Journal articles on the topic 'Poly(acrylate) networks'

To see the other types of publications on this topic, follow the link: Poly(acrylate) networks.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Poly(acrylate) networks.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Rault, J., A. Lucas, R. Neffati, and M. Monleón Pradas. "Thermal Transitions in Hydrogels of Poly(ethyl acrylate)/Poly(hydroxyethyl acrylate) Interpenetrating Networks." Macromolecules 30, no. 25 (December 1997): 7866–73. http://dx.doi.org/10.1021/ma970344i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yan, Liang, Duc-Truc Pham, Philip Clements, Stephen F. Lincoln, Jie Wang, Xuhong Guo, and Christopher J. Easton. "β-Cyclodextrin- and adamantyl-substituted poly(acrylate) self-assembling aqueous networks designed for controlled complexation and release of small molecules." Beilstein Journal of Organic Chemistry 13 (September 7, 2017): 1879–92. http://dx.doi.org/10.3762/bjoc.13.183.

Full text
Abstract:
Three aqueous self-assembling poly(acrylate) networks have been designed to gain insight into the factors controlling the complexation and release of small molecules within them. These networks are formed between 8.8% 6A-(2-aminoethyl)amino-6A-deoxy-6A-β-cyclodextrin, β-CDen, randomly substituted poly(acrylate), PAAβ-CDen, and one of the 3.3% 1-(2-aminoethyl)amidoadamantyl, ADen, 3.0% 1-(6-aminohexyl)amidoadamantyl, ADhn, or 2.9% 1-(12-aminododecyl)amidoadamantyl, ADddn, randomly substituted poly(acrylate)s, PAAADen, PAAADhn and PAAADddn, respectively, such that the ratio of β-CDen to adamantyl substituents is ca. 3:1. The variation of the characteristics of the complexation of the dyes methyl red, methyl orange and ethyl orange in these three networks and by β-cyclodextrin, β-CD, and PAAβ-CDen alone provides insight into the factors affecting dye complexation. The rates of release of the dyes through a dialysis membrane from the three aqueous networks show a high dependence on host–guest complexation between the β-CDen substituents and the dyes as well as the structure and the viscosity of the network as shown by ITC, 1H NMR and UV–vis spectroscopy, and rheological studies. Such networks potentially form a basis for the design of controlled drug release systems.
APA, Harvard, Vancouver, ISO, and other styles
3

Andreopoulos, A. G. "Properties of poly(2-hydroxyethyl acrylate) networks." Biomaterials 10, no. 2 (March 1989): 101–4. http://dx.doi.org/10.1016/0142-9612(89)90040-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

G�mez Ribelles, J. L., M. Monle�n Pradas, G. Gallego Ferrer, N. Peidro Torres, V. P�rez Gim�nez, P. Pissis, and A. Kyritsis. "Poly(methyl acrylate)/poly(hydroxyethyl acrylate) sequential interpenetrating polymer networks. Miscibility and water sorption behavior." Journal of Polymer Science Part B: Polymer Physics 37, no. 14 (July 15, 1999): 1587–99. http://dx.doi.org/10.1002/(sici)1099-0488(19990715)37:14<1587::aid-polb4>3.0.co;2-u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Campillo-Fernández, Alberto J., Manuel Salmerón Sánchez, Roser Sabater i Serra, José María Meseguer Dueñas, Manuel Monleón Pradas, and José Luis Gómez Ribelles. "Water-induced (nano) organization in poly(ethyl acrylate-co-hydroxyethyl acrylate) networks." European Polymer Journal 44, no. 7 (July 2008): 1996–2004. http://dx.doi.org/10.1016/j.eurpolymj.2008.04.032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mellal, T., M. Habchi, and B. Dali Youcef. "Effect of nature and degree of crosslinking agent of poly(hydroxy-butyl-methacrylate-co-2-ethyl-hexyl-acrylate) networks on the swelling properties in nematic liquid crystal 5CB." Revista Mexicana de Física 66, no. 5 Sept-Oct (September 1, 2020): 617. http://dx.doi.org/10.31349/revmexfis.66.617.

Full text
Abstract:
We experimentally measured the effect of nature and concentration of crosslinker on the photopolymerized time of the poly(hydroxy-butyl-methacrylate-co-2-ethyl-hexyl-acrylate)/5CB system. Initial mixtures are composed of monofunctional monomers hydroxy-butyl-methacrylate (HBMA) and 2-ethyl-hexyl-acrylate (2-EHA), and one of the three bifunctional monomers, poly-propylene-glycol-di-acrylate (PPGDA), tri-propylene-glycol-di-acrylate (TPGDA), or 1,6-hexane-diol-di-acrylate (HDDA), and 2-hydroxy-2-methylpropiophenone (Darocur 1173) as a photoinitiator. The copolymers were elaborated via UV irradiation of reactive formulation. The central composite face-centered design of experiments (DoE) has been used to determine the influence of temperature, crosslinking density and their interactions on swelling behavior of poly(HBMA-co-EHA/crosslinker) networks in liquid crystal 5CB. The experimental results and the predicted responses indicate a good correlation and therefore the validity of the used model.
APA, Harvard, Vancouver, ISO, and other styles
7

Mpoukouvalas, Anastasia, Wenwen Li, Robert Graf, Kaloian Koynov, and Krzysztof Matyjaszewski. "Soft Elastomers via Introduction of Poly(butyl acrylate) “Diluent” to Poly(hydroxyethyl acrylate)-Based Gel Networks." ACS Macro Letters 2, no. 1 (December 18, 2012): 23–26. http://dx.doi.org/10.1021/mz300614m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gupta, Nidhi, and A. K. Srivastava. "Interpenetrating Polymer Networks Based on Poly Chromium Acrylate/Poly Acrylonitrile: Synthesis and Properties of Semi IPN-1." High Performance Polymers 4, no. 4 (August 1992): 225–35. http://dx.doi.org/10.1088/0954-0083/4/4/003.

Full text
Abstract:
A series of semi-I tpe interpenetrating polymer networks (IPN) based on poly chromium acrylate and poly acrylonitrile crosslinked with divinyl benzene have been synthesized. Synthetic details, including concentration of poly chromium acriylate (PCrA), acrylonitrile (AN) and divinyl benzene (DVB) and average molecular weight of PCrA were varied and their effect on the crosslink density of the network was studied by swelling experiments. High [PCrAJ and low [AN] increases swelling and thereby average molecular weight between crosslinks (M,). SEM micrographs and glass transition temperature show phase separation at high [PCrA] content.
APA, Harvard, Vancouver, ISO, and other styles
9

Frisch, Harry L., Linfu Wang, Weiyu Huang, Yao He Hua, Han X. Xiao, and Kurt C. Frisch. "Interpenetrating polymer networks from polyurethanes and poly(methyl acrylate)." Journal of Applied Polymer Science 43, no. 3 (August 5, 1991): 475–79. http://dx.doi.org/10.1002/app.1991.070430308.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Meseguer Dueñas, J. M., D. Torres Escuriola, G. Gallego Ferrer, M. Monleón Pradas, J. L. Gómez Ribelles, P. Pissis, and A. Kyritsis. "Miscibility of Poly(butyl acrylate)−Poly(butyl methacrylate) Sequential Interpenetrating Polymer Networks." Macromolecules 34, no. 16 (July 2001): 5525–34. http://dx.doi.org/10.1021/ma002046i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Li, Binyao, Xiping Bi, Donghua Zhang, and Fosong Wang. "Mutual entanglements in poly(vinyl acetate)/poly(methyl acrylate) interpenetrating polymer networks." Polymer 33, no. 13 (January 1992): 2740–43. http://dx.doi.org/10.1016/0032-3861(92)90447-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Kamal, Meet, and A. K. Srivastava. "STUDY ON THE MORPHOLOGY AND PROPERTIES OF INTERPENETRATING POLYMER NETWORKS OF POLY(ANTIMONY ACRYLATE) AND POLY(BISMUTH ACRYLATE)." Polymer-Plastics Technology and Engineering 40, no. 3 (May 31, 2001): 293–309. http://dx.doi.org/10.1081/ppt-100000250.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Hirose, Atsuko, Keisuke Shimada, Chie Hayashi, Hideyuki Nakanishi, Tomohisa Norisuye, and Qui Tran-Cong-Miyata. "Polymer networks with bicontinuous gradient morphologies resulting from the competition between phase separation and photopolymerization." Soft Matter 12, no. 6 (2016): 1820–29. http://dx.doi.org/10.1039/c5sm02399h.

Full text
Abstract:
3D uniaxially graded bicontinuous morphology obtained for a rhodamine B-labeled poly(ethyl acrylate)/methyl methacrylate (PEAR/MMA (11/89)) mixture along theZ-direction generated by the computer-assisted irradiation (CAI) method.
APA, Harvard, Vancouver, ISO, and other styles
14

Sánchez, M. Salmerón, G. Gallego Ferrer, C. Torregrosa Cabanilles, J. M. Meseguer Dueñas, M. Monleón Pradas, and J. L. Gómez Ribelles. "Forced compatibility in poly(methyl acrylate)/poly(methyl methacrylate) sequential interpenetrating polymer networks." Polymer 42, no. 25 (December 2001): 10071–75. http://dx.doi.org/10.1016/s0032-3861(01)00530-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Darras, Vincent, Odile Fichet, Françoise Perrot, Sylvie Boileau, and Dominique Teyssié. "Polysiloxane–poly(fluorinated acrylate) interpenetrating polymer networks: Synthesis and characterization." Polymer 48, no. 3 (January 2007): 687–95. http://dx.doi.org/10.1016/j.polymer.2006.11.058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Zhao, Chun-tian, Mao Xu, Wei Zhu, and Xiaolie Luo. "Novel interpenetrating polymer networks of polypropylene/poly( n -butyl acrylate)." Polymer 39, no. 2 (1998): 275–81. http://dx.doi.org/10.1016/s0032-3861(97)00138-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Yang, Guang, Xueyang Liu, Alfred Iing Yoong Tok, and Vitali Lipik. "Body temperature-responsive two-way and moisture-responsive one-way shape memory behaviors of poly(ethylene glycol)-based networks." Polymer Chemistry 8, no. 25 (2017): 3833–40. http://dx.doi.org/10.1039/c7py00786h.

Full text
Abstract:
In this work, crosslinked shape-memory polymer networks were prepared by thermally induced free-radical polymerizations of methacrylate-terminated poly(ethylene glycol) (PEG) and n-butyl acrylate (BA), which integrate thermal-responsive two-way and moisture-responsive one-way shape memory effects (SME).
APA, Harvard, Vancouver, ISO, and other styles
18

Qazvini, N. Taheri, and N. Mohammadi. "Segmental Dynamics in net -poly(methyl methacrylate)- co -poly(n-butyl acrylate) Copolymer Networks." Journal of Macromolecular Science, Part B 47, no. 6 (October 27, 2008): 1161–75. http://dx.doi.org/10.1080/00222340802403388.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Martinez, Michael R., Ziye Zhuang, Megan Treichel, Julia Cuthbert, Mingkang Sun, Joanna Pietrasik, and Krzysztof Matyjaszewski. "Thermally Degradable Poly(n-butyl acrylate) Model Networks Prepared by PhotoATRP and Radical Trap-Assisted Atom Transfer Radical Coupling." Polymers 14, no. 4 (February 12, 2022): 713. http://dx.doi.org/10.3390/polym14040713.

Full text
Abstract:
Model poly(n-butyl acrylate) (PBA) networks were prepared by photoinduced atom transfer radical polymerization (photoATRP), followed by curing of polymer stars via atom transfer radical coupling (ATRC) with a nitrosobenzene radical trap. The resulting nitroxyl radical installed thermally labile alkoxyamine functional groups at the junctions of the network. The alkoxyamine crosslinks of the network were degraded back to star-like products upon exposure to temperatures above 135 °C. Characterization of the degraded products via gel permeation chromatography (GPC) confirmed the inversion of polymer topology after thermal treatment.
APA, Harvard, Vancouver, ISO, and other styles
20

Meseguer Dueñas, J. M., and J. L. Gómez Ribelles. "Main dielectric relaxation of poly(methyl acrylate)–polystyrene interpenetrating polymer networks." Journal of Non-Crystalline Solids 351, no. 6-7 (March 2005): 482–88. http://dx.doi.org/10.1016/j.jnoncrysol.2004.11.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Jaisankar, S. N., Y. Lakshminarayana, and Ganga Radhakrishnan. "Polyurethane-Poly(Ethyl Hexyl Acrylate-Co-Methyl Methacrylate) Interpenetrating Polymer Networks." Polymer-Plastics Technology and Engineering 44, no. 4 (May 2005): 633–43. http://dx.doi.org/10.1081/pte-200057789.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Das, Bibekananda, Tanmoy Gangopadhyay, and Sudipta Sinha. "Studies on polyester-poly(ethyl acrylate-co-styrene) interpenetrating polymer networks." European Polymer Journal 30, no. 2 (February 1994): 245–49. http://dx.doi.org/10.1016/0014-3057(94)90167-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Mengnjoh, Paul C., and Harry L. Frisch. "Interpenetrating polymer networks of poly(2,6-dimethyl-1,4 phenylene oxide) and poly(urethane acrylate). II." Journal of Polymer Science Part C: Polymer Letters 27, no. 9 (August 1989): 285–87. http://dx.doi.org/10.1002/pol.1989.140270901.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Mengnjoh, Paul C., and Harry L. Frisch. "Interpenetrating polymer networks of poly(2,6-dimethyl-1,4 phenylene oxide) and poly(urethane acrylate). I." Journal of Polymer Science Part A: Polymer Chemistry 27, no. 10 (September 1989): 3363–70. http://dx.doi.org/10.1002/pola.1989.080271015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Jian, Xiao Xia, Le Qin Xiao, Wei Liang Zhou, and Hai Qin Ding. "Influence of Polyacrylate on the Compatibility in P(MMA/EA)/PU Semi-IPNs." Advanced Materials Research 627 (December 2012): 873–77. http://dx.doi.org/10.4028/www.scientific.net/amr.627.873.

Full text
Abstract:
The Semi-Interpenetrating Polymer Networks(Semi-IPNs) of poly(methyl methyacrylate/ethyl acrylate)(P(MMA/EA)) and polyurethane thermoplastic elastomer (PU) were synthesized by PU and copolymer of methyl methacrylate and ethyl acrylate to improve the compatibility of polymethyl methacrylate(PMMA) and PU Semi-IPNs . The structure and properties were investigated by Fourier transform infrared spectrometer, Solid nuclear magnetic resonance spectrometry, Dynamic mechanical thermal analysis and Mechanical properties. The tensile stress of (P(MMA/EA)/PU)( P(MMA/EA):PU=3:7) can get to 9.6MPa, the additional physical crosslinks and entanglement for Semi-IPNs are the reasons.
APA, Harvard, Vancouver, ISO, and other styles
26

Ilavský, M., J. Hasa, and K. Dušek. "Photoelastic behavior of poly(n-alkyl acrylate) networks in the rubbery state." Journal of Polymer Science: Polymer Symposia 53, no. 1 (March 8, 2007): 239–56. http://dx.doi.org/10.1002/polc.5070530127.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Zhyhailo, Mariia, Andriy Horechyy, Jochen Meier‐Haack, Petr Formanek, Mikhail Malanin, Kerstin Arnhold, Konrad Schneider, Iryna Yevchuk, and Andreas Fery. "Proton Conductive Membranes from Covalently Cross‐Linked Poly(Acrylate)/Silica Interpenetrating Networks." Macromolecular Materials and Engineering 306, no. 4 (April 2021): 2170013. http://dx.doi.org/10.1002/mame.202170013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Zhyhailo, Mariia, Andriy Horechyy, Jochen Meier‐Haack, Petr Formanek, Mikhail Malanin, Kerstin Arnhold, Konrad Schneider, Iryna Yevchuk, and Andreas Fery. "Proton Conductive Membranes from Covalently Cross‐Linked Poly(Acrylate)/Silica Interpenetrating Networks." Macromolecular Materials and Engineering 306, no. 4 (February 22, 2021): 2000776. http://dx.doi.org/10.1002/mame.202000776.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Patel, Prashant, Mayur Patel, and Bhikhu Suthar. "Interpenetrating polymer networks from castor oil based polyurethanes and poly(ethyl acrylate)." British Polymer Journal 20, no. 6 (1988): 525–30. http://dx.doi.org/10.1002/pi.4980200611.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Das, Bibekananda, Debabrata Chakraborty, and Asok Hajra. "Epoxy resin/poly(ethyl acrylate)—interpenetrating polymer networks: engineering properties and morphology." European Polymer Journal 30, no. 11 (November 1994): 1269–76. http://dx.doi.org/10.1016/0014-3057(94)90137-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Vendamme, Richard, Tewfik Bouchaour, Tadeusz Pakula, Xavier Coqueret, Mustapha Benmouna, and Ulrich Maschke. "Phase Behavior of Poly(butyl acrylate) Networks in Nematic Liquid Crystal Solvents." Macromolecular Materials and Engineering 289, no. 2 (February 2004): 153–57. http://dx.doi.org/10.1002/mame.200300236.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Li, Shucai, and Wei Zeng. "Effect of crosslinker, buffer, and blending on damping properties of poly(styrene-acrylonitrile)/poly(ethyl acrylate-n-butyl acrylate) latex interpenetrating polymer networks." Journal of Applied Polymer Science 84, no. 13 (April 16, 2002): 2347–51. http://dx.doi.org/10.1002/app.10388.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Ribelles, J. L. G. mez, J. M. Meseguer Due as, C. Torregrosa Cabanilles, and M. Monle n. Pradas. "Segmental dynamics in poly(methyl acrylate) poly(methyl methacrylate) sequential interpenetrating polymer networks: structural relaxation experiments." Journal of Physics: Condensed Matter 15, no. 11 (March 10, 2003): S1149—S1161. http://dx.doi.org/10.1088/0953-8984/15/11/335.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Lozano Picazo, P., M. Pérez Garnes, C. Martínez Ramos, A. Vallés-Lluch, and M. Monleón Pradas. "New Semi-Biodegradable Materials from Semi-Interpenetrated Networks of Poly(ϵ-caprolactone) and Poly(ethyl acrylate)." Macromolecular Bioscience 15, no. 2 (September 30, 2014): 229–40. http://dx.doi.org/10.1002/mabi.201400331.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Tsebriienko, Tamara, and Anatoli I. Popov. "Effect of Poly(Titanium Oxide) on the Viscoelastic and Thermophysical Properties of Interpenetrating Polymer Networks." Crystals 11, no. 7 (July 7, 2021): 794. http://dx.doi.org/10.3390/cryst11070794.

Full text
Abstract:
The influence of poly(titanium oxide) obtained using the sol-gel method in 2-hydroxyethyl methacrylate medium on the viscoelastic and thermophysical properties of interpenetrating polymer networks (IPNs) based on cross-linked polyurethane (PU) and poly(hydroxyethyl methacrylate) (PHEMA) was studied. It was found that both the initial (IPNs) and organo-inorganic interpenetrating polymer networks (OI IPNs) have a two-phase structure by using methods of dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC). The differential scanning calorimetry methods and scanning electron microscopy (SEM) showed that the presence of poly(titanium oxide) increases the compatibility of the components of IPNs. It was found that an increase in poly(titanium oxide) content leads to a decrease in the intensity of the relaxation maximum for PHEMA phase and an increase in the effective crosslinking density due to the partial grafting of the inorganic component to acrylate. It was shown that the topology of poly(titanium oxide) structure has a significant effect on the relaxation behavior of OI IPNs samples. According to SEM, a uniform distribution of the inorganic component in the polymer matrix is observed without significant aggregation.
APA, Harvard, Vancouver, ISO, and other styles
36

Patel, Mr Prashant, and Bhikhu Suthar. "Interpenetrating Polymer Networks from Castor Oil Based Polyurethanes and Poly(n-Butyl Acrylate)." International Journal of Polymeric Materials 12, no. 2 (July 1988): 135–45. http://dx.doi.org/10.1080/00914038808033929.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Patel, Mayur, and Bhikhu Suthar. "Interpenetrating polymer networks from castor oil based polyurethanes and poly(methyl acrylate)—IV." European Polymer Journal 23, no. 5 (January 1987): 399–402. http://dx.doi.org/10.1016/0014-3057(87)90170-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Patel, Mayur, and Bhikhu Suthar. "Interpenetrating polymer networks from caster oil-based-polyurethanes and poly(ethyl acrylate). VII." Journal of Applied Polymer Science 34, no. 5 (October 1987): 2037–45. http://dx.doi.org/10.1002/app.1987.070340520.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Mathew, Annakutty, and P. C. Deb. "Studies on semi-interpenetrating polymer networks from poly(vinyl chloride-co-vinyl acetate) and poly(butyl acrylate)." Journal of Applied Polymer Science 45, no. 12 (August 25, 1992): 2145–51. http://dx.doi.org/10.1002/app.1992.070451210.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Hayakawa, Tadashi, and Toshiaki Matsunaga. "Effects of epoxy resin on mechanical and thermal characteristics of poly(propylene oxide)/poly(butyl acrylate) networks." Journal of Applied Polymer Science 77, no. 9 (2000): 1886–93. http://dx.doi.org/10.1002/1097-4628(20000829)77:9<1886::aid-app4>3.0.co;2-w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Wang, Zhi Chao, Huan Liu, Hua Hou, Zhen Xing Yang, and Zhong Wei. "Preparation of IPNs SBS/PBMA-b-PMA and Effect of Compatibility with PVC." Advanced Materials Research 320 (August 2011): 97–102. http://dx.doi.org/10.4028/www.scientific.net/amr.320.97.

Full text
Abstract:
Interpenetrating polymer networks (IPNs) Poly(styrene-butadiene-styrene)/Poly(n-butyl methacrylate-b-methyl acrylate) (SBS/PBMA-b-PMA) was prepared by atom transfer radical polymerization (ATRP) and characterized by FT-IR, 1H NMR and TEM. The TEM photos illustrated that SBS/PBMA-b-PMA formed an obvious core-shell structure, with cross-linked SBS/PBMA core and linear PMA shell. The compatibility of IPNs with PVC was studied using SEM and DSC instruments. The mixed polymers displayed one Tg (Tg=79.4°C, ΔTg=32.5°C) and showed good compatibility. The SEM fracture surface morphologies displayed partial feature of ductile fracture different form neat PVC.
APA, Harvard, Vancouver, ISO, and other styles
42

Patel, Mayur, and Bhikhu Suthar. "Interpenetrating Polymer Networks from Castor Oil Based Polyurethanes and Poly(n-Butyl Acrylate). VI." International Journal of Polymeric Materials 12, no. 1 (November 1987): 43–52. http://dx.doi.org/10.1080/00914038708033920.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Pérez-Garnes, Manuel, and Manuel Monleón-Pradas. "Poly(methacrylated hyaluronan-co-ethyl acrylate) copolymer networks with tunable properties and enzymatic degradation." Polymer Degradation and Stability 144 (October 2017): 241–50. http://dx.doi.org/10.1016/j.polymdegradstab.2017.08.025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Youcef, Boumédiène Dali, Tewfik Bouchaour, and Ulrich Maschke. "Swelling Behaviour of Isotropic Poly(n-butyl acrylate) Networks in Isotropic and Anisotropic Solvents." Macromolecular Symposia 273, no. 1 (November 2008): 66–72. http://dx.doi.org/10.1002/masy.200851309.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Das, B., and D. Chakraborty. "Epoxy-poly(2-ethylhexyl acrylate) interpenetrating polymer networks morphology and mechanical and thermal properties." Polymer Gels and Networks 3, no. 2 (January 1995): 197–208. http://dx.doi.org/10.1016/0966-7822(94)00033-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Rodríguez-Pérez, E., A. Lloret Compañ, M. Monleón Pradas, and C. Martínez-Ramos. "Scaffolds of Hyaluronic Acid-Poly(Ethyl Acrylate) Interpenetrating Networks: Characterization and In Vitro Studies." Macromolecular Bioscience 16, no. 8 (April 13, 2016): 1147–57. http://dx.doi.org/10.1002/mabi.201600028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Frisch, Harry L., Yong-peng Xue, Shahin Maaref, Gregory Beaucage, Zhengcai Pu, and James E. Mark. "Pseudo interpenetrating polymer networks and interpenetrating polymer networks of zeolite 13 X and polystyrene and poly(ethyl acrylate)." Macromolecular Symposia 106, no. 1 (April 1996): 147–66. http://dx.doi.org/10.1002/masy.19961060115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Sabater i Serra, R., J. L. Escobar Ivirico, J. M. Meseguer Dueñas, A. Andrio Balado, J. L. Gómez Ribelles, and M. Salmerón Sánchez. "Dielectric relaxation spectrum of poly (ε-caprolactone) networks hydrophilized by copolymerization with 2-hydroxyethyl acrylate." European Physical Journal E 22, no. 4 (April 2007): 293–302. http://dx.doi.org/10.1140/epje/e2007-00036-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Poveda-Reyes, Sara, Tatiana C. Gamboa-Martínez, Sara Manzano, Mohamed Hamdy Doweidar, José Luis Gómez Ribelles, Ignacio Ochoa, and Gloria Gallego Ferrer. "Engineering Interpenetrating Polymer Networks of Poly(2-Hydroxyethyl Acrylate) asEx VivoPlatforms for Articular Cartilage Regeneration." International Journal of Polymeric Materials and Polymeric Biomaterials 64, no. 14 (April 2, 2015): 745–54. http://dx.doi.org/10.1080/00914037.2014.1002132.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Tang, Qunwei, Jianming Lin, Jihuai Wu, Chuanjuan Zhang, and Sanchun Hao. "Two-steps synthesis of a poly(acrylate–aniline) conducting hydrogel with an interpenetrated networks structure." Carbohydrate Polymers 67, no. 3 (February 2007): 332–36. http://dx.doi.org/10.1016/j.carbpol.2006.05.026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography