Dissertations / Theses on the topic 'PLSDA'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 25 dissertations / theses for your research on the topic 'PLSDA.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Le, Thao Nhi. "Le frelon asiatique (Vespa velutina nigrithorax) : Stratégies d’études sur l’identification de nouvelles molécules actives pour la dermacosmétique." Thesis, Orléans, 2020. http://www.theses.fr/2020ORLE3143.
Full textThe search for new compounds to prevent or attenuate skin aging is a priority in current research in cosmetics. In this context, Asian Hornet venom (Vespa velutina nigrithorax) has been studied as a particular source of potentially bioactive molecules for dermacosmetic interest.The first study focused on the implementation of a reliable venom extraction and sampling protocol. Then, the peptide - small molecules fraction was selected to evaluate, in comparison with crude venom, the presence of active molecules with respect to antioxidant, anti-microbial (C. acnes) and enzyme inhibition (tyrosinase, elastase, collagenase) activity in-tubo and in-cellulo. These studies led to the identification in crude venom, by UHPLC-ESI-QTOF-HRMS/MS, of one molecule responsible for antioxidant activity on HaCaT keratinocytes.In a second study, a peptidomic approach based on UHPLC-ESI-QTOF-HRMS/MS followed by statistical processing (PCA, PLS-DA) was applied to the differential study of venom, according to the collection period, castes and behavior. The latter aims at evaluating the influence of these different factors on the venom molecular heritage. At the same time, in a third study, a ligand/enzyme interaction screening approach by mass spectrometry on solid-supported elastase enzymes was developed. The aim of this method is to detect the presence of inhibitors or substrates in more or less complex fractions. Two hornet venom peptides presenting in the hornet venom were identified to be capable of interacting with the enzyme elastase. Their peptide sequences were then partially obtained by de novo sequencing
Dunja, Jakovljević. "Biološko dejstvo vodenog ekstrakta ploda štavelja (Rumex crispus L., Polygonaceae)." Phd thesis, Univerzitet u Novom Sadu, Medicinski fakultet u Novom Sadu, 2019. https://www.cris.uns.ac.rs/record.jsf?recordId=110304&source=NDLTD&language=en.
Full textCurly dock (Rumex crispus, Polygonaceae) is a wild perennial herbaceous plant, which products are described as a rich source of phenolic compounds. Apart from being considered a seriously invasive weed, young leaves of curly dock are edible and often used as salad. Furthermore, the use of its fruits has been described in Serbian and Turkish traditional medicine against stomach complaints. The objectives of this study were to evaluate in vitro and in vivo antioxidant/prooxidant and cytotoxic activities, and to determine an eventual in vitro anti-inflammatory effect of the aqueous extract of Rumex crispus fruits. Total flavonoid content was determined by spectrophotometric method. Qualification and quantification of flavonoids were confirmed using High performance liquid chromatography (HPLC). The aqueous extract of curly dock fruits was evaluated for its antioxidant activity by in vitro assays for Ferric-reducing antioxidant power (FRAP), NO•, OH• and DPPH•-free radical scavenging activities and the influence on lipid peroxidation in liposomes. The cytotoxicity of tested extract was examined in vitro in human cervix carcinoma (HeLa), colon adenocarcinoma (HT-29) and breast adenocarcinoma (MCF7). Also, the potential in vivo hepatoprotective and antioxidant properties of investigated extract were determined on CCl4-induced oxidative stress in experimental animals. Furthermore, the hypothesis that the examined extract might show in vivo antiproliferative activity in Ehrlich carcinoma (EAC) and Hepatoma AS30D cells was tested by measuring volume of ascites, percentage of viable cells and level of several antioxidant enzymes. The optimized in vitro test for determination of cyclooxygenase-1 (COX-1) and 12-lipoxygenase (12-LOX) inhibition potency was undertaken in order to estimate an anti-inflammatory effect of aqueous extract of R. crispus fruits. HPLC analysis revealed miquelianin as the most abundant flavonoid constituent of the extract. The tested extract might have an antioxidant activity resulting in scavenging of free radicals and ability to decrease lipid peroxidation in liposomes. The results could indicate tissue-selective cytotoxicity of R. crispus fruit extract in vitro. The most prominent antitumor activity was observed towards HeLa and MCF7 cell lines. The data suggested that investigated extract may be considered as potential in vivo hepatoprotective and antioxidant agent due to prevention of the liver injuries induced by oxidative damage. On the other hand, mentioned extract could exhibit in vivo prooxidant property, causing the oxidative stress in malignant transformed EAC and AS30D cells and reducing volume of ascites and percentage of viable cells, in comparison with control group. Changes in activities of antioxidant enzymes might be the results of induced oxidative stress in EAC and AS30D cells, especially in the pretreated animals. The aqueous extract of curly dock fruits showed COX-1, as well as 12-LOX inhibitory activity, suggesting that tested extract might be an anti-inflammatory agent. It could be concluded that aqueous fruit extract of R. crispus might have antioxidant, cytotoxic and anti-inflammatory activities. The prooxidant properties of examined extract could be the mechanism of potential antiproliferative effect of extract.
Vitale, Raffaele. "Novel chemometric proposals for advanced multivariate data analysis, processing and interpretation." Doctoral thesis, Universitat Politècnica de València, 2017. http://hdl.handle.net/10251/90442.
Full textLa presente tesis doctoral, concebida principalmente para apoyar y reforzar la relación entre la academia y la industria, se desarrolló en colaboración con Shell Global Solutions (Amsterdam, Países Bajos) en el esfuerzo de aplicar y posiblemente extender los enfoques ya consolidados basados en variables latentes (es decir, Análisis de Componentes Principales - PCA - Regresión en Mínimos Cuadrados Parciales - PLS - o PLS discriminante - PLSDA) para la resolución de problemas complejos no sólo en los campos de mejora y optimización de procesos, sino también en el entorno más amplio del análisis de datos multivariados. Con este fin, en todos los capítulos proponemos nuevas soluciones algorítmicas eficientes para abordar tareas dispares, desde la transferencia de calibración en espectroscopia hasta el modelado en tiempo real de flujos de datos. El manuscrito se divide en las seis partes siguientes, centradas en diversos temas de interés: Parte I - Prefacio, donde presentamos un resumen de este trabajo de investigación, damos sus principales objetivos y justificaciones junto con una breve introducción sobre PCA, PLS y PLSDA; Parte II - Sobre las extensiones basadas en kernels de PCA, PLS y PLSDA, donde presentamos el potencial de las técnicas de kernel, eventualmente acopladas a variantes específicas de la recién redescubierta proyección de pseudo-muestras, formulada por el estadista inglés John C. Gower, y comparamos su rendimiento respecto a metodologías más clásicas en cuatro aplicaciones a escenarios diferentes: segmentación de imágenes Rojo-Verde-Azul (RGB), discriminación y monitorización de procesos por lotes y análisis de diseños de experimentos de mezclas; Parte III - Sobre la selección del número de factores en el PCA por pruebas de permutación, donde aportamos una guía extensa sobre cómo conseguir la selección de componentes de PCA mediante pruebas de permutación y una ilustración completa de un procedimiento algorítmico original implementado para tal fin; Parte IV - Sobre la modelización de fuentes de variabilidad común y distintiva en el análisis de datos multi-conjunto, donde discutimos varios aspectos prácticos del análisis de componentes comunes y distintivos de dos bloques de datos (realizado por métodos como el Análisis Simultáneo de Componentes - SCA - Análisis Simultáneo de Componentes Distintivos y Comunes - DISCO-SCA - Descomposición Adaptada Generalizada de Valores Singulares - Adapted GSVD - ECO-POWER, Análisis de Correlaciones Canónicas - CCA - y Proyecciones Ortogonales de 2 conjuntos a Estructuras Latentes - O2PLS). Presentamos a su vez una nueva estrategia computacional para determinar el número de factores comunes subyacentes a dos matrices de datos que comparten la misma dimensión de fila o columna y dos planteamientos novedosos para la transferencia de calibración entre espectrómetros de infrarrojo cercano; Parte V - Sobre el procesamiento y la modelización en tiempo real de flujos de datos de alta dimensión, donde diseñamos la herramienta de Procesamiento en Tiempo Real (OTFP), un nuevo sistema de manejo racional de mediciones multi-canal registradas en tiempo real; Parte VI - Epílogo, donde presentamos las conclusiones finales, delimitamos las perspectivas futuras, e incluimos los anexos.
La present tesi doctoral, concebuda principalment per a recolzar i reforçar la relació entre l'acadèmia i la indústria, es va desenvolupar en col·laboració amb Shell Global Solutions (Amsterdam, Països Baixos) amb l'esforç d'aplicar i possiblement estendre els enfocaments ja consolidats basats en variables latents (és a dir, Anàlisi de Components Principals - PCA - Regressió en Mínims Quadrats Parcials - PLS - o PLS discriminant - PLSDA) per a la resolució de problemes complexos no solament en els camps de la millora i optimització de processos, sinó també en l'entorn més ampli de l'anàlisi de dades multivariades. A aquest efecte, en tots els capítols proposem noves solucions algorítmiques eficients per a abordar tasques dispars, des de la transferència de calibratge en espectroscopia fins al modelatge en temps real de fluxos de dades. El manuscrit es divideix en les sis parts següents, centrades en diversos temes d'interès: Part I - Prefaci, on presentem un resum d'aquest treball de recerca, es donen els seus principals objectius i justificacions juntament amb una breu introducció sobre PCA, PLS i PLSDA; Part II - Sobre les extensions basades en kernels de PCA, PLS i PLSDA, on presentem el potencial de les tècniques de kernel, eventualment acoblades a variants específiques de la recentment redescoberta projecció de pseudo-mostres, formulada per l'estadista anglés John C. Gower, i comparem el seu rendiment respecte a metodologies més clàssiques en quatre aplicacions a escenaris diferents: segmentació d'imatges Roig-Verd-Blau (RGB), discriminació i monitorització de processos per lots i anàlisi de dissenys d'experiments de mescles; Part III - Sobre la selecció del nombre de factors en el PCA per proves de permutació, on aportem una guia extensa sobre com aconseguir la selecció de components de PCA a través de proves de permutació i una il·lustració completa d'un procediment algorítmic original implementat per a la finalitat esmentada; Part IV - Sobre la modelització de fonts de variabilitat comuna i distintiva en l'anàlisi de dades multi-conjunt, on discutim diversos aspectes pràctics de l'anàlisis de components comuns i distintius de dos blocs de dades (realitzat per mètodes com l'Anàlisi Simultània de Components - SCA - Anàlisi Simultània de Components Distintius i Comuns - DISCO-SCA - Descomposició Adaptada Generalitzada en Valors Singulars - Adapted GSVD - ECO-POWER, Anàlisi de Correlacions Canòniques - CCA - i Projeccions Ortogonals de 2 blocs a Estructures Latents - O2PLS). Presentem al mateix temps una nova estratègia computacional per a determinar el nombre de factors comuns subjacents a dues matrius de dades que comparteixen la mateixa dimensió de fila o columna, i dos plantejaments nous per a la transferència de calibratge entre espectròmetres d'infraroig proper; Part V - Sobre el processament i la modelització en temps real de fluxos de dades d'alta dimensió, on dissenyem l'eina de Processament en Temps Real (OTFP), un nou sistema de tractament racional de mesures multi-canal registrades en temps real; Part VI - Epíleg, on presentem les conclusions finals, delimitem les perspectives futures, i incloem annexos.
Vitale, R. (2017). Novel chemometric proposals for advanced multivariate data analysis, processing and interpretation [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/90442
TESIS
HOOSHYARI, MARYAM. "Chemometrics Methods Applied to Non-Selective Signals in Order to Address Mainly Food, Industrial and Environmental Problems." Doctoral thesis, Università degli studi di Genova, 2020. http://hdl.handle.net/11567/999673.
Full text李佳明 and Jia-Ming Li. "使用PLSA架構之人臉分類系統." 碩士, 國立中正大學, 1996. http://ndltd.ncl.edu.tw/cgi-bin/gs32/gsweb.cgi/login?o=dnclcdr&s=id=%22096CCU05392193%22.&searchmode=basic.
Full textMiodrag, Jazić. "Hemijski sastav i biološki potencijal ploda, soka i tropa kultivisane i divlje kupine (Rubus fruticosus L.)." Phd thesis, Univerzitet u Novom Sadu, Tehnološki fakultet Novi Sad, 2019. https://www.cris.uns.ac.rs/record.jsf?recordId=111236&source=NDLTD&language=en.
Full textThe chemical, mineral, polyphenolics composition andbiological potentials of four blackberries varieties from twodifferent locations in the northwestern part of Bosnia andHerzegovina (Verići - wild and cultivated variety Čačanskabestrna and Javorani - wild and cultivated variety ChesterThornless) were determined. The contents of dry matter, ash,crude cellulose, total sugars, total acidity and ascorbic acid wereobtained. The contents of mineral matter were detected byoptical emission spectrometry (ICP-OES) method. A classicSoxhlet extraction technique with 80% ethanol (v/v) wasapplied to obtain extracts. The spectrophotometric methodswere used to determine the content of total polyphenolics,flavonoids, flavonols, and total and monomer anthocyanins. Thecontent of individual polyphenolic compounds was determinedby HPLC method. The biological potentials (antioxidantactivity, antihyperglycemic activity, antiproliferative effect andantimicrobial activity) of the samples were determined in vitrosystems. The antioxidant activity was tested with four methods:DPPH test, ABTS test, ability to neutralize OH radicals and themethod of inhibiting Briggs Rauscher oscillatory reactions. Theantihyperglycaemic activity of the tested blackberry sampleswas based on the ability to inhibit α-glucosidase enzyme. Theantiproliferative effect of the tested samples was determined byinhibiting the growth of four human cell lines: epithelialcarcinoma of the cervix (HeLa), colon adenocarcinoma (HT-29), healthy lung fibroblast cells (MRC-5) and the cell line ofbreast adenocarcinoma (MCF7). The extracts showed thehighest inhibitory effect on the cell line of breastadenocarcinoma (MCF-7). The antimicrobial activity wasdetermined according to gram-positive bacteria (G +) ofStaphylococcus aureus, Gram-negative bacteria (G -)Escherichia coli, growth of mycelium Aspergillus niger andfungi Candida albicans. The Pearson correlations werestatistically determined the relationship between the content ofpolyphenolic compounds and biological potential, withstatistical significance (p ≤ 0.01).
Muoh, Chibuike. "Sparsification for Topic Modeling and Applications to Information Retrieval." Kent State University / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=kent1259206719.
Full textKrithara, Anastasia. "Learning aspect models with partially labeled data." Paris 6, 2008. http://www.theses.fr/2008PA066059.
Full textAleksandar, Leposavić. "Помолошке особине новоинтродукованих сорти високожбунасте боровнице (Vaccinium corymbosum L.)." Phd thesis, Univerzitet u Novom Sadu, Poljoprivredni fakultet u Novom Sadu, 2014. http://dx.doi.org/10.2298/NS20131227LEPOSAVIC.
Full textU agroekološkim uslovima Zapadne Srbije, u periodu od 2008. do 2010. godine,ispitivane su pomološke osobine sorti visokožbunaste borovnice u cilju preporuke za uvođenje u proizvodnju ove, u svetskim okvirima, sve traženije vrstevoćaka.Ogled je postavljen na objektu „Čačak”, Instituta za voćarstvo u Čačku sa po 15 biljaka sorata ‘Bluecrop’ (kontrola), ’Duke’, ‘Reka’, ‘Nui’ i ‘Ozarkblu’. Proučavane su fiziološke osobine (fenofaza listanja, fenofaza cvetanja, fenofaza oprašivanja i oplođenja, fenofaza zrenja ploda, fenofaza otpadanja lišća i dužina vegetacionog perioda), dok su od pomoloških osobina ispitivane fizičke osobineplodova i prinos. Kvalitet ploda je ocenjivan na osnovu hemijskog sastava i organoleptičke ocene. Istraživanja su, takođe, jednim delom bila usmerena na dobijanje novih saznanja iz oblasti reproduktivne biologije visokožbunasteborovnice, odnosno odvijanje progamne faze oplođenja.Dobijeni rezultati ukazuju da su agroekološki uslovi Zapadne Srbije, uz adekvatnu primenu agrotehničkih i pomotehničkih mera, pogodni za komercijalno gajenje ispitivanih sorti visokožbunaste borovnice. To se posebno odnosi na sorte ‘Bluecrop’, ‘Duke’ i ‘Ozarkblue’, koje su ostvarile visoke prinose, kao i dobar kvalitet plodova. Zahvaljujući odličnoj rodnosti, ali zbog slabijeg kvaliteta ploda, sorta ‘Reka’ se može preporučiti za gajenje u ograničenom obimu,prvenstveno kao oprašivač za sorte ‘Bluecrop’ i ‘Duke’. Bez obzira na odličan kvalitet plodova, zbog manjih prinosa, ograničeni obim gajenja preporučuje se i za sortu ‘Nui’.
大濱, 裕. "「参加型地域社会開発 (PLSD)」の農業・農村開発への適用." 名古屋大学農学国際教育協力研究センター, 2009. http://hdl.handle.net/2237/17667.
Full textPešán, Jan. "Rozpoznávání mluvčího na mobilním telefonu." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2011. http://www.nusl.cz/ntk/nusl-237056.
Full textKanagasundaram, Ahilan. "Speaker verification using I-vector features." Thesis, Queensland University of Technology, 2014. https://eprints.qut.edu.au/77834/1/Ahilan_Kanagasundaram_Thesis.pdf.
Full textNovotný, Ondřej. "Adaptace systémů pro rozpoznání mluvčího." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2014. http://www.nusl.cz/ntk/nusl-236084.
Full textBranislava, Nikolovski. "Kinetika i modelovanje ekstrakcije ulja iz bobica kleke (Juniperus communis L.) i semenki tikve (Cucurbita pepo L.) natkritičnim ugljendioksidom." Phd thesis, Univerzitet u Novom Sadu, Tehnološki fakultet Novi Sad, 2009. https://www.cris.uns.ac.rs/record.jsf?recordId=71281&source=NDLTD&language=en.
Full textThis study provides results of supercritical carbon dioxide (SCCO2) extraction of juniper berries (Juniperus communis L.) and pumpkin seeds (Cucurbita pepo L. convar. citrullina) in a laboratorysupercritical fluid extraction apparatus. The influenceof pressure, temperature, particle size and carbon dioxide flow on the extraction kinetics of pumpkin seed oil and juniper berry essential oil was studied. Ground pumpkin seeds were also extracted with supercritical carbon dioxide in NOVA-SWISS, High Pressure Extraction Plant, and with hexane and petroleum ether in a laboratory Soxhlet extractor. This work was also aimed to investigate the evolution of the composition of juniper fruit supercritical CO2 extracts with time, at different extraction pressures and to emphasize the most favorable condition for the extraction of different terpene hydrocarbon groups, reporting the qualitative differences among extracts collected during successive extraction time periods. Juniper berry extracts were analyzed by capillary gas chromatography, using flame ionization (GC-FID) and mass spectrometric detection (GC-MS). More than 200 constituents were detected in the extracts and the contents of 50 compounds were reported in the work. Dependence of the percentage yields of monoterpene, sesquiterpene, oxygenated monoterpene and oxygenated sesquiterpene hydrocarbon groups on extraction time was investigated and conditions that favored the yielding of each terpene groups were emphasized. GC-MS analysis of FAME, prepared by transesterification of pumpkin seed oil with KOH in methanol, was performed. Fatty acid compositions of supercritical CO2 pumpkin seed extract fractions collected in successive time intervals over the course of the extraction were determined. The same fractions were analyzed by high pressure liquid chromatography (HPLC), using diode-array detector (DAD) in order to determine a- and g-tocopherol contents. Sterol and squalene contents were determined by GC-MS analysis, as well. Conditions that favored the yielding of tocopherols, squalene and sterols were emphasized. A general mass transfer model and its simlifications were analysed. Extraction curves were evaluated by “hot sphere” mathematical models SSM-1 (Single Sphere Model 1 – in which the external mass transfer coefficient also influences the extraction profile and film mass transfer coefficients were estimated by the correlations), SSM-1 (2 par) (film mass transfer coefficient is used as the second adjustable parameter), SSM-2 (only effective diffusivity influence is considered), Characteristic time model and by the extended Lack’s plug-flow model given by Sovová. A combined model of Hong et al. was also fitted to the experimental data for pumpkin seed oil SCCO2 extractions. Relative merits of the models are demonstrated. Good agreement between the extended Lack’s plug-flow model and the experimental measurements was obtained.
Bosch, Rué Anna. "Image classification for a large number of object categories." Doctoral thesis, Universitat de Girona, 2007. http://hdl.handle.net/10803/7884.
Full textThe release of challenging data sets with ever increasing numbers of object categories is
forcing the development of image representations that can cope with multiple classes and
of algorithms that are efficient in training and testing. This thesis explores the problem of
classifying images by the object they contain in the case of a large number of categories. We first investigate weather the hybrid combination of a latent generative model with a discriminative classifier is beneficial for the task of weakly supervised image classification.
We introduce a novel vocabulary using dense color SIFT descriptors, and then investigate classification performances by optimizing different parameters. A new way to incorporate spatial information within the hybrid system is also proposed showing that contextual information provides a strong support for image classification. We then introduce a new shape descriptor that represents local image shape and its spatial layout, together with a spatial pyramid kernel. Shape is represented as a compact
vector descriptor suitable for use in standard learning algorithms with kernels. Experimental
results show that shape information has similar classification performances and sometimes outperforms those methods using only appearance information. We also investigate how different cues of image information can be used together. We
will see that shape and appearance kernels may be combined and that additional information
cues increase classification performance. Finally we provide an algorithm to automatically select the regions of interest in training. This provides a method of inhibiting background clutter and adding invariance to the object instance's position. We show that shape and appearance representation over the regions of interest together with a random forest classifier which automatically selects the best cues increases on performance and speed. We compare our classification performance to that of previous methods using the authors'own datasets and testing protocols. We will see that the set of innovations introduced here lead for an impressive increase on performance.
Chen, Chun-ting, and 陳俊廷. "Web image annotation using PLSA." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/26967187612821633305.
Full text國立雲林科技大學
資訊管理系碩士班
99
The population of the Internet and digital device made a lot of images existing in the Internet without arrangement. Thus, how to organize these images and to make them easy to find is an important issue. One way to solve this issue is automatic image annotation (AIA). This method can save manpower to manage images and to make image annotations consistence. But the annotation would be limited by already defined terms. Besides, synonymous and homonym are also existing between terms. In order to make extra meaningful terms in web images annotation, and to modify synonymous and homonym problems, this study using probabilistic latent semantic analysis (PLSA)to analyze amount of web pages to gather parameters and to make annotation on web pages. This study also compares the number of keywords gathering from news, to weight on keywords for increasing annotation accuracy. The average precision is 85%, recall is 71%.
Hong, Hao-Zhi, and 洪皓誌. "Multimodal PLSA for Movie Genre Classification." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/ujx4zq.
Full text輔仁大學
資訊工程學系碩士班
102
The aim of this thesis is to category the movies into genres using the previews. This study attempts to combine audio, visual and text features to classify a collection of movie previews into action, biography, comedy, and horror. For each of the collected previews, the audio and visual features are extracted and the text features are drawn from social tags via social websites. The probabilistic latent semantic analysis (PLSA) is used to incorporate the features from these three different aspects of information.The standard PLSA processes one type of information only.Therefore double-modeland triple-model PLSAsare extended to combinetwo or three different types of information. We compare these various variants of PLSA approaches with unimodal PLSAs, which use either audio, visual or text features only. The experimental results show that one of triple-model PLSAs achievesthe highest accuracy, and social tags (text features) play an important role for classifying movies genres.
Li, Jia-Ming, and 李佳明. "Face Clustering System Using PLSA Model." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/48076283558195707305.
Full textGou, Fu-Sheng, and 苟富昇. "Semi-Supervised Discriminant Clustering via Constrained-pLSA." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/02163820961631135823.
Full text國立交通大學
多媒體工程研究所
100
Document classification is of great practical importance today given the massive volume of online text available. Supervised learning is one of the popular techniques for tackling document classification problems. However, sufficient labeled data is necessary for supervised learning methods to train a classification model. Labeling must typically be done manually and it is a time-consuming process obviously. In general, unlabeled data may be relatively easy to collect. Although unsupervised learning methods don’t need any labeled data, users often have some background knowledge before clustering. Practically, background knowledge should be considered in the algorithms to improve clustering accuracy. This paper proposes a semi-supervised learning algorithm, which considers dimension reduction and clustering simultaneously. This paper applies constrained-pLSA to obtain soft labels , and then combines soft labels with linear discriminant analysis to find a better feature space. We conduct experiments on CiteUlike, 20Newsgroups, Reuters and experimental results indicate that the proposed method can effectively improve clustering performance.
Lin, Xiang Lun, and 林湘倫. "Music Genre Classification Based on Multimodal PLSA." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/87536815962786067184.
Full text輔仁大學
資訊工程學系
101
In web 2.0 era, social tags have become a powerful indirect information in the interpretation of musical semantics and received growing interests in music information retrieval. This paper proposes an approach based on probabilistic latent semantic analysis (PLSA) model for music genre classification. We describe and derive three models: (1) a double-layer tag-based PLSA, (2) a simple multimodal PLSA that integrates two single-layer PLSAs, one is tag-based and the other is audio content-based, and (3) an elaborated multimodal PLSA that integrates a double-layer tag-based PLSA with a single-layer audio content-based PLSA. Experimental results based on SVM classifier demonstrate the effectiveness of our models. In particular, the results indicate the elaborated multimodal PLSA is the best proposed model for music genre classification.
Wang, Ssu-Ying, and 王思穎. "PLSA-based Sparse Representation for Vehicle Color Classification." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/88629444825000423943.
Full text國立臺灣海洋大學
資訊工程學系
103
Object classification is an important research of the image processing. In many papers, they use many ways to classify the objects, like Sparse Representation Classification (SRC). SRC needs to calculate the residual of reconstruction error and to find the best candidate. It is very inefficient because of an optimization process is involved. In addition, it uses only the residual that ignore to consider the distribution of combination coefficients of visual codes in classification. Thus, it often fails to classify categories when they are similar. In this thesis, we proposed a novel classification method that combined probabilistic latent semantic analysis (pLSA) and sparse representation. We use the results of vehicle color classification experimental to prove our proposed method is to improve the SRC.
Yan, Yi-Lin, and 閆禕麟. "Object Classification Based on pLSA and Sparse Coding." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/75657458573503927729.
Full text國立臺灣海洋大學
資訊工程學系
101
This thesis proposes a novel object classification method combined sparse coding (SR) and probabilistic latent semantic analysis (pLSA) with a new classifier and adaptive kNN. Sparse coding is widely used in image processing. Many papers applied sparse coding in image classification, most of which chose reconstruction error or improved methods as their classifier. Although these kinds of methods are precise, the restraint (Sparsity and Redundancy) make it performs not fine under low dimension feature and small training dataset. This thesis solved the problem by using a new classifier based on pLSA. Nowadays, algorithms in natural language processing like LSA and pLSA are widely used in image processing. Derived from the idea of Bag-of-Words, pLSA-based classifiers have been applied in many papers. In this thesis, we intend a new classifier which both achieves high accurate rate and high efficiency. A new adaptive kNN algorithm is also proposed in our research to improve the correct rate of original kNN and reduce the time cost in weighted kNN. A novel real-time object recognition system is framed based on the given combined method. The proposed approach repeatedly achieves state-of-the-art results on private datasets and several public data sets.
Girard, Alizée. "Propriétés fonctionnelles et spectrales d’espèces végétales de tourbières ombrotrophes le long d’un gradient de déposition d’azote." Thesis, 2019. http://hdl.handle.net/1866/24417.
Full textAbstract Bogs, as nutrient-poor ecosystems, are particularly sensitive to atmospheric nitrogen (N) deposition. Nitrogen deposition alters bog plant community composition and can limit their ability to sequester carbon (C). Spectroscopy is a promising approach for studying how N deposition affects bogs because of its ability to remotely determine changes in plant species composition in the long term as well as shorter-term changes in foliar chemistry. However, there is limited knowledge on the extent to which bog plants differ in their foliar spectral properties, how N deposition might affect those properties, and whether subtle inter- or intraspecific changes in foliar traits can be spectrally detected. Using an integrating sphere fitted to a field spectrometer, we measured spectral properties of leaves from the four most common vascular plant species (Chamaedaphne calyculata, Kalmia angustifolia, Rhododendron groenlandicum and Eriophorum vaginatum) in three bogs in southern Québec and Ontario, Canada, exposed to different atmospheric N deposition levels, including one subjected to a 18 years N fertilization experiment. We also measured chemical and morphological properties of those leaves. We found detectable intraspecific changes in leaf structural traits and chemistry (namely chlorophyll b and N concentrations) with increasing N deposition and identified spectral regions that helped distinguish the site-specific populations within each species. Most of the variation in leaf spectral, chemical and morphological properties was among species. As such, species had distinct spectral foliar signatures, allowing us to identify them with high accuracy with partial least squares discriminant analyses (PLSDA). Predictions of foliar traits from spectra using partial least squares regression (PLSR) were generally accurate, particularly for the concentrations of N and C, soluble C, leaf water, and dry matter content (<10% RMSEP). However, these multi-species PLSR models were not accurate within species, where the range of values was narrow. To improve the detection of short-term intraspecific changes in functional traits, models should be trained with more species-specific data. Our field study showing clear differences in foliar spectra and traits among species, and some within-species differences due to N deposition, suggest that spectroscopy is a promising approach for assessing long-term vegetation changes in bogs subject to atmospheric pollution.
Chen, Chun-Hsien, and 陳俊憲. "Document Clustering with Labeled and Unlabeled Data Using Constrained-PLSA." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/87950714129911992852.
Full text國立交通大學
資訊科學與工程研究所
99
Text classification is of great practical importance today given the massive volume of online text available. Supervised learning is one of the popular techniques for tackling text classification problems. However, enough labeled data is necessary for supervised learning methods. Labeling must typically be done manually and it is a time-consuming process obviously. In general, unlabeled data may be relatively easy to collect. Although unsupervised learning method doesn’t need any labeled data. But users often have some background knowledge before clustering. Practically, background knowledge should be included into algorithms to improve clustering accuracy. This paper extends PLSA clustering model to propose a Constrained-PLSA method, which is a semi-supervised learning algorithm. The Constrained-PLSA assumes that data is generated by a mixture model and the correspondence between each document and class label is one to one. By introducing the seeding documents as constraints, we show that Constrained-PLSA can estimate maximum likelihood in latent variable models using the Expectation Maximization (EM) algorithm. Experimental results show that Constrained-PLSA with a small amount of examples can effectively improve the performance. In addition, this paper also discusses tag usage using Constrained-PLSA. Academic paper data set is employed in this paper. Each paper consists of abstract and tag information. Tag is given by users after reading the article. This paper analyzes four combinations of abstracts and tags: “words only”, “tags only”, “words + tags” and “tags as words”. The best one is presented in this paper. Meanwhile, the experimental result shows that Constrained-PLSA outperforms other clustering algorithms.
Χατζηστέργος, Σεβαστιανός. "Ανάπτυξη ολοκληρωμένου συστήματος εκτίμησης της πυκνότητας του μαστού από εικόνες μαστογραφίας." Thesis, 2008. http://nemertes.lis.upatras.gr/jspui/handle/10889/1130.
Full textThe present thesis aims at the classification of breast tissue according to BIRADS system based on texture features. To this end an integrated software system was developed in visual C ++. The system takes as inputs pictures in most of the popular bitmap formats like .jpeg and .till as well as DICOM. The functionality of the system is provided by three modules: (a) pre-processing module, (b) breast segmentation module and (c) the breast tissue density classification module. In the pre-processing module a set tools for image manipulation (rotation, crop, gray level adjustment) are available which are accompanied by the ability to perform anisotropic filtering to the input image. In the second module, the user has the ability to interactively define the actual borders of the breast or ask the system to perform it automatically. Automatic segmentation is a two step procedure; in the first step breast tissue is separated from its background by using the characteristics of monogenic signals, while in the second step the pectoral muscle region is subtracted using Gabor wavelets. In the density classification module the user can either ask for a calculation of breast density based on user-defined grey level threshold or perform an automatic BIRADS-based classification using texture characteristics in conjunction with Probabilistic Latent Semantic Analysis (pLSA) algorithm. Special emphasis was given to the development of a functional and user-friendly interface.