Contents
Academic literature on the topic 'Poly(sodium 2-Acrylamido-2-Methylpropane sulfonate'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Poly(sodium 2-Acrylamido-2-Methylpropane sulfonate.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Poly(sodium 2-Acrylamido-2-Methylpropane sulfonate"
Su, Na. "Synthesis of Poly (2-Acrylamido-2-methylpropanesulfnoinc Salt) Modified Carbon Spheres." Polymers 15, no. 17 (August 23, 2023): 3510. http://dx.doi.org/10.3390/polym15173510.
Full textWang, Zhulun, Jian Wang, Benjamin Chu, and Dennis G. Peiffer. "Solution behavior of random copolymers of styrene with sodium-2-acrylamido-2-methylpropane sulfonate." Journal of Polymer Science Part B: Polymer Physics 29, no. 11 (October 1991): 1361–71. http://dx.doi.org/10.1002/polb.1991.090291105.
Full textJitreewas, Parinya, Suwicha Saengvattanarat, Phanita Tansiri, Siriporn Pranee, Sunanta Chuayprakong, Chalermchai Khemtong, and Samitthichai Seeyangnok. "Synthesis of PAA-PAMPS-PNaSS Terpolymers as Ultraviolet-Tagged Scale Inhibitor for Industrial Water Cooling System." Key Engineering Materials 757 (October 2017): 68–72. http://dx.doi.org/10.4028/www.scientific.net/kem.757.68.
Full textPaneva, Dilyana, Laetitia Mespouille, Nevena Manolova, Philippe Degée, Iliya Rashkov, and Philippe Dubois. "Comprehensive study on the formation of polyelectrolyte complexes from (quaternized) poly[2-(dimethylamino)ethyl methacrylate] and poly(2-acrylamido-2-methylpropane sodium sulfonate)." Journal of Polymer Science Part A: Polymer Chemistry 44, no. 19 (August 21, 2006): 5468–79. http://dx.doi.org/10.1002/pola.21594.
Full textKapanya, Apichaya, Amlika Rungrod, and Runglawan Somsunan. "Effect of Bacterial Cellulose on Silver-loaded Poly(sodium 2-acrylamido-2-methylpropane sulfonate) Hydrogel for Antibacterial Wound Dressing Application." Fibers and Polymers 23, no. 12 (December 2022): 3343–57. http://dx.doi.org/10.1007/s12221-022-4584-3.
Full textNoor, Siti Aminah Mohd, Jiazeng Sun, Douglas R. MacFarlane, Michel Armand, Daniel Gunzelmann, and Maria Forsyth. "Decoupled ion conduction in poly(2-acrylamido-2-methyl-1-propane-sulfonic acid) homopolymers." J. Mater. Chem. A 2, no. 42 (2014): 17934–43. http://dx.doi.org/10.1039/c4ta03998j.
Full textEl-Mahdy, Gamal, Ayman Atta, and Hamad Al-Lohedan. "Synthesis and Evaluation of Poly(Sodium 2-Acrylamido-2-Methylpropane Sulfonate-co-Styrene)/Magnetite Nanoparticle Composites as Corrosion Inhibitors for Steel." Molecules 19, no. 2 (January 30, 2014): 1713–31. http://dx.doi.org/10.3390/molecules19021713.
Full textKakihana, Yuriko, N. Awanis Hashim, Taiko Mizuno, Marika Anno, and Mitsuru Higa. "Ionic Transport Properties of Cation-Exchange Membranes Prepared from Poly(vinyl alcohol-b-sodium Styrene Sulfonate)." Membranes 11, no. 6 (June 19, 2021): 452. http://dx.doi.org/10.3390/membranes11060452.
Full textWu, Xiaogang, Chuanrong Zhong, Xiaofei Lian, and Yan Yang. "Solution properties and aggregating structures for a fluorine-containing polymeric surfactant with a poly(ethylene oxide) macro-monomer." Royal Society Open Science 5, no. 8 (August 2018): 180610. http://dx.doi.org/10.1098/rsos.180610.
Full textLong, Shijun, Chang Liu, Han Ren, Yali Hu, Chao Chen, Yiwan Huang, and Xuefeng Li. "NIR-Mediated Deformation from a CNT-Based Bilayer Hydrogel." Polymers 16, no. 8 (April 19, 2024): 1152. http://dx.doi.org/10.3390/polym16081152.
Full textDissertations / Theses on the topic "Poly(sodium 2-Acrylamido-2-Methylpropane sulfonate"
Pucheu, Mathilde. "Dimensional/Viscosimetric properties and branching rate of poly(sodium 2-acrylamido-2-methylpropane sulfonate) of high molar mass used for Enhanced Oil Recovery." Electronic Thesis or Diss., Pau, 2022. http://www.theses.fr/2022PAUU3077.
Full textThe knowledge of the dimensional properties (Mw, Rg, and the distributions), the viscosimetric properties ([η]), as well as, the branching rate of polymers is primordial for the implementation of a satisfactory Enhanced Oil Recovery (EOR) via polymer flooding. The principal objective of this thesis was to develop analytical methods in order to determine the characteristics of an optimized macromolecule developed by the SNF company, the poly(sodium 2-acrylamido-2-methylpropane sulfonate) (P(ATBS)). Two categories of P(ATBS) were studied: the models and the industrials. The models of high molar masses (1-6 million g/mol) were synthetized by Controlled Radical Polymerization (CRP), for which the branching was controlled by the addition of a crosslinking agent. While the industrials of higher molar masses (8-19 million g/mol) were obtained by Radical Polymerization (RP), for which the branching could be induced by chain transfer reactions. The characterization of the dimensional/viscosimetric properties and the branching rate for both P(ATBS) categories was performed by Size Exclusion Chromatography (SEC), Frit-Inlet Asymmetric Flow Field-Flow Fractionation (FIA4F), capillary viscometry and Multi-Angle Light Scattering (MALS). A correlation of the physico-chemical properties was done to understand the behaviour of the P(ATBS) in solution. A related study was done by Pyrolysis coupled to a Gaz Chromatography and a Mass Spectrometer (Py-GC/MS) for the qualitative and quantitative analyses of the P(ATBS). To this day, the P(ATBS) has never been studied by this technique
Li, Wei-Chen, and 李威震. "Fully transparent and flexible humidity sensors fabricated by layer-by-layer self-assembly of thin film of poly(2-acrylamido-2-methylpropane sulfonate) and its salt complex." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/98923404121281925862.
Full text中國文化大學
應用化學研究所
98
A novel fully transparent and flexible impedance-type humidity sensor was fabricated by the LBL self-assembly of poly(2-acrylamido-2-methylpropane sulfonate) (PAMPS) polymer electrolyte and PAMPS thin films that were doped with salts (NaCl and K2CO3) on a flexible substrate (polyester film; PET) substrate with a pair of comb-like aluminum-doped ZnO (AZO) transparent electrodes. The electrical properties of the LBL self-assembled PAMPS polymer electrolyte thin films were studied in detail as functions of relative humidity (RH), to elucidate the effects of the deposition concentration of PAMPS and the number of PAMPS multilayers on the sensing properties. NaCl and K2CO3 were simultaneously doped into PAMPS polyelectrolyte to improve the sensing properties (sensitivity and linearity) of the transparent and flexible impedance-type humidity sensors. The transparency, flexibility, hysteresis, ambient temperature, response and recovery times and long-term stability were also studied.