Academic literature on the topic 'Poly(sodium 2-Acrylamido-2-Methylpropane sulfonate'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Poly(sodium 2-Acrylamido-2-Methylpropane sulfonate.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Poly(sodium 2-Acrylamido-2-Methylpropane sulfonate"

1

Su, Na. "Synthesis of Poly (2-Acrylamido-2-methylpropanesulfnoinc Salt) Modified Carbon Spheres." Polymers 15, no. 17 (2023): 3510. http://dx.doi.org/10.3390/polym15173510.

Full text
Abstract:
The paper reports a facile synthesis of novel anionic spherical polymer brushes which was based on grafting sodium 2-acrylamido-2-methylpropane-1-sulfonate from the surface of 4,4′-Azobis (4-cyanopentanoyl chloride)-modified carbon spheres. Various characterization methods involving a scanning electron microscope, energy dispersive X-ray spectroscopy, Fourier transform infrared spectrum, and thermo-gravimetric analysis were utilized to analyze the morphology, chemical composition, bonding structure, and thermal stability, respectively. The molecular weight (Mw) and polydispersity (Mw/Mn) of brushes were 616,000 g/mol and 1.72 determined by gel permeation chromatography experiments. Moreover, the dispersibility of ASPB in water and in the presence of aqueous NaCl solutions of different concentrations was investigated. Results show that the dispersibility of carbon spheres has been enhanced owing to grafted polyelectrolyte chains, while the zeta potential of the particle decreases and its brush layer shrinks upon exposure to sodium ions (Na+).
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, Zhulun, Jian Wang, Benjamin Chu, and Dennis G. Peiffer. "Solution behavior of random copolymers of styrene with sodium-2-acrylamido-2-methylpropane sulfonate." Journal of Polymer Science Part B: Polymer Physics 29, no. 11 (1991): 1361–71. http://dx.doi.org/10.1002/polb.1991.090291105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jitreewas, Parinya, Suwicha Saengvattanarat, Phanita Tansiri, et al. "Synthesis of PAA-PAMPS-PNaSS Terpolymers as Ultraviolet-Tagged Scale Inhibitor for Industrial Water Cooling System." Key Engineering Materials 757 (October 2017): 68–72. http://dx.doi.org/10.4028/www.scientific.net/kem.757.68.

Full text
Abstract:
Carboxylated polymer can be used as an anti-scaling agent in circulating water cooling systems. Poly(acrylic acid) and homopolymer have some drawbacks such as slight solubility in water and low calcium tolerance leading difficulty to determine the remaining quantity of polymer in water. This research is mainly focused on synthesis and ability of poly(acrylic acid-co-2-acrylamido-2-methylpropane sulfonic acid) (PAA-PAMPS) for scale inhibition. These terpolymers varied in mole ratios of monomers were prepared via solution polymerization. The obtained polymers are then characterized by FT-IR, 1H-NMR, TGA, turbidity, and UV-visible spectroscopy. For a scale inhibition test, GB/T 16632-2008 standard is applied. The scale inhibition efficiency for 100% was found in PAA-PAMPS copolymer (7:3). Afterwards this polymer was chosen for synthesizing an ultraviolet-tagged PAA-PAMPS-PNaSS terpolymer. UV-visible spectroscopy was used to monitor benzene sulfonate structure in sodium styrene sulfonate of the polymer chain at 224 nm.
APA, Harvard, Vancouver, ISO, and other styles
4

Paneva, Dilyana, Laetitia Mespouille, Nevena Manolova, Philippe Degée, Iliya Rashkov, and Philippe Dubois. "Comprehensive study on the formation of polyelectrolyte complexes from (quaternized) poly[2-(dimethylamino)ethyl methacrylate] and poly(2-acrylamido-2-methylpropane sodium sulfonate)." Journal of Polymer Science Part A: Polymer Chemistry 44, no. 19 (2006): 5468–79. http://dx.doi.org/10.1002/pola.21594.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kapanya, Apichaya, Amlika Rungrod, and Runglawan Somsunan. "Effect of Bacterial Cellulose on Silver-loaded Poly(sodium 2-acrylamido-2-methylpropane sulfonate) Hydrogel for Antibacterial Wound Dressing Application." Fibers and Polymers 23, no. 12 (2022): 3343–57. http://dx.doi.org/10.1007/s12221-022-4584-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Noor, Siti Aminah Mohd, Jiazeng Sun, Douglas R. MacFarlane, Michel Armand, Daniel Gunzelmann, and Maria Forsyth. "Decoupled ion conduction in poly(2-acrylamido-2-methyl-1-propane-sulfonic acid) homopolymers." J. Mater. Chem. A 2, no. 42 (2014): 17934–43. http://dx.doi.org/10.1039/c4ta03998j.

Full text
Abstract:
A family of novel sulfonate based homopolymers has been prepared by partially replacing sodium cations with different types of ionic liquid ammonium counter-cations, leading to an increased degree of decoupling of the conductivity from the glass transition of the ionomers.
APA, Harvard, Vancouver, ISO, and other styles
7

El-Mahdy, Gamal, Ayman Atta, and Hamad Al-Lohedan. "Synthesis and Evaluation of Poly(Sodium 2-Acrylamido-2-Methylpropane Sulfonate-co-Styrene)/Magnetite Nanoparticle Composites as Corrosion Inhibitors for Steel." Molecules 19, no. 2 (2014): 1713–31. http://dx.doi.org/10.3390/molecules19021713.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kakihana, Yuriko, N. Awanis Hashim, Taiko Mizuno, Marika Anno, and Mitsuru Higa. "Ionic Transport Properties of Cation-Exchange Membranes Prepared from Poly(vinyl alcohol-b-sodium Styrene Sulfonate)." Membranes 11, no. 6 (2021): 452. http://dx.doi.org/10.3390/membranes11060452.

Full text
Abstract:
Membrane resistance and permselectivity for counter-ions have important roles in determining the performance of cation-exchange membranes (CEMs). In this study, PVA-based polyanions—poly(vinyl alcohol-b-sodium styrene sulfonate)—were synthesized, changing the molar percentages CCEG of the cation-exchange groups with respect to the vinyl alcohol groups. From the block copolymer, poly(vinyl alcohol) (PVA)-based CEMs, hereafter called “B-CEMs”, were prepared by crosslinking the PVA chains with glutaraldehyde (GA) solution at various GA concentrations CGA. The ionic transport properties of the B-CEMs were compared with those previously reported for the CEMs prepared using a random copolymer—poly(vinyl alcohol-co-2-acrylamido-2-methylpropane sulfonic acid)—hereafter called ”R-CEMs”. The B-CEMs had lower water content than the R-CEMs at equal molar percentages of the cation-exchange groups. The charge density of the B-CEMs increased as CCEG increased, and reached a maximum value, which increased with increasing CGA. A maximum charge density of 1.47 mol/dm3 was obtained for a B-CEM with CCEG = 2.9 mol% and CGA = 0.10 vol.%, indicating that the B-CEM had almost two-thirds of the permselectivity of a commercial CEM (CMX: ASTOM Corp. Japan). The dynamic transport number and membrane resistance of a B-CEM with CCEG = 8.3 mol% and CGA = 0.10 vol.% were 0.99 and 1.6 Ωcm2, respectively. The B-CEM showed higher dynamic transport numbers than those of the R-CEMs with similar membrane resistances.
APA, Harvard, Vancouver, ISO, and other styles
9

Wu, Xiaogang, Chuanrong Zhong, Xiaofei Lian, and Yan Yang. "Solution properties and aggregating structures for a fluorine-containing polymeric surfactant with a poly(ethylene oxide) macro-monomer." Royal Society Open Science 5, no. 8 (2018): 180610. http://dx.doi.org/10.1098/rsos.180610.

Full text
Abstract:
A polymeric surfactant (PFSA) was synthesized by the aqueous free-radical copolymerization using acrylamide, sodium 2-acrylamido-2-methylpropane sulfonate, allyl-capped octylphenoxy poly(ethylene oxide) (PEO) with the polymerization degree of 20 (AOP) and 1H,1H,2H,2H-perfluoro-1-decyl p -vinylbenzyl ether (VF). PFSA exhibited both the good surface and interfacial activities and the thickening behaviour. It could be used in enhanced oil recovery to increase both sweep and oil displacement efficiencies. The critical micelle concentration (CMC) of PFSA was 0.1 g l −1 in aqueous solution. The spherical micelles with the diameter of 100 nm were formed at CMC, and numerous compact worm-shaped micelles were observed above CMC. The interfacial tension was 0.027 mN m −1 for the 0.1 g l −1 PFSA solution containing 5 g l −1 NaCl and 0.209 g l −1 SDBS. The PFSA solutions still showed low interfacial tensions at high NaCl concentrations and temperatures, respectively, because of the incorporation of both VF and AOP containing long PEO.
APA, Harvard, Vancouver, ISO, and other styles
10

Long, Shijun, Chang Liu, Han Ren, et al. "NIR-Mediated Deformation from a CNT-Based Bilayer Hydrogel." Polymers 16, no. 8 (2024): 1152. http://dx.doi.org/10.3390/polym16081152.

Full text
Abstract:
Shape-shifting polymers are widely used in various fields such as intelligent switches, soft robots and sensors, which require both multiple stimulus-response functions and qualified mechanical strength. In this study, a novel near-infrared-light (NIR)-responsible shape-shifting hydrogel system was designed and fabricated through embedding vinylsilane-modified carbon nanotubes (CNTs) into particle double-network (P-DN) hydrogels by micellar copolymerisation. The dispersed brittle Poly(sodium 2-acrylamido-2-methylpropane-1-sulfonate) (PNaAMPS) network of the microgels can serve as sacrificial bonds to toughen the hydrogels, and the CNTs endow it with NIR photothermal conversion ability. The results show that the CNTs embedded in the P-DN hydrogels present excellent mechanical strength, i.e., a fracture strength of 312 kPa and a fracture strain of 357%. Moreover, an asymmetric bilayer hydrogel, where the active layer contains CNTs, can achieve 0°–110° bending deformation within 10 min under NIR irradiation and can realise complex deformation movement. This study provides a theoretical and experimental basis for the design and manufacture of photoresponsive soft actuators.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography