-18-crown-6, dicyclohexyl-18-crown-6, dibenzo-18-crown-6, and dibenzo-24-crown-8 and acyclic analogs mono-, di-, tri-, tetra-, penta-, and hexaethylene glycols were studied using FAB mass spectrometry. These cyclic ligands form (M + 117)+, (M + 157)+, (M + 231)+, and (M + 253)+ ions with different aluminum-containing species. Collisionally activated dissociations of these adduct ions gave fragment ions, initially due to the loss of ligands directly attached to aluminum, followed by insertion of aluminum into the remaining ligand skeleton. Further fragmentation of the metal-containing species gave ions corresponding to consecutive losses of C2H4O units. Fragmentations of deuterium-labelled ions were used to help in establishing fragmentation pathways. Selectivity towards metal chelation is observed in this order: 12-crown-4 < 15-crown-5 < 18-crown-6. The elemental compositions of adduct ions were confirmed by high-resolution measurements. The formation of (M + Al − 2H)+ ion, obtained by the displacement of two hydroxy protons, is more favored for tetra- and pentaethylene glycols. Key words: crown ethers, polyethylene glycols, aluminum(III)–glycerol, ionic complexes and ion dissociations.
APA, Harvard, Vancouver, ISO, and other styles
28

БЕЛОБЕЛЕЦКАЯ, М. В., Н. И. СТЕБЛЕВСКАЯ, and М. А. МЕДКОВ. "Complex formation of REEs with polydentate organic ligands." Вестник ДВО РАН, no. 6(214) (December 24, 2020): 7–16. http://dx.doi.org/10.37102/08697698.2020.214.6.001.

Full text
Abstract:
Исследовано комплексообразование европия и тербия с полифункциональными органическими соединениями – β-дикетонами, органическими кислотами. Состав комплексов изучен экстракционным методом, ИК и люминесцентной спектроскопией. Установлено, что при экстракции РЗЭ смешанными экстрагентами идет эффективное комплексообразование РЗЭ в органической фазе. Показана возможность синтеза из насыщенных экстрактов разнолигандных координационных соединений РЗЭ, выделены индивидуальные кристаллические комплексы. The complex formation of europium and terbium with polyfunctional organic compounds: β-diketones, organic acids were investigated. The composition of the complexes was studied by extractive method, infrared and luminescent spectroscopy. It was established that during the extraction of REE by mixed extractants there is an effective complex formation of REE in the organic phase. The possibility of synthesis of different ligand coordination compounds of REE from saturated extracts was shown and individual crystalline complexes were isolated.
APA, Harvard, Vancouver, ISO, and other styles
29

Marchenko, Anatoliy, Georgyi Koidan, Anastasiya Hurieva, Viktoriya V. Dyakonenko, Svitlana V. Shishkina, Eduard B. Rusanov, Andrii A. Kyrylchuk, and Aleksandr Kostyuk. "Polydentate Phosphane Ligands Featuring N , N , N’ ‐Trialkylformamidines." European Journal of Inorganic Chemistry 2021, no. 10 (February 12, 2021): 969–81. http://dx.doi.org/10.1002/ejic.202001059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Todorova, Stanislava, Vanya Kurteva, Boris Shivachev, and Rositsa P. Nikolova. "Crystal structures of novel polydentate N,O-ligands." Acta Crystallographica Section A Foundations and Advances 72, a1 (August 28, 2016): s403. http://dx.doi.org/10.1107/s2053273316094110.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Berthet, Jean-Claude, Jérôme Maynadié, Pierre Thuéry, and Michel Ephritikhine. "Linear uranium metallocenes with polydentate aromatic nitrogen ligands." Dalton Transactions 39, no. 29 (2010): 6801. http://dx.doi.org/10.1039/c002279a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

McRobbie, Andrew, Asad R. Sarwar, Steven Yeninas, Harriott Nowell, Michael L. Baker, David Allan, Marshall Luban, et al. "Chromium chains as polydentate fluoride ligands for lanthanides." Chemical Communications 47, no. 22 (2011): 6251. http://dx.doi.org/10.1039/c1cc11516b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Wilson, C., S. Dahaoui, D. S. Yufit, J. A. K. Howard, and L. K. Thompson. "Experimental Charge Density Studies of Polydentate Diazine Ligands." Acta Crystallographica Section A Foundations of Crystallography 56, s1 (August 25, 2000): s187. http://dx.doi.org/10.1107/s0108767300024181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Johnson, Carl R., and Tsuneo Imamoto. "Synthesis of polydentate ligands with homochiral phosphine centers." Journal of Organic Chemistry 52, no. 11 (May 1987): 2170–74. http://dx.doi.org/10.1021/jo00387a010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Choppin, Gregory R. "Complexation kinetics of f-elements and polydentate ligands." Journal of Alloys and Compounds 225, no. 1-2 (July 1995): 242–45. http://dx.doi.org/10.1016/0925-8388(94)07068-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Esteban, M. F. Gargallo, R. Vilaplana Serrano, and F. González Vilchez. "Synthesis and vibrational study of some polydentate ligands." Spectrochimica Acta Part A: Molecular Spectroscopy 43, no. 8 (January 1987): 1039–43. http://dx.doi.org/10.1016/0584-8539(87)80176-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Smit, Biljana, Radoslav Pavlovic, Ana Radosavljevic-Mihailovic, Anja Dosen, Milena Curcic, Dragana Seklic, and Marko Zivanovic. "Synthesis, characterization and cytotoxicity of palladium(II) complex of 3-[(2-hydroxy-benzylidene)-amino]-2-thioxo-imidazolidin-4-one." Journal of the Serbian Chemical Society 78, no. 2 (2013): 217–27. http://dx.doi.org/10.2298/jsc120725154s.

Full text
Abstract:
The polydentate ligand, 3-[(2-hydroxy-benzylidene)-amino]-2-thioxo-imidazolidin-4-one, was synthesized by intermolecular cyclocondensation reaction of 2-hydroxybenzaldehyde thiosemicarbazone and ethylchloroacetate. Novel palladium(II) complex was obtained by nucleophilic substitution of both DMSO ligands from cis-[Pd(DMSO)2Cl2] with iminic nitrogen and thiolactamic sulfur from ligand. The structure of compounds was characterized on the basis of their spectral data. The cytotoxic activity of the ligand and palladium(II) complex was studied on tumor cell lines: human colon carcinoma HCT-116 and SW-480 cells using MTT viability test. The results show that investigated palladium(II) complex has significantly greater cytotoxic effect compared to ligand.
APA, Harvard, Vancouver, ISO, and other styles
38

Reger, Daniel L., Terri D. Wright, and Mark D. Smith. "Mixed-ligand complexes of cadmium(II) containing bulky polydentate nitrogen-based ligands." Inorganica Chimica Acta 334 (May 2002): 1–9. http://dx.doi.org/10.1016/s0020-1693(02)00735-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

McDonald, Cecelia, David W. Williams, Priyanka Comar, Simon J. Coles, Tony D. Keene, Mateusz B. Pitak, Euan K. Brechin, and Leigh F. Jones. "Molecular Pac-Man and Tacos: layered Cu(ii) cages from ligands with high binding site concentrations." Dalton Transactions 44, no. 29 (2015): 13359–68. http://dx.doi.org/10.1039/c5dt01463h.

Full text
Abstract:
Sheet Metal: The deliberate in situ Schiff base condensation of two organic subunits (hydroxamic acid and phenolic aldehyde) leads to polydentate ligands capable of forming large Cu(ii) cages of nuclearities ranging from [Cu10] to [Cu30].
APA, Harvard, Vancouver, ISO, and other styles
40

Bogdanova, Irina, Dmitriy Andreev, Boris Skulin, Valentina Grabel'nyh, Nina Sosnovskaya, and Nikolay Korchevin. "THE USE OF POLYDENTATE CHALCOGEN-CONTAINING LIGANDS IN THE TECHNOLOGY OF BRILLIANT NICKEL PLATING." Modern Technologies and Scientific and Technological Progress 1, no. 1 (May 17, 2021): 17–18. http://dx.doi.org/10.36629/2686-9896-2021-1-1-17-18.

Full text
Abstract:
. Neutral chalcogen-containing polydentate compounds were used for the first time to obtain shiny nickel coatings from Watts electrolyte. The main technological parameters of electrolysis that ensure the production of the highest quality coatings are identified.
APA, Harvard, Vancouver, ISO, and other styles
41

Raptopoulou, Catherine P. "Heterometallic Complexes Containing the NiII-LnIII-NiII Moiety—Structures and Magnetic Properties." Crystals 10, no. 12 (December 8, 2020): 1117. http://dx.doi.org/10.3390/cryst10121117.

Full text
Abstract:
This review summarizes the structural characteristics and magnetic properties of trinuclear complexes containing the NiII-LnIII-NiII moiety and also oligonuclear complexes and coordination polymers containing the same trinuclear moiety. The ligands used are mainly polydentate Schiff base ligands and reduced Schiff base ligands and, in some cases, oximato, β-diketonato, pyridyl ketone ligands and others. The compounds reported are restricted to those containing one, two and three oxygen atoms as bridges between the metal ions; examples of carboxylato and oximato bridging are also included due to structural similarity. The magnetic properties of the complexes range from ferro- to antiferromagnetic depending on the nature of the lanthanide ion.
APA, Harvard, Vancouver, ISO, and other styles
42

Ali, Shoaib, Viswanathan Baskar, Christopher A. Muryn, and Richard E. P. Winpenny. "Mixed antimonate-phosphonate ligands as polydentate bridging oxygen donors." Chemical Communications, no. 47 (2008): 6375. http://dx.doi.org/10.1039/b815270e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Raptopoulou, Catherine P., Yiannis Sanakis, Vassilis Psycharis, and Michael Pissas. "Zig-zag [MnIII4] clusters from polydentate Schiff base ligands." Polyhedron 64 (November 2013): 181–88. http://dx.doi.org/10.1016/j.poly.2013.03.055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Chantler, James, Phillip E. Fanwick, and Richard A. Walton. "Dirhenium(II) complexes containing monodentate and polydentate nitrile ligands." Inorganica Chimica Acta 305, no. 2 (July 2000): 215–20. http://dx.doi.org/10.1016/s0020-1693(00)00127-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Addison, Anthony W., and Curtis G. Wahlgren. "Some iron(III) complexes with polydentate Schiff base ligands." Inorganica Chimica Acta 147, no. 1 (July 1988): 61–64. http://dx.doi.org/10.1016/s0020-1693(00)80630-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Sharutin, Vladimir V., Olga K. Sharutina, Yulia O. Gubanova, and Oleg S. Eltsov. "Dihydroxybenzoic acids as polydentate ligands in phenylantimony (V) complexes." Inorganica Chimica Acta 494 (August 2019): 211–15. http://dx.doi.org/10.1016/j.ica.2019.05.029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Abel, Edward W., David G. Evans, Julian R. Koe, Michael B. Hursthouse, and Mohammed Mazid. "Dimethylplatinum complexes of polydentate alkene–sulfur and –selenium ligands." J. Chem. Soc., Dalton Trans., no. 4 (1992): 663–67. http://dx.doi.org/10.1039/dt9920000663.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Petrosyants, S. P. "ChemInform Abstract: Gallium Complexes with Mono- and Polydentate Ligands." ChemInform 33, no. 27 (May 21, 2010): no. http://dx.doi.org/10.1002/chin.200227271.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Browne, Julian M. W., Jan Wikaira, Christopher M. Fitchett, and Richard M. Hartshorn. "Polydentate ligand construction: intramolecular condensation reactions in the synthesis of imine-containing ligands." Journal of the Chemical Society, Dalton Transactions, no. 10 (2002): 2227. http://dx.doi.org/10.1039/b111556a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Kaye, Perry T., and Kevin W. Wellington. "ChemInform Abstract: Designer Ligands. Part 6. Synthesis of 1,10-Phenanthroline-Based Polydentate Ligands." ChemInform 32, no. 35 (May 24, 2010): no. http://dx.doi.org/10.1002/chin.200135151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography