To see the other types of publications on this topic, follow the link: Poly(2-Alkyl-2-Oxazoline)s.

Journal articles on the topic 'Poly(2-Alkyl-2-Oxazoline)s'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 42 journal articles for your research on the topic 'Poly(2-Alkyl-2-Oxazoline)s.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Blokhin, Aleksei N., Alla B. Razina, and Andrey V. Tenkovtsev. "Novel Amphiphilic Star-Shaped Poly(2-Oxazoline)s with Calix[4]Arene Branching Center." Key Engineering Materials 899 (September 8, 2021): 300–308. http://dx.doi.org/10.4028/www.scientific.net/kem.899.300.

Full text
Abstract:
Novel amphiphlic four-arm star-shaped poly (2-alkyl-2-oxazoline) s with calix [4] arene core were synthesized using the “grafting from” approach. The chlorosulfonated calix [4] arene derivative was synthesized and successfully applied as a multifunctional initiator for the cationic ring-opening polymerization of 2-alkyl-2-oxazolines. Obtained star-shaped poly (2-alkyl-2-oxazoline) s were characterized by means of NMR, UV-Vis spectroscopy and gel-permeation chromatography. It was shown that star-shaped poly (2-isopropyl-2-oxazoline) perform thermosensitivity in aqueous solutions.
APA, Harvard, Vancouver, ISO, and other styles
2

Demirel, A. Levent, Pınar Tatar Güner, Bart Verbraeken, Helmut Schlaad, Ulrich S. Schubert, and Richard Hoogenboom. "Revisiting the crystallization of poly(2-alkyl-2-oxazoline)s." Journal of Polymer Science Part B: Polymer Physics 54, no. 7 (November 24, 2015): 721–29. http://dx.doi.org/10.1002/polb.23967.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

de la Rosa, Victor R., Werner M. Nau, and Richard Hoogenboom. "Correction: Tuning temperature responsive poly(2-alkyl-2-oxazoline)s by supramolecular host–guest interactions." Organic & Biomolecular Chemistry 13, no. 15 (2015): 4614. http://dx.doi.org/10.1039/c5ob90053k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fisher, Adam L., Julia M. H. Schollick, Dirk G. A. L. Aarts, and Martin C. Grossel. "Synthesis and gelation properties of poly(2-alkyl-2-oxazoline) based thermo-gels." RSC Advances 6, no. 71 (2016): 66438–43. http://dx.doi.org/10.1039/c6ra06781f.

Full text
Abstract:
Novel thermo-gelling polymers based on poly(2-alkyl-2-oxazoline)s grafted onto a polar carboxymethylcellulose backbone gel are reported which have potential applications in areas such as drug delivery and tissue engineering.
APA, Harvard, Vancouver, ISO, and other styles
5

Trachsel, Lucca, Marcy Zenobi-Wong, and Edmondo M. Benetti. "The role of poly(2-alkyl-2-oxazoline)s in hydrogels and biofabrication." Biomaterials Science 9, no. 8 (2021): 2874–86. http://dx.doi.org/10.1039/d0bm02217a.

Full text
Abstract:
Poly(2-alkyl-2-oxazoline)s (PAOXAs) have been rapidly emerging as starting materials in the design of tissue engineering supports and for the generation of platforms for cell cultures, especially in the form of hydrogels.
APA, Harvard, Vancouver, ISO, and other styles
6

Ates, Sahin, Pinar Tatar-Guner, Yusuf Yagci, and A. Levent Demirel. "Synthesis and characterization of polysulfone-g-poly(2-alkyl-2-oxazoline)s." Designed Monomers and Polymers 16, no. 2 (August 23, 2012): 137–44. http://dx.doi.org/10.1080/15685551.2012.705500.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rehfeldt, Florian, Motomu Tanaka, Lorena Pagnoni, and Rainer Jordan. "Static and Dynamic Swelling of Grafted Poly(2-alkyl-2-oxazoline)s." Langmuir 18, no. 12 (June 2002): 4908–14. http://dx.doi.org/10.1021/la0112559.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gaertner, Florian C., Robert Luxenhofer, Birgit Blechert, Rainer Jordan, and Markus Essler. "Synthesis, biodistribution and excretion of radiolabeled poly(2-alkyl-2-oxazoline)s." Journal of Controlled Release 119, no. 3 (June 2007): 291–300. http://dx.doi.org/10.1016/j.jconrel.2007.02.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

de la Rosa, Victor R., Werner M. Nau, and Richard Hoogenboom. "Tuning temperature responsive poly(2-alkyl-2-oxazoline)s by supramolecular host–guest interactions." Organic & Biomolecular Chemistry 13, no. 10 (2015): 3048–57. http://dx.doi.org/10.1039/c4ob02654c.

Full text
Abstract:
A poly[(2-ethyl-2-oxazoline)-ran-(2-nonyl-2-oxazoline)] random copolymer was synthesized and its thermoresponsive behavior in aqueous solution modulated by the addition of different supramolecular host molecules.
APA, Harvard, Vancouver, ISO, and other styles
10

Ong, C. H., S. H. Goh, and H. S. O. Chan. "Miscibility of conductive blends of poly(o-anisidine) with poly(2-alkyl-2-oxazoline)s." Journal of Applied Polymer Science 65, no. 2 (July 11, 1997): 391–97. http://dx.doi.org/10.1002/(sici)1097-4628(19970711)65:2<391::aid-app20>3.0.co;2-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Kobayashi, Shiro, Yasuo Shimano, and Takeo Saegusa. "Synthesis of Poly[ethylene-co-(vinyl acetate)-g-(2-alkyl-2-oxazoline)]s." Polymer Journal 23, no. 11 (November 1991): 1307–15. http://dx.doi.org/10.1295/polymj.23.1307.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Gauche, Cony, and Maria Isabel Felisberti. "Colloidal Behavior of Cellulose Nanocrystals Grafted with Poly(2-alkyl-2-oxazoline)s." ACS Omega 4, no. 7 (July 9, 2019): 11893–905. http://dx.doi.org/10.1021/acsomega.9b01269.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Shimano, Yasuo, Kumiko Sato, and Shiro Kobayashi. "Synthesis of novel macromonomers and telechelics of poly(2-alkyl-2-oxazoline)s." Journal of Polymer Science Part A: Polymer Chemistry 33, no. 16 (November 30, 1995): 2715–23. http://dx.doi.org/10.1002/pola.1995.080331605.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Rettler, Erik F. J., Johannes M. Kranenburg, Hanneke M. L. Lambermont-Thijs, Richard Hoogenboom, and Ulrich S. Schubert. "Thermal, Mechanical, and Surface Properties of Poly(2-N -alkyl-2-oxazoline)s." Macromolecular Chemistry and Physics 211, no. 22 (October 13, 2010): 2443–48. http://dx.doi.org/10.1002/macp.201000338.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Everaerts, Melissa, Ali Tigrine, Victor R. de la Rosa, Richard Hoogenboom, Peter Adriaensens, Christian Clasen, and Guy Van den Mooter. "Unravelling the Miscibility of Poly(2-oxazoline)s: A Novel Polymer Class for the Formulation of Amorphous Solid Dispersions." Molecules 25, no. 16 (August 6, 2020): 3587. http://dx.doi.org/10.3390/molecules25163587.

Full text
Abstract:
Water-soluble polymers are still the most popular carrier for the preparation of amorphous solid dispersions (ASDs). The advantage of this type of carrier is the fast drug release upon dissolution of the water-soluble polymer and thus the initial high degree of supersaturation of the poorly soluble drug. Nevertheless, the risk for precipitation due to fast drug release is a phenomenon that is frequently observed. In this work, we present an alternative carrier system for ASDs where a water-soluble and water-insoluble carrier are combined to delay the drug release and thus prevent this onset of precipitation. Poly(2-alkyl-2-oxazoline)s were selected as a polymer platform since the solution properties of this polymer class depend on the length of the alkyl sidechain. Poly(2-ethyl-2-oxazoline) (PEtOx) behaves as a water-soluble polymer at body temperature, while poly(2-n-propyl-2-oxazoline) (PPrOx) and poly(2-sec-butyl-2-oxazoline) (PsecBuOx) are insoluble at body temperature. Since little was known about the polymer’s miscibility behaviour and especially on how the presence of a poorly-water soluble drug impacted their miscibility, a preformulation study was performed. Formulations were investigated with X-ray powder diffraction, differential scanning calorimetry (DSC) and solid-state nuclear magnetic resonance spectroscopy. PEtOx/PPrOx appeared to form an immiscible blend based on DSC and this was even more pronounced after heating. The six drugs that were tested in this work did not show any preference for one of the two phases. PEtOx/PsecBuOx on the other hand appeared to be miscible forming a homogeneous blend between the two polymers and the drugs.
APA, Harvard, Vancouver, ISO, and other styles
16

Hoogenboom, Richard, Martin W. M. Fijten, Hanneke M. L. Thijs, Bart M. van Lankvelt, and Ulrich S. Schubert. "Microwave-assisted synthesis and properties of a series of poly(2-alkyl-2-oxazoline)s." Designed Monomers and Polymers 8, no. 6 (January 1, 2005): 659–71. http://dx.doi.org/10.1163/156855505774597704.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Trachsel, Lucca, Matteo Romio, Shivaprakash N. Ramakrishna, and Edmondo M. Benetti. "Fabrication of Biopassive Surfaces Using Poly(2‐alkyl‐2‐oxazoline)s: Recent Progresses and Applications." Advanced Materials Interfaces 7, no. 19 (August 6, 2020): 2000943. http://dx.doi.org/10.1002/admi.202000943.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

R. de la Rosa, Victor, Werner Nau, and Richard Hoogenboom. "Thermoresponsive Interplay of Water Insoluble Poly(2-alkyl-2-oxazoline)s Composition and Supramolecular Host–Guest Interactions." International Journal of Molecular Sciences 16, no. 12 (April 2, 2015): 7428–44. http://dx.doi.org/10.3390/ijms16047428.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Chen, C. H., J. Wilson, W. Chen, R. M. Davis, and J. S. Riffle. "A light-scattering study of poly(2-alkyl-2-oxazoline)s: effect of temperature and solvent type." Polymer 35, no. 17 (August 1994): 3587–91. http://dx.doi.org/10.1016/0032-3861(94)90532-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Wang, Wen-Li, Kousuke Kawai, Hiroaki Sigemitsu, and Ren-Hua Jin. "Crystalline lamellar films with honeycomb structure from comb-like polymers of poly(2-long-alkyl-2-oxazoline)s." Journal of Colloid and Interface Science 627 (December 2022): 28–39. http://dx.doi.org/10.1016/j.jcis.2022.07.041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Obeid, Rodolphe, Elena Maltseva, Andreas F. Thünemann, Fumihiko Tanaka, and Françoise M. Winnik. "Temperature Response of Self-Assembled Micelles of Telechelic Hydrophobically Modified Poly(2-alkyl-2-oxazoline)s in Water." Macromolecules 42, no. 6 (March 24, 2009): 2204–14. http://dx.doi.org/10.1021/ma802592f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Zschoche, Stefan, Juan Rueda, Volodymyr Boyko, Franziska Krahl, Karl-Friedrich Arndt, and Brigitte Voit. "Thermo-Responsive Nanogels Based on Poly[NIPAAm-graft- (2-alkyl-2-oxazoline)]s Crosslinked in the Micellar State." Macromolecular Chemistry and Physics 211, no. 9 (February 26, 2010): 1035–42. http://dx.doi.org/10.1002/macp.200900559.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Trachsel, Lucca, Castro Johnbosco, Thamar Lang, Edmondo M. Benetti, and Marcy Zenobi-Wong. "Double-Network Hydrogels Including Enzymatically Crosslinked Poly-(2-alkyl-2-oxazoline)s for 3D Bioprinting of Cartilage-Engineering Constructs." Biomacromolecules 20, no. 12 (November 12, 2019): 4502–11. http://dx.doi.org/10.1021/acs.biomac.9b01266.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Samaro, Aseel, Maarten Vergaelen, Martin Purino, Ali Tigrine, Victor R. de la Rosa, Niloofar Moazami Goudarzi, Matthieu N. Boone, Valérie Vanhoorne, Richard Hoogenboom, and Chris Vervaet. "Poly(2-alkyl-2-oxazoline)s: A polymer platform to sustain the release from tablets with a high drug loading." Materials Today Bio 16 (December 2022): 100414. http://dx.doi.org/10.1016/j.mtbio.2022.100414.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Park, Joon-Sik, and Kazunori Kataoka. "Comprehensive and Accurate Control of Thermosensitivity of Poly(2-alkyl-2-oxazoline)s via Well-Defined Gradient or Random Copolymerization." Macromolecules 40, no. 10 (May 2007): 3599–609. http://dx.doi.org/10.1021/ma0701181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Rettler, Erik F. J., Hanneke M. L. Lambermont-Thijs, Johannes M. Kranenburg, Richard Hoogenboom, Miriam V. Unger, Heinz W. Siesler, and Ulrich S. Schubert. "Water uptake of poly(2-N-alkyl-2-oxazoline)s: influence of crystallinity and hydrogen-bonding on the mechanical properties." Journal of Materials Chemistry 21, no. 43 (2011): 17331. http://dx.doi.org/10.1039/c1jm12541a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Villano, Luca Del, Roald Kommedal, Martin W. M. Fijten, Ulrich S. Schubert, Richard Hoogenboom, and Malcolm A. Kelland. "A Study of the Kinetic Hydrate Inhibitor Performance and Seawater Biodegradability of a Series of Poly(2-alkyl-2-oxazoline)s." Energy & Fuels 23, no. 7 (July 16, 2009): 3665–73. http://dx.doi.org/10.1021/ef900172f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Diehl, Christina, Ina Dambowsky, Richard Hoogenboom, and Helmut Schlaad. "Self-Assembly of Poly(2-alkyl-2-oxazoline)s by Crystallization in Ethanol-Water Mixtures Below the Upper Critical Solution Temperature." Macromolecular Rapid Communications 32, no. 21 (August 29, 2011): 1753–58. http://dx.doi.org/10.1002/marc.201100421.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Bloksma, Meta M., Sarah Rogers, Ulrich S. Schubert, and Richard Hoogenboom. "Main-chain chiral poly(2-oxazoline)s: Influence of alkyl side-chain on secondary structure formation in solution." Journal of Polymer Science Part A: Polymer Chemistry 49, no. 13 (April 28, 2011): 2790–801. http://dx.doi.org/10.1002/pola.24712.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Morgese, Giulia, Yvonne Gombert, Shivaprakash N. Ramakrishna, and Edmondo M. Benetti. "Mixing Poly(ethylene glycol) and Poly(2-alkyl-2-oxazoline)s Enhances Hydration and Viscoelasticity of Polymer Brushes and Determines Their Nanotribological and Antifouling Properties." ACS Applied Materials & Interfaces 10, no. 48 (November 5, 2018): 41839–48. http://dx.doi.org/10.1021/acsami.8b17193.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Bloksma, Meta M., Marco M. R. M. Hendrix, Silke Rathgeber, Ulrich S. Schubert, and Richard Hoogenboom. "Main-Chain Chiral Poly(2-oxazoline)s: Influence of Alkyl Side-Chain on Secondary Structure Formation in the Solid State." Macromolecular Symposia 350, no. 1 (April 2015): 43–54. http://dx.doi.org/10.1002/masy.201400023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Brunzel, Michaela, Michael Dirauf, Martin Sahn, Justyna A. Czaplewska, Nicole Fritz, Christine Weber, Ivo Nischang, and Ulrich S. Schubert. "On the identification and quantification of proton-initiated species in the synthesis of poly(2-alkyl-2-oxazoline)s by high resolution liquid chromatography." Journal of Chromatography A 1653 (September 2021): 462364. http://dx.doi.org/10.1016/j.chroma.2021.462364.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Rettler, Erik F. J., Miriam V. Unger, Richard Hoogenboom, Heinz W. Siesler, and Ulrich S. Schubert. "Water Uptake of Poly(2-N-Alkyl-2-Oxazoline)s: Temperature-Dependent Fourier Transform Infrared (FT-IR) Spectroscopy and Two-Dimensional Correlation Analysis (2DCOS)." Applied Spectroscopy 66, no. 10 (October 2012): 1145–55. http://dx.doi.org/10.1366/12-06650.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Bouten, P. J. M., Dietmar Hertsen, Maarten Vergaelen, Bryn D. Monnery, Saron Catak, Jan C. M. van Hest, Veronique Van Speybroeck, and Richard Hoogenboom. "Synthesis of poly(2-oxazoline)s with side chain methyl ester functionalities: Detailed understanding of living copolymerization behavior of methyl ester containing monomers with 2-alkyl-2-oxazolines." Journal of Polymer Science Part A: Polymer Chemistry 53, no. 22 (June 29, 2015): 2649–61. http://dx.doi.org/10.1002/pola.27733.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Mint, Kelly, Joshua P. Morrow, Nicole M. Warne, Xie He, David Pizzi, Shaffiq Zainal Osman Shah, Gregory K. Pierens, et al. "Comparison of the hydrophilicity of water-soluble poly(2-alkyl-2-oxazoline)s, poly(2-alkyl-2-oxazine)s and poly(2,4-dialkyl-2-oxazoline)s." Polymer Chemistry, 2024. http://dx.doi.org/10.1039/d4py00332b.

Full text
Abstract:
Poly(cyclic imino ether)s (PCIEs) including poly(2-alkyl-2-oxazoline) (POx), poly(2-alkyl-2-oxazine) (POz) and poly(2,4-dialkyl-2-oxazoline) (PdOx) are a rapidly emerging polymer class for use in biomedical and therapeutic applications due to the biocompatibility and...
APA, Harvard, Vancouver, ISO, and other styles
36

Wiesner (née Diehl), Fiona, Christian Petri, Simone Hageneder, Cleiton Kunzler, Sven Klees, Petra Frank, Matthias Pertiller, Jakub Dostalek, Wolfgang Knoll, and Ulrich Jonas. "Thermoresponsive and Photocrosslinkable Poly(2‐alkyl‐2‐oxazoline) Toolbox – Customizable Ultralow‐Fouling Hydrogel Coatings for Blood Plasma Environments." Macromolecular Rapid Communications, November 20, 2023. http://dx.doi.org/10.1002/marc.202300549.

Full text
Abstract:
AbstractThis study focuses on developing surface coatings with excellent antifouling properties, crucial for applications in the medical, biological, and technical fields, for materials and devices in direct contact with living tissues and bodily fluids such as blood. Our approach combines thermoresponsive poly(2‐alkyl‐2‐oxazoline)s, known for their inherent protein‐repellent characteristics, with established antifouling motifs based on betaines. The polymer framework was constructed from various monomer types, including a novel benzophenone‐modified 2‐oxazoline for photocrosslinking and an azide‐functionalized 2‐oxazoline, allowing subsequent modification with alkyne‐substituted antifouling motifs through copper(I)‐catalyzed azide‐alkyne cycloaddition. From these polymers surface‐attached networks were created on benzophenone‐modified gold substrates via photocrosslinking, resulting in hydrogel coatings with several micrometers thickness when swollen with aqueous media. Given that poly(2‐alkyl‐2‐oxazoline)s can exhibit a lower critical solution temperature in water, we compared their temperature‐dependent solubility to the swelling behavior of the surface‐attached hydrogels upon thermal stimulation. The antifouling performance of these hydrogel coatings in contact with human blood plasma was further evaluated by surface plasmon resonance and optical waveguide spectroscopy. All surfaces demonstrated extremely low retention of blood plasma components, even with undiluted plasma. Notably, hydrogel layers with sulfobetaine moieties allowed efficient penetration by plasma components, which could then be easily removed by rinsing with buffer.This article is protected by copyright. All rights reserved
APA, Harvard, Vancouver, ISO, and other styles
37

Pribus, Marek, Luboš Jankovič, Valériá Bizovská Kureková, Martin Barlog, and Jana Madejová. "Intercalation Characteristics of Montmorillonite Modified with Poly(2-n-alkyl-2-oxazoline)s." Macromolecules, August 26, 2024. http://dx.doi.org/10.1021/acs.macromol.4c00291.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Benaoudia, Dihia, Van-Quynh Nguyen, Véronique Bennevault, Pascal Martin, Fabien Montel, Philippe Guégan, and Jean-Christophe Lacroix. "Direct Electrografting of Poly(2-alkyl-2-oxazoline)s on Gold, ITO, and Gold Nanoparticles for Biopassivation." ACS Applied Nano Materials, September 1, 2023. http://dx.doi.org/10.1021/acsanm.3c02379.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Wylie, Ross Andrew Lennox, Robert Miller, Luke Andrew Connal, and Greg Guanghua Qiao. "Oligomeric Poly(Oxazoline) as Potential Lithium Battery Electrolytes." Journal of The Electrochemical Society, June 7, 2022. http://dx.doi.org/10.1149/1945-7111/ac766d.

Full text
Abstract:
Abstract Polymer electrolytes are a promising and inherently suitable material for next generation lithium batteries. Advancement in this field requires the use of new synthetic and fabrication techniques, as well as the investigation of new polymers. Here we report on the development of oligomeric Poly(2-ethyl-2-oxazoline) as a candidate for lithium batteries. By reducing the degree of polymerisation, the glass transition temperature was reduced from 54°C for commercially available 50,000 Da PEtOx to 9.45°C for lab synthesized 890 Da PEtOx. Doping with high concentrations of the lithium salt lithium nitrate, Lithium bis(trifluoromethanesulfonyl)imide, and lithium perchlorate, we demonstrate a glass transition temperature maximum as the polymer electrolyte moves into the polymer-in-salt regime. In this regime we recorded a maximum conductivity of was 3.3 x 10-3 S/cm at 100°C and 67 mol % LiClO4. This study demonstrates the potential for further use of alkyl oxazolines at high lithium salt concentrations and elevated temperatures.
APA, Harvard, Vancouver, ISO, and other styles
40

Schubert, Ulrich Sigmar, Philipp Borchers, Michael Dirauf, Maria Strumpf, Helmar Görls, Christine Weber, and Martin D. Hager. "Ferrocene Containing Redox-Responsive Poly(2-Oxazoline)s." Chemical Communications, 2021. http://dx.doi.org/10.1039/d0cc07830a.

Full text
Abstract:
A new monomer, the 2-ferrocene-ethyl-2-oxazoline, was copoly-merized with 2-alkyl-2-oxazolines. The cationic ring opening polymerization (CROP) of 2-oxazolines allows the synthesis of well-defined copolymers with adjustable molar masses as well as...
APA, Harvard, Vancouver, ISO, and other styles
41

Tsarenko, Ekaterina, Natalie Göppert, Philipp Dahlke, Mira Behnke, Gauri Gangapurwala, Baerbel Beringer-siemers, Lisa Jaepel, et al. "Unveiling the power of liquid chromatography in examining a library of degradable poly(2-oxazoline)s in nanomedicine applications." Journal of Materials Chemistry B, 2024. http://dx.doi.org/10.1039/d4tb01812e.

Full text
Abstract:
A library of degradable poly(2-alkyl-2-oxazoline) analogues (dPOx) with different length of the alkyl substituents was characterized in detail by gradient elution liquid chromatography. The hydrophobicity increased with elevated side chain...
APA, Harvard, Vancouver, ISO, and other styles
42

Finnegan, John R., Emily H. Pilkington, Karen Alt, Md Arifur Rahim, Stephen J. Kent, Thomas P. Davis, and Kristian Kempe. "Stealth nanorods via the aqueous living crystallisation-driven self-assembly of poly(2-oxazoline)s." Chemical Science, 2021. http://dx.doi.org/10.1039/d1sc00938a.

Full text
Abstract:
Triggered by heating, a poly(2-alkyl-2-oxazoline) block copolymer undergoes seeded growth in water forming length tuneable nanorods. Morphology and composition combine to impart low immune cell association and promising blood circulation lifetimes.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography