To see the other types of publications on this topic, follow the link: Poly(2-Acrylamido-2-Méthylpropane sulfonate de sodium).

Journal articles on the topic 'Poly(2-Acrylamido-2-Méthylpropane sulfonate de sodium)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 22 journal articles for your research on the topic 'Poly(2-Acrylamido-2-Méthylpropane sulfonate de sodium).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Noor, Siti Aminah Mohd, Jiazeng Sun, Douglas R. MacFarlane, Michel Armand, Daniel Gunzelmann, and Maria Forsyth. "Decoupled ion conduction in poly(2-acrylamido-2-methyl-1-propane-sulfonic acid) homopolymers." J. Mater. Chem. A 2, no. 42 (2014): 17934–43. http://dx.doi.org/10.1039/c4ta03998j.

Full text
Abstract:
A family of novel sulfonate based homopolymers has been prepared by partially replacing sodium cations with different types of ionic liquid ammonium counter-cations, leading to an increased degree of decoupling of the conductivity from the glass transition of the ionomers.
APA, Harvard, Vancouver, ISO, and other styles
2

Su, Na. "Synthesis of Poly (2-Acrylamido-2-methylpropanesulfnoinc Salt) Modified Carbon Spheres." Polymers 15, no. 17 (August 23, 2023): 3510. http://dx.doi.org/10.3390/polym15173510.

Full text
Abstract:
The paper reports a facile synthesis of novel anionic spherical polymer brushes which was based on grafting sodium 2-acrylamido-2-methylpropane-1-sulfonate from the surface of 4,4′-Azobis (4-cyanopentanoyl chloride)-modified carbon spheres. Various characterization methods involving a scanning electron microscope, energy dispersive X-ray spectroscopy, Fourier transform infrared spectrum, and thermo-gravimetric analysis were utilized to analyze the morphology, chemical composition, bonding structure, and thermal stability, respectively. The molecular weight (Mw) and polydispersity (Mw/Mn) of brushes were 616,000 g/mol and 1.72 determined by gel permeation chromatography experiments. Moreover, the dispersibility of ASPB in water and in the presence of aqueous NaCl solutions of different concentrations was investigated. Results show that the dispersibility of carbon spheres has been enhanced owing to grafted polyelectrolyte chains, while the zeta potential of the particle decreases and its brush layer shrinks upon exposure to sodium ions (Na+).
APA, Harvard, Vancouver, ISO, and other styles
3

Emik, Serkan, and Gülten Gürdağ. "Synthesis and swelling behavior of thermosensitive poly(N-isopropyl acrylamide-co-sodium-2-acrylamido-2-methyl propane sulfonate) and poly(N-isopropyl acrylamide-co-sodium-2-acrylamido-2-methyl propane sulfonate-co-glycidyl methacrylate) hydrogels." Journal of Applied Polymer Science 100, no. 1 (2006): 428–38. http://dx.doi.org/10.1002/app.23126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Huglin, Malcolm B., Lee Webster, and Ian D. Robb. "Complex formation between poly(4-vinylpyridinium chloride) and poly[sodium(2-acrylamido-2-methyl propane sulfonate)] in dilute aqueous solution." Polymer 37, no. 7 (March 1996): 1211–15. http://dx.doi.org/10.1016/0032-3861(96)80848-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jitreewas, Parinya, Suwicha Saengvattanarat, Phanita Tansiri, Siriporn Pranee, Sunanta Chuayprakong, Chalermchai Khemtong, and Samitthichai Seeyangnok. "Synthesis of PAA-PAMPS-PNaSS Terpolymers as Ultraviolet-Tagged Scale Inhibitor for Industrial Water Cooling System." Key Engineering Materials 757 (October 2017): 68–72. http://dx.doi.org/10.4028/www.scientific.net/kem.757.68.

Full text
Abstract:
Carboxylated polymer can be used as an anti-scaling agent in circulating water cooling systems. Poly(acrylic acid) and homopolymer have some drawbacks such as slight solubility in water and low calcium tolerance leading difficulty to determine the remaining quantity of polymer in water. This research is mainly focused on synthesis and ability of poly(acrylic acid-co-2-acrylamido-2-methylpropane sulfonic acid) (PAA-PAMPS) for scale inhibition. These terpolymers varied in mole ratios of monomers were prepared via solution polymerization. The obtained polymers are then characterized by FT-IR, 1H-NMR, TGA, turbidity, and UV-visible spectroscopy. For a scale inhibition test, GB/T 16632-2008 standard is applied. The scale inhibition efficiency for 100% was found in PAA-PAMPS copolymer (7:3). Afterwards this polymer was chosen for synthesizing an ultraviolet-tagged PAA-PAMPS-PNaSS terpolymer. UV-visible spectroscopy was used to monitor benzene sulfonate structure in sodium styrene sulfonate of the polymer chain at 224 nm.
APA, Harvard, Vancouver, ISO, and other styles
6

Paneva, Dilyana, Laetitia Mespouille, Nevena Manolova, Philippe Degée, Iliya Rashkov, and Philippe Dubois. "Comprehensive study on the formation of polyelectrolyte complexes from (quaternized) poly[2-(dimethylamino)ethyl methacrylate] and poly(2-acrylamido-2-methylpropane sodium sulfonate)." Journal of Polymer Science Part A: Polymer Chemistry 44, no. 19 (August 21, 2006): 5468–79. http://dx.doi.org/10.1002/pola.21594.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gromadzki, Daniel, Alexey Tereshchenko, and Ričardas Makuška. "Synthesis by self-condensing AGET ATRP and solution properties of arborescent poly(sodium 2-acrylamido-2-methyl-N-propane sulfonate)." Polymer 51, no. 24 (November 2010): 5680–87. http://dx.doi.org/10.1016/j.polymer.2010.09.058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kapanya, Apichaya, Amlika Rungrod, and Runglawan Somsunan. "Effect of Bacterial Cellulose on Silver-loaded Poly(sodium 2-acrylamido-2-methylpropane sulfonate) Hydrogel for Antibacterial Wound Dressing Application." Fibers and Polymers 23, no. 12 (December 2022): 3343–57. http://dx.doi.org/10.1007/s12221-022-4584-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Vijitha, Raagala, Kasula Nagaraja, Marlia M. Hanafiah, Kummara Madhusudana Rao, Katta Venkateswarlu, Sivarama Krishna Lakkaboyana, and Kummari S. V. Krishna Rao. "Fabrication of Eco-Friendly Polyelectrolyte Membranes Based on Sulfonate Grafted Sodium Alginate for Drug Delivery, Toxic Metal Ion Removal and Fuel Cell Applications." Polymers 13, no. 19 (September 27, 2021): 3293. http://dx.doi.org/10.3390/polym13193293.

Full text
Abstract:
Polyelectrolyte membranes (PEMs) are a novel type of material that is in high demand in health, energy and environmental sectors. If environmentally benign materials are created with biodegradable ones, PEMs can evolve into practical technology. In this work, we have fabricated environmentally safe and economic PEMs based on sulfonate grafted sodium alginate (SA) and poly(vinyl alcohol) (PVA). In the first step, 2-acrylamido-2-methyl-1-propanesulphonic acid (AMPS) and sodium 4-vinylbenzene sulfonate (SVBS) are grafted on to SA by utilizing the simple free radical polymerization technique. Graft copolymers (SA-g-AMPS and SA-g-SVBS) were characterized by 1H NMR, FTIR, XRD and DSC. In the second step, sulfonated SA was successfully blended with PVA to fabricate PEMs for the in vitro controlled release of 5-fluorouracil (anti-cancer drug) at pH 1.2 and 7.4 and to remove copper (II) ions from aqueous media. Moreover, phosphomolybdic acids (PMAs) incorporated with composite PEMs were developed to evaluate fuel cell characteristics, i.e., ion exchange capacity, oxidative stability, proton conductivity and methanol permeability. Fabricated PEMs are characterized by the FTIR, ATR-FTIR, XRD, SEM and EDAX. PMA was incorporated. PEMs demonstrated maximum encapsulation efficiency of 5FU, i.e., 78 ± 2.3%, and released the drug maximum in pH 7.4 buffer. The maximum Cu(II) removal was observed at 188.91 and 181.22 mg.g–1. PMA incorporated with PEMs exhibited significant proton conductivity (59.23 and 45.66 mS/cm) and low methanol permeability (2.19 and 2.04 × 10−6 cm2/s).
APA, Harvard, Vancouver, ISO, and other styles
10

El-Mahdy, Gamal, Ayman Atta, and Hamad Al-Lohedan. "Synthesis and Evaluation of Poly(Sodium 2-Acrylamido-2-Methylpropane Sulfonate-co-Styrene)/Magnetite Nanoparticle Composites as Corrosion Inhibitors for Steel." Molecules 19, no. 2 (January 30, 2014): 1713–31. http://dx.doi.org/10.3390/molecules19021713.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Kakihana, Yuriko, N. Awanis Hashim, Taiko Mizuno, Marika Anno, and Mitsuru Higa. "Ionic Transport Properties of Cation-Exchange Membranes Prepared from Poly(vinyl alcohol-b-sodium Styrene Sulfonate)." Membranes 11, no. 6 (June 19, 2021): 452. http://dx.doi.org/10.3390/membranes11060452.

Full text
Abstract:
Membrane resistance and permselectivity for counter-ions have important roles in determining the performance of cation-exchange membranes (CEMs). In this study, PVA-based polyanions—poly(vinyl alcohol-b-sodium styrene sulfonate)—were synthesized, changing the molar percentages CCEG of the cation-exchange groups with respect to the vinyl alcohol groups. From the block copolymer, poly(vinyl alcohol) (PVA)-based CEMs, hereafter called “B-CEMs”, were prepared by crosslinking the PVA chains with glutaraldehyde (GA) solution at various GA concentrations CGA. The ionic transport properties of the B-CEMs were compared with those previously reported for the CEMs prepared using a random copolymer—poly(vinyl alcohol-co-2-acrylamido-2-methylpropane sulfonic acid)—hereafter called ”R-CEMs”. The B-CEMs had lower water content than the R-CEMs at equal molar percentages of the cation-exchange groups. The charge density of the B-CEMs increased as CCEG increased, and reached a maximum value, which increased with increasing CGA. A maximum charge density of 1.47 mol/dm3 was obtained for a B-CEM with CCEG = 2.9 mol% and CGA = 0.10 vol.%, indicating that the B-CEM had almost two-thirds of the permselectivity of a commercial CEM (CMX: ASTOM Corp. Japan). The dynamic transport number and membrane resistance of a B-CEM with CCEG = 8.3 mol% and CGA = 0.10 vol.% were 0.99 and 1.6 Ωcm2, respectively. The B-CEM showed higher dynamic transport numbers than those of the R-CEMs with similar membrane resistances.
APA, Harvard, Vancouver, ISO, and other styles
12

Clara, I., and N. Natchimuthu. "Hydrogels based on starch-g-poly(sodium-2-acrylamido-2-methyl-1-propane sulfonate-co-methacrylic acid) as controlled drug delivery systems." Starch - Stärke 69, no. 7-8 (October 5, 2016): 1600177. http://dx.doi.org/10.1002/star.201600177.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Wu, Xiaogang, Chuanrong Zhong, Xiaofei Lian, and Yan Yang. "Solution properties and aggregating structures for a fluorine-containing polymeric surfactant with a poly(ethylene oxide) macro-monomer." Royal Society Open Science 5, no. 8 (August 2018): 180610. http://dx.doi.org/10.1098/rsos.180610.

Full text
Abstract:
A polymeric surfactant (PFSA) was synthesized by the aqueous free-radical copolymerization using acrylamide, sodium 2-acrylamido-2-methylpropane sulfonate, allyl-capped octylphenoxy poly(ethylene oxide) (PEO) with the polymerization degree of 20 (AOP) and 1H,1H,2H,2H-perfluoro-1-decyl p -vinylbenzyl ether (VF). PFSA exhibited both the good surface and interfacial activities and the thickening behaviour. It could be used in enhanced oil recovery to increase both sweep and oil displacement efficiencies. The critical micelle concentration (CMC) of PFSA was 0.1 g l −1 in aqueous solution. The spherical micelles with the diameter of 100 nm were formed at CMC, and numerous compact worm-shaped micelles were observed above CMC. The interfacial tension was 0.027 mN m −1 for the 0.1 g l −1 PFSA solution containing 5 g l −1 NaCl and 0.209 g l −1 SDBS. The PFSA solutions still showed low interfacial tensions at high NaCl concentrations and temperatures, respectively, because of the incorporation of both VF and AOP containing long PEO.
APA, Harvard, Vancouver, ISO, and other styles
14

Long, Shijun, Chang Liu, Han Ren, Yali Hu, Chao Chen, Yiwan Huang, and Xuefeng Li. "NIR-Mediated Deformation from a CNT-Based Bilayer Hydrogel." Polymers 16, no. 8 (April 19, 2024): 1152. http://dx.doi.org/10.3390/polym16081152.

Full text
Abstract:
Shape-shifting polymers are widely used in various fields such as intelligent switches, soft robots and sensors, which require both multiple stimulus-response functions and qualified mechanical strength. In this study, a novel near-infrared-light (NIR)-responsible shape-shifting hydrogel system was designed and fabricated through embedding vinylsilane-modified carbon nanotubes (CNTs) into particle double-network (P-DN) hydrogels by micellar copolymerisation. The dispersed brittle Poly(sodium 2-acrylamido-2-methylpropane-1-sulfonate) (PNaAMPS) network of the microgels can serve as sacrificial bonds to toughen the hydrogels, and the CNTs endow it with NIR photothermal conversion ability. The results show that the CNTs embedded in the P-DN hydrogels present excellent mechanical strength, i.e., a fracture strength of 312 kPa and a fracture strain of 357%. Moreover, an asymmetric bilayer hydrogel, where the active layer contains CNTs, can achieve 0°–110° bending deformation within 10 min under NIR irradiation and can realise complex deformation movement. This study provides a theoretical and experimental basis for the design and manufacture of photoresponsive soft actuators.
APA, Harvard, Vancouver, ISO, and other styles
15

Urbano, Bruno, and Bernabé L. Rivas. "Poly(sodium 4-styrene sulfonate) and poly(2-acrylamido glycolic acid) polymer-clay ion exchange resins with enhanced mechanical properties and metal ion retention." Polymer International 61, no. 1 (October 3, 2011): 23–29. http://dx.doi.org/10.1002/pi.3178.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Paneva, Dilyana, Laetitia Mespouille, Nevena Manolova, Philippe Degée, Iliya Rashkov, and Philippe Dubois. "Preparation of Well-Defined Poly[(ethylene oxide)-block-(sodium 2-acrylamido-2-methyl-1-propane sulfonate)] Diblock Copolymers by Water-Based Atom Transfer Radical Polymerization." Macromolecular Rapid Communications 27, no. 17 (September 4, 2006): 1489–94. http://dx.doi.org/10.1002/marc.200600389.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Paneva, Dilyana, Laetitia Mespouille, Nevena Manolova, Philippe Degée, Iliya Rashkov, and Philippe Dubois. "Preparation of Well-Defined Poly[(ethylene oxide)-block-(sodium 2-acrylamido-2-methyl-1-propane sulfonate)] Diblock Copolymers by Water-Based Atom Transfer Radical Polymerization." Macromolecular Rapid Communications 28, no. 23 (November 20, 2007): 2277. http://dx.doi.org/10.1002/marc.200700758.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Bastakoti, Bishnu Prasad, Sudhina Guragain, Airi Yoneda, Yuuichi Yokoyama, Shin-ichi Yusa, and Kenichi Nakashima. "Micelle formation of poly(ethylene oxide-b-sodium 2-(acrylamido)-2-methyl-1-propane sulfonate-b-styrene) and its interaction with dodecyl trimethyl ammonium chloride and dibucaine." Polym. Chem. 1, no. 3 (2010): 347–53. http://dx.doi.org/10.1039/b9py00231f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Sánchez, Julio, Carol Rodriguez, Estefanía Oyarce, and Bernabé L. Rivas. "Removal of chromium ions by functional polymers in conjunction with ultrafiltration membranes." Pure and Applied Chemistry 92, no. 6 (June 25, 2020): 883–96. http://dx.doi.org/10.1515/pac-2019-1103.

Full text
Abstract:
AbstractIn the current research water-soluble functional polymers (WSFP) were prepared via radical polymerization and purified by fractionation through ultrafiltration membranes with different molecular weights cut off (MWCO) of 30 and 100 kDa. The WSFPs were poly(3-acrylamide propyl) trimethyl ammonium chloride, P(ClAPTA), poly(2-acrylamido-2-methyl-1-propane sodium sulfonate, P(AMPSNa), and poly(3-methacrylamino propyl) dimethyl 3-sulfopropyl ammonium hydroxide, P(HMPDSPA). These polymers were characterized by Fourier transformed infrared spectroscopy (FT-IR) and thermogravimetry analysis (TGA). Using liquid-phase polymer-based retention technique (LPR), chromium [Cr(III) and Cr(VI)] retention was studied as a function of pH, polymer and chromium concentration, selectivity, maximum retention capacity, chromium elution capacity, and polymer regeneration through sorption and desorption studies. Results of FT-IR showed the characteristic absorption bands of the synthesized polymers. The decomposition temperatures of P(ClAPTA) were at 303.1 °C, and for P(AMPSNa) three decompositions temperatures were registered at 190.5 °C, 223.2 °C, and 304.8 °C. P(HMPDSPA) presented two important decomposition temperatures at 292.4 °C and 391.7 °C, respectively. Concerning to the retention of Cr(VI), it was maximal (100 %) when P(ClAPTA) was studied at pH 6. The maximum retention of Cr(III) (100 %) was achieved by P(AMPSNa) at pH 3. The optimum polymer:Cr mole ratio obtained was 10:1 for both Cr(VI) and Cr(III). The retention of Cr(VI) decreased due to the presence of interfering ions, and the hydrodynamic flow was almost constant during the ultrafiltration of polymer-Cr macromolecule.
APA, Harvard, Vancouver, ISO, and other styles
20

Vijitha, Raagala, Nagella Sivagangi Reddy, Kasula Nagaraja, Tiruchuru J. Sudha Vani, Marlia M. Hanafiah, Katta Venkateswarlu, Sivarama Krishna Lakkaboyana, Kummari S. V. Krishna Rao, and Kummara Madhususdana Rao. "Fabrication of Polyelectrolyte Membranes of Pectin Graft-Copolymers with PVA and Their Composites with Phosphomolybdic Acid for Drug Delivery, Toxic Metal Ion Removal, and Fuel Cell Applications." Membranes 11, no. 10 (October 18, 2021): 792. http://dx.doi.org/10.3390/membranes11100792.

Full text
Abstract:
In this study, a simple method for the fabrication of highly diffusive, adsorptive and conductive eco-friendly polyelectrolyte membranes (PEMs) with sulfonate functionalized pectin and poly(vinyl alcohol)(PVA) was established. The graft-copolymers were synthesized by employing the use of potassium persulfate as a free radical initiator from pectin (PC), a carbohydrate polymer with 2-acrylamido-2-methyl-1-propanesulphonic acid (AMPS) and sodium 4-vinylbenzene sulphonate (SVBS). The PEMs were fabricated from the blends of pectin graft-copolymers (PC-g-AMPS and PC-g-SVBS) and PVA by using a solution casting method, followed by chemical crosslinking with glutaraldehyde. The composite PEMs were fabricated by mixing phosphomolybdic acid with the aforementioned blends. The PEMs were successfully characterized by FTIR, XRD, SEM, and EDAX studies. They were assessed for the controlled release of an anti-cancer drug (5-fluorouracil) and the removal of toxic metal ions (Cu2+) from aqueous media. Furthermore, the composite PEMs were evaluated for fuel cell application. The 5-fluorouracil release capacity of the PEMs was found to be 93% and 99.1% at 300 min in a phosphate buffer solution (pH = 7.4). The highest Cu2+ removal was observed at 206.7 and 190.1 mg/g. The phosphomolybdic acid-embedded PEMs showed superior methanol permeability, i.e., 6.83 × 10−5, and 5.94 × 10−5, compared to the pristine PEMs. Furthermore, the same trend was observed for the proton conductivities, i.e., 13.77 × 10−3, and 18.6 × 10−3 S/cm at 30 °C.
APA, Harvard, Vancouver, ISO, and other styles
21

Wang, Zhulun, Jian Wang, Benjamin Chu, and Dennis G. Peiffer. "Solution behavior of random copolymers of styrene with sodium-2-acrylamido-2-methylpropane sulfonate." Journal of Polymer Science Part B: Polymer Physics 29, no. 11 (October 1991): 1361–71. http://dx.doi.org/10.1002/polb.1991.090291105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Suzuki, Noriyuki, Ken Watanabe, Chirika Takahashi, Yuko Takeoka, and Masahiro Rikukawa. "Ruthenium-Catalyzed Olefin Metathesis In Water using Thermo-Responsive Diblock Copolymer Micelles." Current Organic Chemistry 27 (September 11, 2023). http://dx.doi.org/10.2174/1385272827666230911115809.

Full text
Abstract:
Abstract: Ruthenium-catalyzed olefin metathesis reactions were conducted in water with thermo-responsive block copolymers forming micelles. The block copolymers were prepared by living radical polymerization and consisted of a thermo-responsive and hydrophilic segments. The former segment included poly(N-isopropylacrylamide) or poly(N,N-diethylacrylamide), and the latter poly(sodium 4-styrene sulfonate), poly(sodium 2-acrylamido-2-methylpropanesulfonate) or poly(ethylene glycol). Homometathesis, cross-metathesis and ring-closing metathesis reactions proceeded to afford the products in moderate to good yields. Extraction efficiency from the reaction mixture was also studied.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography