Academic literature on the topic 'POLARIZER COMPONENTS'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'POLARIZER COMPONENTS.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "POLARIZER COMPONENTS"
Yuan, Yi, Jun Ding, Chao Huang, Xia Ma, Xun Qu, and Chenjiang Guo. "Broadband Linear to Circular Polarizer Based on Multilayer Frequency-Selective Surface." International Journal of Antennas and Propagation 2023 (March 21, 2023): 1–7. http://dx.doi.org/10.1155/2023/8624191.
Full textMangi, Farman Ali, Shaoqiu Xiao, Ghulam Ali Mallah, Deedar Ali Jamro, Imran Memon, and Ghulam Fatima Kakepoto. "Multiband Circular Polarizer Based on Fission Transmission of Linearly Polarized Wave forX-Band Applications." Journal of Electrical and Computer Engineering 2016 (2016): 1–8. http://dx.doi.org/10.1155/2016/4293089.
Full textGuo, Zhengfeng, Honggang Gu, Yali Yu, Zhongming Wei, and Shiyuan Liu. "Broadband and Incident-Angle-Modulation Near-Infrared Polarizers Based on Optically Anisotropic SnSe." Nanomaterials 13, no. 1 (December 27, 2022): 134. http://dx.doi.org/10.3390/nano13010134.
Full textJiang, Yannan, Jing Zhao, and Jiao Wang. "Reconfigurable Polarizer Based on Bulk Dirac Semimetal Metasurface." Crystals 10, no. 3 (March 21, 2020): 228. http://dx.doi.org/10.3390/cryst10030228.
Full textJi, Ruonan, Chuan Jin, Kun Song, Shao-Wei Wang, and Xiaopeng Zhao. "Design of Multifunctional Janus Metasurface Based on Subwavelength Grating." Nanomaterials 11, no. 4 (April 19, 2021): 1034. http://dx.doi.org/10.3390/nano11041034.
Full textLi, Songquan, Laixu Gao, Changwei Zou, Wei Xie, Yong Wei, Canxin Tian, Zesong Wang, Feng Liang, Yanxiong Xiang, and Qian Yang. "A Polarization-Independent Fiber-Optic SPR Sensor." Sensors 18, no. 10 (September 22, 2018): 3204. http://dx.doi.org/10.3390/s18103204.
Full textPiltyay, S., A. Bulashenko, V. Shuliak, and O. Bulashenko. "Electromagnetic Simulation of New Tunable Guide Polarizers with Diaphragms and Pins." Advanced Electromagnetics 10, no. 3 (October 26, 2021): 24–30. http://dx.doi.org/10.7716/aem.v10i3.1737.
Full textPolavarapu, Prasad L., and Zhengyu Deng. "Differential Polarized Reflectance Spectroscopy at Air/Water and Air/Metal Interfaces." Applied Spectroscopy 50, no. 1 (January 1996): 91–97. http://dx.doi.org/10.1366/0003702963906807.
Full textGuo, Jiacong, Rentang Zhao, Ji Li, Min Zhang, and Zhongjing Xie. "P‐12.6: The application study of coated polarizer for TFT‐LCD panels." SID Symposium Digest of Technical Papers 54, S1 (April 2023): 874–75. http://dx.doi.org/10.1002/sdtp.16442.
Full textMichalik, Damian Arkadiusz, Paweł S. Jung, Bartłomiej W. Klus, Andrzej Kowalik, Anna Rojek, Urszula A. Laudyn, and Mirosław A. Karpierz. "Chromium plasmonic polarizer for high intensity light." Photonics Letters of Poland 9, no. 3 (September 30, 2017): 76. http://dx.doi.org/10.4302/plp.v9i3.767.
Full textDissertations / Theses on the topic "POLARIZER COMPONENTS"
Chakraborty, Shibalik. "Determination of Mueller matrix elements in the presence of imperfections in optical components." ScholarWorks@UNO, 2009. http://scholarworks.uno.edu/td/969.
Full textMiddendorf, John Raymond. "Novel Devices and Components for THz Systems." Wright State University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=wright1400252710.
Full textWhitehead, Katherine Suzanne. "Polarised light emitting properties of liquid crystalline conjugated polymers." Thesis, University of Sheffield, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.269317.
Full textYuan, Ye. "Investigation of Skin and Skin Components Using Polarized Fluorescence and Polarized Reflectance Towards the Detection of Cutaneous Melanoma." University of Toledo / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1147284058.
Full textQuitin, François. "Channel modeling for polarized MIMO systems." Doctoral thesis, Universite Libre de Bruxelles, 2011. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209951.
Full textThe PIPO model is a statistical channel model for tri-polarized to tri-polarized communication systems. A tri-polarized antenna system is a tranceiver using three perpendicular antennas. The aim of the PIPO channel model is to have a model that has a simple mathematical structure, so it can be used for solving precoding equations or capacity calculations. Although the PIPO model has a very simple structure, it takes the following parameters into account: coherent channel component, cross-polar channel power imbalance, inter-channel correlation, short- and long-scale time variance.
Experimental measurements are used to parameterize the model. It is shown how the model parameters are extracted from experimental measurements, and the results are analyzed to allow further simplification of the model.
The PDD model, on the other hand, is a geometry-based stochastic channel model. It models the channel as a sum of clusters, where each cluster consists of groups of multipath components (MPCs). The PDD model includes two novelties that will be developed in detail in this thesis.
- The model considers polarization on a per-cluster basis. This permits to have a more accurate description of the polar-angular spectrum.
- The diffuse multipath component (DMC) is included by considering a diffuse component for each cluster. The diffuse cluster component is then modeled as the sum of a set of diffuse MPCs.
The model is specified in detail, and it is shown how the model can be generated.
Experimental measurements were carried out to parameterize the model. A new extraction technique for extracting the specular-diffuse clusters from the measurements is proposed. This technique is based on joint clustering of the specular MPCs and the bins of the diffuse component. The experimental results are analyzed, and superimposed with environment information to gain further insight into the physical aspects of clustered propagation.
Finally, both models are validated. Several validation metrics are introduced, and their pertinence in the context of polarized MIMO systems is highlighted. Both models are successfully validated, and the advantages and limitations of each models are investigated.
Cette thèse traite des modèles de canal pour systèmes sans-fils multi-antennes polarisés. Des systèmes multi-antennes polarisés sont des systèmes qui utilisent des antennes polarisées perpendiculairement co-localisées à la station de base et au terminal mobile, dans le but de bénéficier de la diversité de polarisation. De tels systèmes peuvent bénéficier des avantages des systèmes MIMO tout en diminuant l'encombrement des équipements. Deux modèles seront présentés dans cette thèse. Le premier est le modèle Polarized-Input Polarized-Output (PIPO), le second est le modèle Polarized-Diffuse-Directional (PDD).
Le modèle PIPO est un modèle statistique pour des systèmes de communication tri-polaire à tri-polaire. Un système tri-polaire est un émetteur ou un récepteur qui utilise trois antennes perpendiculaires. Le but du modèle de canal PIPO est d'avoir un modèle qui a une structure mathématique simple, afin qu'il puisse être utilisé pour résoudre des équations de précodage ou des calculs de capacité. Malgré la structure simple du modèle PIPO, il tient compte des paramètres suivants: la composante cohérente du canal, les différences de puissance entre canaux cross-polaires, la corrélation entre canaux, les variations à courte et à longue échelle de temps. Des mesures expérimentales ont été réalisées afin de paramétriser le modèle. Les techniques pour extraire les paramètres du modèle des mesures expérimentales sont présentées, et les résultats sont analysés afin de permettre une simplification supplémentaire du modèle.
Le modèle PDD, quant à lui, est un modèle de canal stochasique-géométrique. Il modélise le canal comme une somme de clusters, où chaque clusters est composé d'un groupe de chemins multi-trajets. Le modèle PDD inclut les deux nouveautés suivantes qui seront développées en détail dans cette thèse.
- Le modèle considère une polarisation par cluster. Ceci permet d'avoir une description plus exacte du spectre angulaire-polaire.
- La composante diffuse est prise en compte en incluant une composante diffuse pour chaque cluster. La composante diffuse d'un cluster est alors modelisée comme une somme de multi-trajets diffus.
Le modèle est spécifié en détail, et il est présenté comment le modèle peut être généré. Des mesures expérimentales ont été faites afin de paramétriser le modèle. Une nouvelle technique d'extraction est proposée pour extraire les clusters spéculaires-diffus. Cette technique est basée sur le clustering conjoint des multi-trajets spéculaires et des "bins" de la composante diffuse. Les résultats expérimentaux sont analysés, et superposés avec l'information de l'environnement de mesure afin d'avoir une connaissance accrue des aspects physiques de la propagation par clusters.
Finalement, les deux modèles sont validés. Plusieurs métriques de validations sont introduites, et leur pertinence dans le cadre des systèmes MIMO polarisés est mis en avant. Les deux modèles sont validés avec succès, et les avantages et limitations de chaque modèle sont investigués.
Doctorat en Sciences de l'ingénieur
info:eu-repo/semantics/nonPublished
Li, Tiesheng. "Optical properties of CdTe/Cd1-xZnxTe strained-layer single quantum wells." Ohio University / OhioLINK, 1993. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1173760803.
Full textHolmes, Neil Andrew. "The Streptomyces cytoskeletal protein (Scy) is a key component of the tip organising centre for polarized growth in Streptomyces coelicolor." Thesis, University of East Anglia, 2012. https://ueaeprints.uea.ac.uk/43072/.
Full textTabbi, Giuseppe Teodoro Maria [Verfasser]. "Parallelization of a Data-Driven Independent Component Analysis to Analyze Large 3D-Polarized Light Imaging Data Sets / Giuseppe Teodoro Maria Tabbi." Wuppertal : Universitätsbibliothek Wuppertal, 2016. http://d-nb.info/1120027241/34.
Full textFAROOQUI, MUHAMMAD ZUNNOORAIN. "Analysis and Design of Microwave and Millimeter-wave Passive Devices for Scientific Instrumentation." Doctoral thesis, Politecnico di Torino, 2014. http://hdl.handle.net/11583/2541493.
Full textDevaki, Sudha J., Neethu K. Sadanandhan, Renjith Sasi, Hans-Juergen P. Adler, and Andrij Pich. "Water dispersible electrically conductive poly(3,4- ethylenedioxythiophene) nanospindles by liquid crystalline template assisted polymerization." Royal Society of Chemistry, 2014. https://tud.qucosa.de/id/qucosa%3A36259.
Full textBooks on the topic "POLARIZER COMPONENTS"
Turda, Marius. Race, Science, and Eugenics in the Twentieth Century. Edited by Alison Bashford and Philippa Levine. Oxford University Press, 2012. http://dx.doi.org/10.1093/oxfordhb/9780195373141.013.0004.
Full textBenkler, Yochai, Robert Faris, and Hal Roberts. Polarization in American Politics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780190923624.003.0010.
Full textJohnson, Dennis W. Campaigns and Elections. Oxford University Press, 2019. http://dx.doi.org/10.1093/wentk/9780190935580.001.0001.
Full textT. Wave Phenomena. Courier Dover Publications, 2014.
Find full textBook chapters on the topic "POLARIZER COMPONENTS"
Aggarwal, Roshan L., and Kambiz Alavi. "Polarizers." In Introduction to Optical Components, 43–55. First edition. | Boca Raton, FL : CRC Press, Taylor & Francis Group, 2018. | “A CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of T&F Informa plc.”: CRC Press, 2018. http://dx.doi.org/10.1201/9781351189514-4.
Full textChipman, Russell A., Wai-Sze Tiffany Lam, and Garam Young. "Uniaxial Materials and Components." In Polarized Light and Optical Systems, 741–84. Boca Raton : Taylor & Francis, CRC Press, 2019. | Series: Optical sciences and applications of light: CRC Press, 2018. http://dx.doi.org/10.1201/9781351129121-21.
Full textNisaka, Yuto, Ryo Matsuoka, Toshiyuki Amano, and Takahiro Okabe. "Fast Separation of Specular, Diffuse, and Global Components via Polarized Pattern Projection." In Communications in Computer and Information Science, 294–308. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81638-4_24.
Full textBenning, Kai, Miriam Menzel, Jan André Reuter, and Markus Axer. "Independent Component Analysis for Noise and Artifact Removal in Three-Dimensional Polarized Light Imaging." In Lecture Notes in Computer Science, 90–102. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-82427-3_7.
Full textHock, Kiel, François Méot, and Vasiliy Morozov. "Spin Dynamics Tutorial: Numerical Simulations." In Polarized Beam Dynamics and Instrumentation in Particle Accelerators, 315–408. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-16715-7_14.
Full textReggi, Valeria. "Chapter 7. Italy." In Voices of Supporters, 140–61. Amsterdam: John Benjamins Publishing Company, 2023. http://dx.doi.org/10.1075/dapsac.101.c7.
Full textPfirman, Stephanie, and Gisela Winckler. "Perspectives on Teaching Climate Change: Two Decades of Evolving Approaches." In Transforming Education for Sustainability, 325–45. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-13536-1_19.
Full textTompkins, Harland G. "Optical Components and the Simple PCSA (Polarizer, Compensator, Sample, Analyzer) Ellipsometer." In Handbook of Ellipsometry, 299–328. Elsevier, 2005. http://dx.doi.org/10.1016/b978-081551499-2.50006-x.
Full textPandya, Ankur, Vishal Sorathiya, and Sunil Lavadiya. "Graphene-Based Nanophotonic Devices." In Recent Advances in Nanophotonics - Fundamentals and Applications. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.93853.
Full text"Mueller Matrices for Polarizing Components." In Polarized Light, Third Edition, 93–115. CRC Press, 2010. http://dx.doi.org/10.1201/b10436-8.
Full textConference papers on the topic "POLARIZER COMPONENTS"
Können, G. P., and J. Tinbergen. "Polarimetric Observations of a 22° Halo." In Light and Color in the Open Air. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/lcoa.1990.thd4.
Full textChen, Rongsheng, Tong Yu, Shong H. Yan, and Man Xu. "1.5-um isolator with in-line fiber polarizer." In Fiber Optic Components and reliability, edited by Paul M. Kopera and Dilip K. Paul. SPIE, 1992. http://dx.doi.org/10.1117/12.135403.
Full textSchrader, K. N., S. R. Tuenge, and C. K. Carniglia. "Comparison of two types of ellipsometer with rotating polarizers." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1988. http://dx.doi.org/10.1364/oam.1988.thv1.
Full textBloemer, Mark. "Localized surface plasmons for waveguide polarizers." In Integrated Photonics Research. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/ipr.1991.tha6.
Full textLi, Li, and J. A. Dobrowolski. "New developments in thin film polarizing beam-splitters." In Optical Interference Coatings. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/oic.1998.tud.1.
Full textChi, Nai-Chen, Ting-Yang Yu, Hsin-Cheng Tsai, Shiang-Yu Wang, Chih-Wei Luo, Yu-Tao Yang, and Kuan-Neng Chen. "High Transmittance Broadband THz Polarizer Using 3D-IC Technologies." In 2017 IEEE 67th Electronic Components and Technology Conference (ECTC). IEEE, 2017. http://dx.doi.org/10.1109/ectc.2017.57.
Full textFindakly, Talal, B. Dougfierty, and J. Moen. "Integrated-optic logic gates." In Integrated and Guided Wave Optics. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/igwo.1986.thcc15.
Full textRynders, M. C., and L. N. Thibos. "Single Channel, Sinusoidally Modulated Signal Generator, with Variable Temporal Contrast." In Noninvasive Assessment of the Visual System. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/navs.1992.tue2.
Full textIkeda, Toru, Tomonori Mizutani, and Noriyuki Miyazaki. "Hygro-Mechanical Analysis of LCD Panels." In ASME 2009 InterPACK Conference collocated with the ASME 2009 Summer Heat Transfer Conference and the ASME 2009 3rd International Conference on Energy Sustainability. ASMEDC, 2009. http://dx.doi.org/10.1115/interpack2009-89267.
Full textKokubun, Yasuo, Tatsuhiko Watanabe, Kohei Morita, and Ryo Kawata. "Full mode analysis of vector components of degenerated LP modes in Few Mode Fibers from intensity profile through angled polarizer." In 2015 20th Microoptics Conference (MOC). IEEE, 2015. http://dx.doi.org/10.1109/moc.2015.7416393.
Full text