Academic literature on the topic 'Poisson distribution'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Poisson distribution.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Poisson distribution"
Loukas, Sotirios, and H. Papageorgiou. "On a trivariate Poisson distribution." Applications of Mathematics 36, no. 6 (1991): 432–39. http://dx.doi.org/10.21136/am.1991.104480.
Full textSHANKER, Rama. "The Discrete Poisson-Aradhana Distribution." Turkiye Klinikleri Journal of Biostatistics 9, no. 1 (2017): 12–22. http://dx.doi.org/10.5336/biostatic.2017-54834.
Full textV. R., Saji Kumar. "α - Poisson Distribution." Calcutta Statistical Association Bulletin 54, no. 3-4 (September 2003): 275–80. http://dx.doi.org/10.1177/0008068320030312.
Full textBidounga, R., P. C. Batsindila Nganga, L. Niéré, and D. Mizère. "A Note on the (Weighted) Bivariate Poisson Distribution." European Journal of Pure and Applied Mathematics 14, no. 1 (January 31, 2021): 192–203. http://dx.doi.org/10.29020/nybg.ejpam.v14i1.3895.
Full textAbd El-Monsef, Mohamed, and Nora Sohsah. "POISSON TRANSMUTED LINDLEY DISTRIBUTION." JOURNAL OF ADVANCES IN MATHEMATICS 11, no. 9 (January 1, 2016): 5631–38. http://dx.doi.org/10.24297/jam.v11i9.816.
Full textDeshmukh, S. R., and M. S. Kasture. "BIVARIATE DISTRIBUTION WITH TRUNCATED POISSON MARGINAL DISTRIBUTIONS." Communications in Statistics - Theory and Methods 31, no. 4 (May 14, 2002): 527–34. http://dx.doi.org/10.1081/sta-120003132.
Full textARRATIA, RICHARD, A. D. BARBOUR, and SIMON TAVARÉ. "The Poisson–Dirichlet Distribution and the Scale-Invariant Poisson Process." Combinatorics, Probability and Computing 8, no. 5 (September 1999): 407–16. http://dx.doi.org/10.1017/s0963548399003910.
Full textGao, Mingchu. "Compound bi-free Poisson distributions." Infinite Dimensional Analysis, Quantum Probability and Related Topics 22, no. 02 (June 2019): 1950014. http://dx.doi.org/10.1142/s0219025719500140.
Full textRufin, Bidounda, Michel Koukouatikissa Diafouka, R. Ìeolie Foxie Miz Ìel Ìe Kitoti, and Dominique Miz`ere. "The Bivariate Extended Poisson Distribution of Type 1." European Journal of Pure and Applied Mathematics 14, no. 4 (November 10, 2021): 1517–29. http://dx.doi.org/10.29020/nybg.ejpam.v14i4.4151.
Full textThavaneswaran, Aerambamoorthy, Saumen Mandal, and Dharini Pathmanathan. "Estimation for Wrapped Zero Inflated Poisson and Wrapped Poisson Distributions." International Journal of Statistics and Probability 5, no. 3 (April 8, 2016): 1. http://dx.doi.org/10.5539/ijsp.v5n3p1.
Full textDissertations / Theses on the topic "Poisson distribution"
Gu, Kangxia. "Testing the rates of Poisson distribution." Ann Arbor, Mich. : ProQuest, 2006. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3213456.
Full textTitle from PDF title page (viewed July 6, 2007). Source: Dissertation Abstracts International, Volume: 67-03, Section: B, page: 1504. Advisers: Hon Keung Tony Ng; William R. Schucany. Includes bibliographical references.
Wang, Ling. "Homogeneity tests for several poisson populations." HKBU Institutional Repository, 2008. http://repository.hkbu.edu.hk/etd_ra/909.
Full textSILVA, PRISCILLA FERREIRA DA. "A BIVARIATE GARMA MODEL WITH CONDITIONAL POISSON DISTRIBUTION." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2013. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=22899@1.
Full textCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE SUPORTE À PÓS-GRADUAÇÃO DE INSTS. DE ENSINO
Os modelos lineares generalizados auto regressivos com médias móveis (do inglês GARMA), possibilitam a modelagem de séries temporais de dados de contagem com estrutura de correlação similares aos dos modelos ARMA. Neste trabalho é desenvolvida uma extensão multivariada do modelo GARMA, considerando a especificação de um modelo Poisson bivariado a partir da distribuição de Kocherlakota e Kocherlakota (1992), a qual será denominada de modelo Poisson BGARMA. O modelo proposto é adequado para séries de contagens estacionárias, sendo possível, através de funções de ligação apropriadas, introduzir deterministicamente o efeito de sazonalidade e de tendência. A investigação das propriedades usuais dos estimadores de máxima verossimilhança (viés, eficiência e distribuição) foi realizada através de simulações de Monte Carlo. Com o objetivo de comparar o desempenho e a aderência do modelo proposto, este foi aplicado a dois pares de séries reais bivariadas de dados de contagem. O primeiro par de séries apresenta as contagens mensais de óbitos neonatais para duas faixas de dias de vida. O segundo par de séries refere-se a contagens de acidentes de automóveis diários em dois períodos: vespertino e noturno. Os resultados do modelo proposto, quando comparados com aqueles obtidos através do ajuste de um modelo Gaussiano bivariado Vector Autoregressive (VAR), indicam que o modelo Poisson BGARMA é capaz de capturar de forma adequada as variações de pares de séries de dados de contagem e de realizar previsões com erros aceitáveis, além de produzir previsões probabilísticas para as séries.
Generalized autoregressive linear models with moving average (GARMA) allow the modeling of discrete time series with correlation structure similar to those of ARMA’s models. In this work we developed an extension of a univariate Poisson GARMA model by considerating the specification of a bivariate Poisson model through the distribution presented on Kocherlakota and Kocherlakota (1992), which will be called Poisson BGARMA model. The proposed model not only is suitable for stationary discrete series, but also allows us to take into consideration the effect of seasonality and trend. The investigation of the usual properties of the maximum likelihood estimators (bias, efficiency and distribution) was performed using Monte Carlo simulations. Aiming to compare the performance and compliance of the proposed model, it was applied to two pairs of series of bivariate count data. The first pair is the monthly counts of neonatal deaths to two lanes of days. The second pair refers to counts of daily car accidents in two distinct periods: afternoon and evening. The results of our model when compared with those obtained by fitting a bivariate Vector Autoregressive Gaussian model (VAR) indicates that the Poisson BGARMA model is able to proper capture the variability of bivariate vectors of real time series of count data, producing forecasts with acceptable errors and allowing one to obtain probability forecasts.
Wan, Wai-yin. "Analysis of Poisson count data using Geometric Process model." Click to view the E-thesis via HKUTO, 2006. http://sunzi.lib.hku.hk/hkuto/record/B37836493.
Full textWan, Wai-yin, and 溫慧妍. "Analysis of Poisson count data using Geometric Process model." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2006. http://hub.hku.hk/bib/B37836493.
Full textBuchmann, Boris. "Decompounding an estimation problem for the compound poisson distribution /." [S.l.] : [s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=962736910.
Full textvan, de Ven Remy Julius. "Estimation in mixed Poisson regression models." Thesis, The University of Sydney, 1996. https://hdl.handle.net/2123/26822.
Full textPfister, Mark. "Distribution of a Sum of Random Variables when the Sample Size is a Poisson Distribution." Digital Commons @ East Tennessee State University, 2018. https://dc.etsu.edu/etd/3459.
Full textRodrigues, Cristiane. "Distribuições em série de potências modificadas inflacionadas e distribuição Weibull binominal negativa." Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/11/11134/tde-28062011-095106/.
Full textIn this paper, some result such as moments generating function, recurrence relations for moments and some theorems of the class of modified power series distributions (MPSD) proposed by Gupta (1974) and of the class of inflated modified power series distributions (IMPSD) both at a different point of zero as the zero point are presented. The standard Poisson model, the standard negative binomial model and zero inflated models for count data, ZIP and ZINB, using the techniques of the GLMs, were used to analyse two real data sets together with the normal plot with simulated envelopes. The new distribution Weibull negative binomial (WNB) was proposed. Some mathematical properties of the WNB distribution which is quite flexible in analyzing positive data were studied. It is an important alternative model to the Weibull, and Weibull geometric distributions as they are sub-models of WNB. We demonstrate that the WNB density can be expressed as a mixture of Weibull densities. We provide their moments, moment generating function, plots of the skewness and kurtosis, explicit expressions for the mean deviations, Bonferroni and Lorenz curves, quantile function, reliability and entropy, the density of order statistics and explicit expressions for the moments of order statistics. The method of maximum likelihood is used for estimating the model parameters. The expected information matrix is derived. The usefulness of the new distribution is illustrated in two analysis of real data sets.
Gagnon, Karine. "Distribution et abondance des larves d'éperlan arc-en-ciel (Osmerus mordax) au lac Saint-Jean /." Thèse, Chicoutimi : Université du Québec à Chicoutimi, 2005. http://theses.uqac.ca.
Full textBooks on the topic "Poisson distribution"
Barbour, A. D. Poisson approximation. Oxford [England]: Clarendon Press, 1992.
Find full textGrandell, Jan. Mixed Poisson processes. London: Chapman & Hall, 1997.
Find full textLindsay, Glenn F. Recruiter productivity and the Poisson distribution. Monterey, Calif: Naval Postgraduate School, 1994.
Find full textGeneralized Poisson distributions: Properties and applications. New York: M. Dekker, 1989.
Find full textFeng, Shui. The Poisson-Dirichlet Distribution and Related Topics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11194-5.
Full textThe Poisson-Dirichlet distribution and related topics: Models and asymptotic behaviors. Heidelberg: Springer, 2010.
Find full textHarris, Ian Richard. Smooth and predictive estimates for the compound Poisson distribution. Birmingham: University of Birmingham, 1987.
Find full textMarijtje A. J. van Duijn. Mixed models for repeated count data. Leiden, Netherlands: DSWO Press, Leiden University, 1993.
Find full textHeldt, John J. Quality sampling and reliability: New uses for the poisson distribution. Boca Raton: St. Lucie Press, 1999.
Find full textA, Kutoyants Yu. Statistical inference for spatial Poisson processes. New York: Springer, 1998.
Find full textBook chapters on the topic "Poisson distribution"
Gooch, Jan W. "Poisson Distribution." In Encyclopedic Dictionary of Polymers, 991. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_15324.
Full textGooch, Jan W. "Poisson Distribution." In Encyclopedic Dictionary of Polymers, 546. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_8909.
Full textWeik, Martin H. "Poisson distribution." In Computer Science and Communications Dictionary, 1293. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_14247.
Full textGooch, Jan W. "Poisson Ratio Distribution." In Encyclopedic Dictionary of Polymers, 546. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_8911.
Full textNguyen, Hung T., and Gerald S. Rogers. "The Poisson Distribution." In Springer Texts in Statistics, 166–76. New York, NY: Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4612-1013-9_20.
Full textJolicoeur, Pierre. "The Poisson distribution." In Introduction to Biometry, 124–33. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4777-8_19.
Full textCummings, Peter. "The Poisson Distribution." In Analysis of Incidence Rates, 53–82. Boca Raton : CRC Press, Taylor & Francis Group, 2019.: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9780429055713-4.
Full textRussell, Kenneth G. "The Poisson Distribution." In Design of Experiments for Generalized Linear Models, 149–69. Boca Raton, Florida : CRC Press, [2019] | Series: Chapman & Hall/CRC interdisciplinary statistics: Chapman and Hall/CRC, 2018. http://dx.doi.org/10.1201/9780429057489-5.
Full textGrandell, Jan. "The mixed Poisson distribution." In Mixed Poisson Processes, 13–50. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4899-3117-7_2.
Full textFeng, Shui. "The Poisson–Dirichlet Distribution." In Probability and its Applications, 15–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11194-5_2.
Full textConference papers on the topic "Poisson distribution"
Hubert, Paulo C., Marcelo S. Lauretto, Julio M. Stern, Paul M. Goggans, and Chun-Yong Chan. "FBST for Generalized Poisson Distribution." In BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING: The 29th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering. AIP, 2009. http://dx.doi.org/10.1063/1.3275617.
Full textSEETHA MAHALAXMI, D., and P. R. K. MURTI. "TAMPER RESISTANCE VIA POISSON DISTRIBUTION." In Proceedings of the 3rd Asian Applied Computing Conference. PUBLISHED BY IMPERIAL COLLEGE PRESS AND DISTRIBUTED BY WORLD SCIENTIFIC PUBLISHING CO., 2007. http://dx.doi.org/10.1142/9781860948534_0019.
Full textAdzkiah, A., D. Lestari, and L. Safitri. "Exponential Conway Maxwell Poisson distribution." In PROCEEDINGS OF THE 6TH INTERNATIONAL SYMPOSIUM ON CURRENT PROGRESS IN MATHEMATICS AND SCIENCES 2020 (ISCPMS 2020). AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0059254.
Full textFitria, Dina, Nonong Amalita, and Syafriandi. "Poisson Distribution with Discrete Parameter." In Proceedings of the 2nd International Conference on Mathematics and Mathematics Education 2018 (ICM2E 2018). Paris, France: Atlantis Press, 2018. http://dx.doi.org/10.2991/icm2e-18.2018.11.
Full textÖzel, Gamze, and Selen Çakmakyapan. "A new generalized Poisson Lindley distribution." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2016). Author(s), 2017. http://dx.doi.org/10.1063/1.4992404.
Full textŠvihlík, Jan, Zuzana Krbcová, Jaromir Kukal, and Karel Fliegel. "Smoothing of astronomical images with Poisson distribution." In Applications of Digital Image Processing XL, edited by Andrew G. Tescher. SPIE, 2017. http://dx.doi.org/10.1117/12.2274121.
Full textZamani, Hossein, Pouya Faroughi, and Noriszura Ismail. "Bivariate Poisson-weighted exponential distribution with applications." In PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4882600.
Full textZhang, Hao Lan, Jiming Liu, Tongliang Li, Yun Xue, Songjie Xu, and Junhua Chen. "Extracting sample data based on poisson distribution." In 2017 International Conference on Machine Learning and Cybernetics (ICMLC). IEEE, 2017. http://dx.doi.org/10.1109/icmlc.2017.8108950.
Full textYuanshu Jiang and Wenzhong Tang. "Poisson distribution-based page updating prediction strategy." In 2011 International Conference on Computer Science and Network Technology (ICCSNT). IEEE, 2011. http://dx.doi.org/10.1109/iccsnt.2011.6182119.
Full textRamanujam, P. S., and N. Gronbech-Jensen. "Generation of sub-Poisson distribution of light." In Emerging OE Technologies, Bangalore, India, edited by Krishna Shenai, Ananth Selvarajan, C. K. N. Patel, C. N. R. Rao, B. S. Sonde, and Vijai K. Tripathi. SPIE, 1992. http://dx.doi.org/10.1117/12.636808.
Full textReports on the topic "Poisson distribution"
Lindsay, Glenn F. Recruiter Productivity and the Poisson Distribution. Fort Belvoir, VA: Defense Technical Information Center, September 1994. http://dx.doi.org/10.21236/ada286230.
Full textBryant, J. L., and A. S. Paulson. Estimation of the Parameters of a Modified Compound Poisson Distribution. Fort Belvoir, VA: Defense Technical Information Center, January 1986. http://dx.doi.org/10.21236/ada178540.
Full textDeLacy, Brendan G., and Janon F. Embury. Infrared Extinction Coefficients of Aerosolized Conductive Flake Powders and Flake Suspensions having a Zero-Truncated Poisson Size Distribution. Fort Belvoir, VA: Defense Technical Information Center, November 2012. http://dx.doi.org/10.21236/ada570956.
Full textZacks, S., and Gang Li. The Distribution of the Size and Number of Shadows Cast on a Line Segment in a Poisson Random Field. Fort Belvoir, VA: Defense Technical Information Center, February 1991. http://dx.doi.org/10.21236/ada233697.
Full textVecherin, Sergey, Stephen Ketcham, Aaron Meyer, Kyle Dunn, Jacob Desmond, and Michael Parker. Short-range near-surface seismic ensemble predictions and uncertainty quantification for layered medium. Engineer Research and Development Center (U.S.), September 2022. http://dx.doi.org/10.21079/11681/45300.
Full textGuilfoyle, Michael, Ruth Beck, Bill Williams, Shannon Reinheimer, Lyle Burgoon, Samuel Jackson, Sherwin Beck, Burton Suedel, and Richard Fischer. Birds of the Craney Island Dredged Material Management Area, Portsmouth, Virginia, 2008-2020. Engineer Research and Development Center (U.S.), September 2022. http://dx.doi.org/10.21079/11681/45604.
Full textTummala, Rohan, Andrew de Jesus, Natasha Tillett, Jeffrey Nelson, and Christine Lamey. Clinical and Socioeconomic Predictors of Palliative Care Utilization. University of Tennessee Health Science Center, January 2021. http://dx.doi.org/10.21007/com.lsp.2020.0006.
Full text