Academic literature on the topic 'Poly (lactic acid)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Poly (lactic acid).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Poly (lactic acid)"

1

Kim, Sung Hea, and Sang Cheol Lee. "Enhancement of Poly(L-lactic acid)/Poly(D-lactic acid) Stereocomplexation by Adding Poly(DL-lactic acid)." Textile Science and Engineering 52, no. 2 (April 30, 2015): 132–35. http://dx.doi.org/10.12772/tse.2015.52.132.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Orozco, F. G., A. Valadez-González, J. A. Domínguez-Maldonado, F. Zuluaga, L. E. Figueroa-Oyosa, and L. M. Alzate-Gaviria. "Lactic Acid Yield Using Different Bacterial Strains, Its Purification, and Polymerization through Ring-Opening Reactions." International Journal of Polymer Science 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/365310.

Full text
Abstract:
Laboratory-scale anaerobic fermentation was performed to obtain lactic acid from lactose, using five lactic acid bacteria:Lactococcus lactis, Lactobacillus bulgaricus, L. delbrueckii, L. plantarum,andL. delbrueckii lactis. A yield of 0.99 g lactic acid/g lactose was obtained withL. delbrueckii, from which a final concentration of 80.95 g/L aqueous solution was obtained through microfiltration, nanofiltration, and inverse osmosis membranes. The lactic acid was polymerized by means of ring-opening reactions (ROP) to obtain poly-DL-lactic acid (PDLLA), with a viscosity average molecular weight (Mv) of 19,264 g/mol.
APA, Harvard, Vancouver, ISO, and other styles
3

Tsuji, Hideto, and Yuki Arakawa. "Synthesis, properties, and crystallization of the alternating stereocopolymer poly(l-lactic acid-alt-d-lactic acid) [syndiotactic poly(lactic acid)] and its blend with isotactic poly(lactic acid)." Polymer Chemistry 9, no. 18 (2018): 2446–57. http://dx.doi.org/10.1039/c8py00391b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Vayshbeyn, Leonid Ilyich, Elena Evgenyevna Mastalygina, Anatoly Aleksandrovich Olkhov, and Maria Victorovna Podzorova. "Poly(lactic acid)-Based Blends: A Comprehensive Review." Applied Sciences 13, no. 8 (April 20, 2023): 5148. http://dx.doi.org/10.3390/app13085148.

Full text
Abstract:
Aliphatic and aromatic polyesters of hydroxycarboxylic acids are characterized not only by biodegradability, but also by biocompatibility and inertness, which makes them suitable for use in different applications. Polyesters with high enzymatic hydrolysis capacity include poly(lactic acid), poly(ε-caprolactone), poly(butylene succinate) and poly(butylene adipate-co-terephthalate), poly(butylene succinate-co-adipate). At the same time, poly(lactic acid) is the most durable, widespread, and cheap polyester from this series. However, it has a number of drawbacks, such as high brittleness, narrow temperature-viscosity processing range, and limited biodegradability. Three main approaches are known for poly(lactic acid) modification: incorporation of dispersed particles or low molecular weight and oligomeric substances, copolymerization with other polymers, and blending with other polymers. The review includes an analysis of experimental works devoted to developing mixtures based on poly(lactic acid) and other polymers. Regularities in the formation of the structure of such systems and the possibility of controlling the properties of poly(lactic acid) are considered.
APA, Harvard, Vancouver, ISO, and other styles
5

Yao, Jun Yan, Yu Jie Li, Zhi Du, and Ming He Chen. "Electrospinning of Poly(Lactic Acid)/Poly(Lactic Acid-Co-Lysine) Blend." Applied Mechanics and Materials 665 (October 2014): 371–74. http://dx.doi.org/10.4028/www.scientific.net/amm.665.371.

Full text
Abstract:
Electrospun poly (lactic acid)/poly (lactic acid-co-lysine) (PLA/PLL) blend were prepared, and the structures including fibers, beads and microspheres and properties of electrospun material were characterized. Viscosity, conductivity and surface tension of electrospinning solution had critical effect on the structures of the electrospun blend. The optimization process conditions of PLA/PLL electrospun fibers, beads and microspheres were confirmed and the structures, thermal properties, crystal properties, and hydrophilicity were analyzed. The results showed that the average diameter of electrospun PLA/PLL fibers was less than that of PLA under the same spinning process, and the crystallinity of spun products was affected by solution concentration, pushing speed and spinning voltage. Accurate controlling of spinning product morphology can be achieved by adjusting the formulation of electrospinning solution and spinning process. The addition of PLL into PLA could improve the hydrophilicity of electrospun PLA/PLL products.
APA, Harvard, Vancouver, ISO, and other styles
6

Novais, Rui M., Frank Simon, Petra Pötschke, Tobias Villmow, José A. Covas, and Maria C. Paiva. "Poly(lactic acid) composites with poly(lactic acid)-modified carbon nanotubes." Journal of Polymer Science Part A: Polymer Chemistry 51, no. 17 (June 6, 2013): 3740–50. http://dx.doi.org/10.1002/pola.26778.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rahaman, Hafezur, Sagor Hosen, Abdul Gafur, and Rasel Habib. "Small amounts of poly( -lactic acid) on the properties of poly( -lactic acid)/microcrystalline cellulose/ poly( -lactic acid) blends." Results in Materials 8 (December 2020): 100125. http://dx.doi.org/10.1016/j.rinma.2020.100125.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Park, Yejin, and Jonghwi Lee. "Preparation of Biodegradable Poly(lactic acid)-Cellulose Composite Foam." Polymer Korea 46, no. 1 (January 31, 2022): 101–6. http://dx.doi.org/10.7317/pk.2022.46.1.101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kim, Ja Won, and Hong Sung Kim. "Synthesis and Characteristics of Poly(L-lactic acid-block-γ-aminobutyric acid)." Textile Science and Engineering 52, no. 1 (February 28, 2015): 53–58. http://dx.doi.org/10.12772/tse.2015.52.053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Perry, Caroline M. "Poly-L-Lactic Acid." American Journal of Clinical Dermatology 5, no. 5 (2004): 361–66. http://dx.doi.org/10.2165/00128071-200405050-00010.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Poly (lactic acid)"

1

Wang, Peiyao. "Stereopure Functionalized Poly(lactic acid)." University of Akron / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=akron1366631276.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Shyamroy, S. "Synthesis of biodegradable poly (lactic acid) polymers." Thesis(Ph.D.), CSIR-National Chemical Laboratory, Pune, 2003. http://dspace.ncl.res.in:8080/xmlui/handle/20.500.12252/2861.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lei, Xia. "Blends of High Molecular Weight Poly(lactic acid) (PLA) with Copolymers of 2-bromo-3-hydroxypropionic Acid And Lactic Acid (PLB)." University of Akron / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=akron1367402061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yan, Jialu. "Enzymatic Polyesterification to Produce Functionalized Poly(Lactic Acid) and Poly(n-Hydroxyalkanoic Acid)s." University of Akron / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=akron1375415868.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Li, Yonghui. "Biodegradable poly(lactic acid) nanocomposites: synthesis and characterization." Diss., Kansas State University, 2011. http://hdl.handle.net/2097/8543.

Full text
Abstract:
Doctor of Philosophy
Department of Grain Science and Industry
X. Susan Sun
Biobased polymers derived from renewable resources are increasingly important due to acute concerns about the environmental issues and limited petroleum resources. Poly(lactic acid) (PLA) is such a polymer that has shown great potential to produce biodegradable plastics. However, low glass transition temperature (Tg), low thermal stability, slow biodegradation rate, and high cost limit its broad applications. This dissertation seeks to overcome these limitations by reinforcing PLA with inorganic nanoparticles and low-cost agricultural residues. We first synthesized PLA nanocomposites by in situ melt polycondensation of L-lactic acid and surface-hydroxylized nanoparticles (MgO nanocrystals and TiO2 nanowires) and investigated the structure-property relationships. PLA grafted nanoparticles (PLA-g-MgO, PLA-g-TiO2) were isolated from the bulk nanocomposites via repeated dispersion/centrifugation processes. The covalent grafting of PLA chains onto nanoparticle surface was confirmed by Fourier transform infrared spectroscopy and thermalgravimetric analysis (TGA). Transmission electron microscopy and differential scanning calorimetry (DSC) results also sustained the presence of the third phase. Morphological images showed uniform dispersion of nanoparticles in the PLA matrix and demonstrated a strong interfacial interaction between them. Calculation based on TGA revealed that more than 42.5% PLA was successfully grafted into PLA-g-MgO and more than 30% was grafted into PLA-g-TiO2. Those grafted PLA chains exhibited significantly increased thermal stability. The Tg of PLA-g-TiO2 was improved by 7 °C compared with that of pure PLA. We also reinforced PLA with low-value agricultural residues, including wood flour (WF), soy flour (SF), and distillers dried grains with solubles (DDGS) by thermal blending. Tensile measurements and morphological images indicated that methylene diphenyl diisocyanate (MDI) was an effective coupling agent for PLA/WF and PLA/DDGS systems. MDI compatibilized PLA/WF and PLA/DDGS composites showed comparable tensile strength and elongation at break as pure PLA, with obviously increased Young’s modulus. Increased crystallinity was observed for PLA composites with SF and DDGS. Such PLA composites have similar or superior properties compared with pure PLA, especially at a lower cost and higher biodegradation rate than pure PLA. The results from this study are promising. These novel PLA thermoplastic composites with enhanced properties have potential for many applications, such as packaging materials, textiles, appliance components, autoparts, and medical implants.
APA, Harvard, Vancouver, ISO, and other styles
6

Corre, Yves-Marie. "Poly (lactic acid) foaming assisted by supercritical CO2." Lyon, INSA, 2010. http://theses.insa-lyon.fr/publication/2010ISAL0106/these.pdf.

Full text
Abstract:
The poly (lactic acid) (PLA), through its organic origin and its biodegradation properties, can be a good alternative to petroleum-based polymers. To this end, the foaming of PLA by supercritical CO2 was evaluated in this study as an alternative to expanded polystyrene (EPS) for the production of food packaging. Because low rheological properties of this type of polyester, a first chain extension step was necessary to ensure a good foaming ability of PLA. Following a full characterization in physicochemical, rheological and thermal domain, a batch foaming assisted with supercritical CO2 was achieved. The influence of the foaming parameters, the extent of chain modificaton as well as the contribution of crystallization on cell morphology was evaluated. Based on these parameters, structures ranging from micro to macro-cellular-cell were obtained
Le polylactide (PLA), par son origine bio sourcée et ses propriétés de biodégradation, peut être une bonne alternative aux polymères issus du pétrole. Dans cet objectif, le moussage du PLA par CO2 supercritique a été évalué dans cette étude comme substitution au polystyrène expansé (PSE) pour la production d'emballages alimentaires. Du fait des propriétés rhéologiques faibles de ce type de polyester, une première étape d'extension de chaînes a été nécessaire afin de garantir des bonnes aptitudes au moussage du PLA. Suite a une caractérisation complète dans le domaine physico-chimique, rhéologique et thermique, une étude de moussage en mode batch sous CO2 supercritique a été réalisée. Les paramètres de moussage, le taux de modification du matériau ainsi que de l'apport de la cristallisation sur la morphologie cellulaire ont été évalués. En fonction de ces différents paramètres, des structures allant du micro-cellulaire au macro-cellulaire ont été obtenues
APA, Harvard, Vancouver, ISO, and other styles
7

Gonçalves, Carla Maria Batista. "Barrier properties of poly(lactic acid) based films." Doctoral thesis, Universidade de Aveiro, 2014. http://hdl.handle.net/10773/14296.

Full text
Abstract:
Doutoramento em Engenharia Química
In recent years, the search for a environmentally friendly products has increased. One of the major challenges has been the demand for biodegradable materials that can replace plastic. If a few decades ago, plastic replaced, for example, the ivory in billiard balls, and in other products, saving the lives of thousands elephants, nowadays a replacement for that plastic is being searched, to prevent the change of the environmental conditions, essential to life in harmonly with the fauna and flora that the human specie has, in recent years, destroyed. Plastic is a petroleum derivate, whose price has been growing exponentially, mainly due to the fact of beind a cheap material and also to enable the production of products that are essential to modern life. Therefore, the petrochemical era is going to come to an end and a new environmentally sustainable era, based on biodegradable materials from renewable sources, will follow. The change to green routes only will be possible with the support of the major companies, and the implementation of drastic governmental law. Poly(lactic acid), PLA, is produced from the lactose present in the corn or sugarcane and has been intensively studied in recent years because if some limitants properties required its extrusion are overcome, it has the potential to replace the traditional polymers. PLA have high brittleness, low toughness and low tensile elongation. In this work, natural antioxidant (alpha-tocopherol) and synthetics antioxidants (BHT ant TBHQ) were added to the PLA with the aim not only to improve their flexibility, but also to create an active packaging to extend the shelf life of the foods and improve the organoleptic properties by preventing food losses. The impact of the addition of antioxidants into the PLA films, in its mechanical, thermal and barrier properties were studied by FTIR, DSC, SEM, AFM, DMA, TGA, QCM and time-lag techniques.
Nos últimos anos temos assistido à procura de produtos amigos do ambiente. Um dos maiores desafios tem sido a procura de materiais biodegradáveis que possam substituir materiais vulgarmente designados por “plástico”. Se há dezenas de anos o plástico veio, por exemplo, substituir o marfim nas bolas de bilhar, salvando vidas de milhares de elefantes, hoje, procuramos um substituto para esse plástico, de forma a preservar as condições ambientais que nos permitem viver harmoniosamente com a restante fauna e flora, e que a espécie humana tem, nos últimos anos, vindo a destruir. O plástico é um derivado do petróleo, cujo preço tem vindo a crescer exponencialmente, devido ao facto de ser barato e possuir propriedades que permitem desenhar produtos essenciais à vida quotidiana. Por isso, precisamos de sair da era petroquímica e entrar numa nova era ambientalmente sustentável, baseada em materiais biodegradáveis provenientes de fontes renováveis. Esta mudança para rotas “verdes”, só será possível com o apoio de grandes empresas, e medidas governamentais drásticas. O poliácido láctico, PLA, produzido a partir da lactose presente no amido ou no açúcar, tem sido intensivamente estudado nos últimos anos e possui potencial para substituir os tradicionais polímeros derivados do petróleo, se forem melhoradas algumas propriedades necessárias ao processamento por extrusão. O PLA, é muito frágil, pouco resistente e pouco flexível. Neste trabalho foram adicionados antioxidantes naturais (alfa-tocoferol) e sintéticos (BHT e TBHQ) ao PLA com o objetivo não só de melhorar as suas propriedades mecânicas, mas também de criar uma embalagem ativa que prolongue o prazo de validade dos alimentos e melhore as suas propriedades organoléticas prevenindo alterações ou perda de sabor. O impacto da adição destes antioxidantes nas propriedades originais do PLA a nível mecânico, térmico e de barreira foi estudado pela utilização das técnicas de FTIR, DSC, SEM, AFM, DMA, TGA, QCM e time-lag.
APA, Harvard, Vancouver, ISO, and other styles
8

Rasal, Rahul M. "Surface and bulk modification of poly(lactic acid)." Connect to this title online, 2009. http://etd.lib.clemson.edu/documents/1246558434/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Oliveira, Juliana de. "Poly(Lactic acid) production by conventional and microwave polymerization of lactic acid produced in submerged fermentation." reponame:Repositório Institucional da UFPR, 2016. http://hdl.handle.net/1884/46421.

Full text
Abstract:
Orientador : PhD. Luciana Porto de Souza Vandenberghe
Coorientadores : PhD. Carlos Ricardo Soccol e PhD. Sônia Faria Zawadzki
Tese (doutorado) - Universidade Federal do Paraná, Setor de Tecnologia, Programa de Pós-Graduação em Engenharia de Bioprocessos e Biotecnologia. Defesa: Curitiba, 09/06/2016
Inclui referências : f. 115-128
Área de concentração: Agroindústria e biocombustíveis
Resumo: Poli(ácido lático), poliéster, é um polímero biodegravável aplicado em produtos como embalagens, têxteis, médicos e farmacêuticos. Pode ser obtido a partir do monômero ácido lático (AL) por meio da reação de policondensação direta e pela polimerização por abertura de anel do lactídeo. O AL é um ácido orgânico que apresenta diversas aplicações principalmente na indústria alimentícia, assim como na indústria farmacêutica, química e de polímeros. A produção do AL por fermentação oferece vantagens tais como a produção do isômero opticamente puro. As necessidades nutricionais da bactéria aumentam o custo de produção do AL, portanto substratos alternativos tem sido estudados por apresentarem uma alternativa econômica para este processo. O objetivo deste trabalho foi a produção de ácido lático por Lactobacillus pentosus em fermentação submersa utilizando subproduto do processamento da batata e caldo de cana como substratos para a obtenção de poli(ácido lático). Estes sub-produtos porque possuem alta concentração de fonte de carbono e volumes significativos são gerados anualmente, o que justifica sua a re-utilização e valorização. O sub-produto do processamento da batata foi submetido a hidrólise ácida com o objetivo de converter o amido em glucose. A produção de AL foi otimizada utilizando etapas de planejamento experimental estatístico envolvendo a seleção de bactérias do gênero Lactobacillus, definição da composição do meio de cultivo e estudos de cinética em frascos de Erlenmeyer e biorreator do tipo tanque agitado. A produção de AL chegou a 150 g/L utilizando sub-produto do processamento da batata e 225 g/L utilizando caldo de cana em 96 horas de fermentação. O uso da célula inteira de levedura de panificação como fonte de nitrogênio e a condição de fermentação não estéril demostraram ser boas alternativas para um processo industrial de produção de AL. O processo de separação e recuperação do AL do caldo fermentado foi desenvolvido para obtenção da molécula purificada e estudos de polimerização com o monômero obtido. O processo desenvolvido consistiu no aquecimento do caldo fermentado seguido pela etapa de centrifugação. A etapa de clarificação foi realizada utilizando carvão ativado em pó seguida pela precipitação a baixa temperatura e acidificação do lactato de cálcio para conversão em ácido lático. O processo foi efetivo para remoção de contaminantes que estavam presentes no caldo fermentado. A concentração final de AL em solução aquosa foi de 416 g/L com um rendimento de 51%. Os estudos de polimerização foram desenvolvidos utilizando a técnica de policondensação direta do AL, por meio de dois diferentes sistemas de aquecimento, convencional e micro-ondas. Um polímero com massa molar de 6330 g/mol e 61% de rendimento foi obtido a partir de um AL comercial e utilizando o AL obtido por fermentação resultou em um polímero com massa molar de 2370 g/mol. O processo de aquecimento por micro-ondas proporcionou um maior rendimento, 79% e 76% para o AL comercial e obtido por fermentação, respectivamente. Porém, foi obtida menor massa molar que o processo convencional, 2070 para o AL comercial e 1450 para o AL obtido por fermentação. As propriedades físico-químicas do poli(ácido lático) demonstraram aplicação em encapsulamento de compostos bioativos e engenharia de tecido. As perspectivas de sequência de estudos são a aplicação em encapsulamento de moléculas, modificações do polímeros e desenvolvimento de compósitos. PALAVRAS CHAVE: Poli(ácido lático), sub-produto do processamento da batata, caldo de cana, policondensação
Abstract: Poly (lactic acid) (PLA) is a polyester, which has a predominant role as biodegradable plastic, that is applied in packaging, textile, medical and pharmaceutical products. It can be obtained from lactic acid by direct polycondensation and by ring-opening polymerization (ROP) of lactide. Lactic acid (LA) is an organic acid that presents diverse applications mostly in food industry, as well as in pharmaceutical, chemical industries and polymers. The production of LA by fermentation offers the advantage of producing optically high pure LA. Nutritional requirements of bacteria increase the cost of LA production so alternatives substrates have been studied to bring an economical alternative for this process. The aim of this work was the production of LA by Lactobacillus pentosus in submerged fermentation using potato processing waste and sugarcane juice as substrate in order to obtain poly(lactic acid). The fermentation process was developed using potato processing waste and sugarcane juice because of their high carbon source concentration. Important volumes of both sub-products were generated, which is another reason for their re-use and valorization. Potato processing waste was submitted to hydrolysis in order to convert starch to glucose. LA production by fermentation was optimized using, statistical experimental design approach steps of optimization involved the screening of bacteria of the genus Lactobacillus and definition of medium composition kinetics studies in Erlenmeyer flask and stirred tank reactor were also carried out. LA production reached 150 g/l using potato processing waste, it was and 225 g/l with sugar cane juice after 96 hours of fermentation. The use of baker's yeast as a source of nitrogen and nonsterile conditions demonstrated good alternatives for an industrial production process of LA. The separation and recovery process of LA from fermented broth was developed to obtain a purified molecule for further polymerization studies. The developed process consisted in heating the fermented broth, then a centrifugation step was conducted for removal of the cells and suspended solids. A clarification step was included with powered activated carbon with further precipitation at low temperature and acidification of calcium lactate to convert to LA. The process was effective for removal of contaminants that were present in the fermentation medium. Final concentration of LA in aqueous solution reached 416 g/l and a yield of 51%. Polymerization studies were then carried out using direct polycondensation of LA, that were carried out with two different heating systems, conventional and microwave heating. A polymer with 6330 g/mol of molecular weight and 61% of yield was obtained from commercial LA and using fermented LA resulted in 2370 g/mol. Microwave heating process provided a higher yield, 79% and 76% for commercial and fermented LA, respectively. Nevertheless, the molecular weight was lower than conventional process, 2070 for commercial LA and 1450 for fermented LA. Physicochemical properties of PLA demonstrated application in encapsulation of bioactive compounds and tissue engineering. Perspectives of sequence of the studies: application on encapsulation of molecules, modifications of polymer and development of composites. KEYWORDS: Poly(lactic acid); potato processing waste; sugarcane juice; polycondensation
APA, Harvard, Vancouver, ISO, and other styles
10

Sinclair, Fern. "Modification of poly(lactic acid) via olefin cross-metathesis." Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/28896.

Full text
Abstract:
Poly(lactic acid), PLA, is a viable replacement to petroleum derived polymers due to its renewable feedstock, biodegradability and bioassimilability, yet improvements in its physical, thermal and mechanical properties are required before it can fully enter all commodity markets. This thesis investigates olefin cross-metathesis (CM) as a synthetic strategy to modify the properties of PLA. The use of novel lanthanide and actinide catalysts on the microstructure control of PLA are also explored. The Tebbe reagent was used in a new synthetic strategy to produce a novel olefin derivative of lactide (MML). Olefin CM of MML with hex-1-ene was successful but polymerisation pre- and post-CM was unsuccessful due to monomer instability. CM of another olefin derivative of lactide, 3-methylenated lactide (3-ML) was successful with aliphatic alkenes; hex-1-ene to dodec-1-ene. To overcome competing alcoholysis of the functionalised monomers, which prevented polymerisation, hydrogenation was used to remove the olefin entity followed by successful ring-opening polymerisation (ROP) to produce polymers of low glass-transition temperatures (Tg). Post-polymerisation CM on an olefin containing polymer P(β-heptenolactone) P(β-HL), with methyl acrylate and an epoxide, generated functionalised homopolymers with increased Tg’s. Co-polymerisation of lactide with β-HL generated novel gradient-copolymers. Olefin CM with 15 different cross-partners produced functionalised copolymers with different thermal properties. Based on this route a new methodology was created to introduce two unique functionalities into the polymer backbone by manipulation of the olefin reactivities. Finally, in a collaborative project, uranium and cerium catalysts, Me3SiOU(OArP)3 and Me3SiOCe(OArP)3 - designed out-with the group- were tested and compared as ROP catalysts for lactide. Both catalysts were active in living polymerisations of L-lactide and under immortal conditions the activity and rates of the catalysts were switched, accounted for by a change in the coordination sphere due to ligand displacement. ROP of rac-lactide using the uranium analogue produced heterotactic-biased PLA with a Pr = 0.79.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Poly (lactic acid)"

1

Auras, Rafael, Loong-Tak Lim, Susan E. M. Selke, and Hideto Tsuji, eds. Poly(Lactic Acid). Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470649848.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jiménez, Alfonso, Mercedes Peltzer, and Roxana Ruseckaite, eds. Poly(lactic acid) Science and Technology. Cambridge: Royal Society of Chemistry, 2014. http://dx.doi.org/10.1039/9781782624806.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Di Lorenzo, Maria Laura, and René Androsch, eds. Industrial Applications of Poly(lactic acid). Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75459-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Di Lorenzo, Maria Laura, and René Androsch, eds. Synthesis, Structure and Properties of Poly(lactic acid). Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-64230-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ren, Jie. Biodegradable Poly(Lactic Acid): Synthesis, Modification, Processing and Applications. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ren, Jie. Biodegradable Poly(Lactic Acid): Synthesis, Modification, Processing and Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17596-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rafael, Auras, ed. Poly(lactic acid): Synthesis, structures, properties, processing, and applications/ edited by Rafael Auras ... [et al.]. Hoboken, N.J: Wiley, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tsuji, Hideto, Rafael A. Auras, and Loong-Tak Lim. Poly(lactic Acid). Wiley & Sons, Incorporated, John, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lorenzo, Maria Laura Di, and René Androsch. Industrial Applications of Poly. Springer, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lorenzo, Maria Laura Di, and René Androsch. Industrial Applications of Poly. Springer, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Poly (lactic acid)"

1

Groot, Wim, Jan van Krieken, Olav Sliekersl, and Sicco de Vos. "Production and Purification of Lactic Acid and Lactide." In Poly(Lactic Acid), 1–18. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470649848.ch1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dorgan, John R. "Rheology of Poly(Lactic Acid)." In Poly(Lactic Acid), 125–39. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470649848.ch10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Perego, Gabriele, and Gian Domenico Cella. "Mechanical Properties." In Poly(Lactic Acid), 141–53. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470649848.ch11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Almenar, Eva, and Rafael Auras. "Permeation, Sorption, and Diffusion in Poly(Lactic Acid)." In Poly(Lactic Acid), 155–79. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470649848.ch12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Soto-Valdez, Herlinda. "Migration." In Poly(Lactic Acid), 181–88. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470649848.ch13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lim, Loong-Tak, Kevin Cink, and Tim Vanyo. "Processing of Poly(Lactic Acid)." In Poly(Lactic Acid), 189–215. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470649848.ch14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yu, Long, Eustathios Petinakis, Katherine Dean, and Hongshen Liu. "Poly(Lactic Acid)/Starch Blends." In Poly(Lactic Acid), 217–26. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470649848.ch15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Detyothin, Sukeewan, Ajay Kathuria, Waree Jaruwattanayon, Susan E. M. Selke, and Rafael Auras. "Poly(Lactic Acid) Blends." In Poly(Lactic Acid), 227–71. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470649848.ch16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Matuana, Laurent M. "Foaming." In Poly(Lactic Acid), 273–91. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470649848.ch17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ghosh, Subrata Bandhu, Sanchita Bandyopadhyay-Ghosh, and Mohini Sain. "Composites." In Poly(Lactic Acid), 293–310. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470649848.ch18.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Poly (lactic acid)"

1

Srithep, Yottha, Dutchanee Pholharn, and John Morris. "Injection-molded poly(L-lactic acid)/poly(D-lactic acid) blends: Thermal and mechanical properties." In MATERIALS CHARACTERIZATION USING X-RAYS AND RELATED TECHNIQUES. Author(s), 2019. http://dx.doi.org/10.1063/1.5088277.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Greco, Antonio, and Alfonso Maffezzoli. "Rotational moulding of poly-lactic acid." In PROCEEDINGS OF THE REGIONAL CONFERENCE GRAZ 2015 – POLYMER PROCESSING SOCIETY PPS: Conference Papers. Author(s), 2016. http://dx.doi.org/10.1063/1.4965528.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sartore, Luciana, Stefano Pandini, Francesco Baldi, and Fabio Bignotti. "Superabsorbent biphasic system based on poly(lactic acid) and poly(acrylic acid)." In VIII INTERNATIONAL CONFERENCE ON “TIMES OF POLYMERS AND COMPOSITES”: From Aerospace to Nanotechnology. Author(s), 2016. http://dx.doi.org/10.1063/1.4949682.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Li, Ruihua, and Donggang Yao. "Manufacturing of Single Poly(Lactic Acid) Composites." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-15268.

Full text
Abstract:
An approach of utilizing slowly crystallizing dynamics for fabrication of poly(lactic acid) (PLA) single-polymer composites (SPCs) was investigated. As a slowly crystallizing polymer, PLA can be prepared as two distinct physical forms, amorphous (or near-amorphous) PLA and highly crystalline PLA. In this study, near-amorphous PLA films and highly crystalline PLA fibers were combined to form a SPC using a rapid hot compaction method at a temperature about 40°C below PLA's melting temperature. It was found that, by rapidly heating an amorphous-crystalline lamination above PLA's glass transition temperature during manufacturing, amorphous films can be fused and good adhesion between the amorphous film and the crystalline fiber can be achieved. Mechanical testing showed that the tearing strength of the SPC is almost half an order higher that that of the original PLA film.
APA, Harvard, Vancouver, ISO, and other styles
5

Hemajothi, S., Sathish Kumar S, Vimal Kumar J, and Saravanan V. "Stereolithography using Poly Lactic Acid (PLA) Filament." In 2023 International Conference on Recent Advances in Science and Engineering Technology (ICRASET). IEEE, 2023. http://dx.doi.org/10.1109/icraset59632.2023.10420243.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Faisal, M., T. Saeki, H. Tsuji, H. Daimon, and K. Fujie. "Recycling of poly lactic acid into lactic acid with high temperature and high pressure water." In WASTE MANAGEMENT 2006. Southampton, UK: WIT Press, 2006. http://dx.doi.org/10.2495/wm060251.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sekito, Takeshi, Yuichi Miyake, and Masatoshi Matsuda. "Performance Improvement of Eco Plastics/Poly Lactic Acid." In SAE 2006 World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2006. http://dx.doi.org/10.4271/2006-01-0335.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

"POLY(LACTIC ACID) BASED POLYMER COMPOSITES FOR BIOMEDICINE." In Fizicheskaya mezomekhanika. Materialy s mnogourovnevoy ierarkhicheski organizovannoy strukturoy i intellektual'nye proizvodstvennye tekhnologii. Tomsk State University, 2020. http://dx.doi.org/10.17223/9785946219242/230.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lebedev, Sergey M., Igor A. Khlusov, and Dmitry M. Chistokhin. "Poly(lactic acid) based polymer composites for biomedicine." In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON PHYSICAL MESOMECHANICS. MATERIALS WITH MULTILEVEL HIERARCHICAL STRUCTURE AND INTELLIGENT MANUFACTURING TECHNOLOGY. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0034060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tri Phuong, Nguyen, Alain Guinault, Cyrille Sollogoub, Francisco Chinesta, Yvan Chastel, and Mohamed El Mansori. "MISCIBILITY AND MORPHOLOGY OF POLY(LACTIC ACID)∕POLY(Β-HYDROXYBUTYRATE) BLENDS." In INTERNATIONAL CONFERENCE ON ADVANCES IN MATERIALS AND PROCESSING TECHNOLOGIES (AMPT2010). AIP, 2011. http://dx.doi.org/10.1063/1.3552436.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Poly (lactic acid)"

1

Raman, Sharan. Toughening of Poly L-Lactic Acid using Diblock Copolymers. Ames (Iowa): Iowa State University, January 2018. http://dx.doi.org/10.31274/cc-20240624-1510.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kotsilkova, Rumiana, and Vladimir Georgiev. Influence of Graphene Size and Content on Thermal Conductivity of Novel Poly(lactic) Acid Nanocomposites. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, April 2021. http://dx.doi.org/10.7546/crabs.2021.04.06.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ibay, Augusto C. Synthesis of Poly(Lactoylglycolate): An Alternating Copolymer of Lactic and Glycolic Acids. Fort Belvoir, VA: Defense Technical Information Center, November 1987. http://dx.doi.org/10.21236/ada199413.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography