Academic literature on the topic 'Platinum-zinc'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Platinum-zinc.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Platinum-zinc"

1

Moser, Z. "The Pt-Zn (Platinum-Zinc) system." Journal of Phase Equilibria 12, no. 4 (August 1991): 439–43. http://dx.doi.org/10.1007/bf02645964.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Julsing, H. G., and R. I. McCrindle. "The recovery of precious metals from acidic effluents using sodium formate." Water Science and Technology 42, no. 5-6 (September 1, 2000): 63–69. http://dx.doi.org/10.2166/wst.2000.0496.

Full text
Abstract:
At Western Platinum Refinery in South Africa, zinc was used for the reduction of the platinum group metals (PGMs) in acidic effluent (palladium filtrate). Owing to the increasing cost of zinc and the risk of zinc pollution, sodium formate was investigated as an alternative reductant. It was found that pH 1.5 was the optimum starting pH for sodium formate reduction. The optimum concentration of sodium formate was found to be 18 g/dm3 at a temperature of approximately 100°C where the process time was 5 hours. The addition of sodium formate increased the pH of the final reaction mixture to approximately pH 4.5. Palladium was the most effectively reduced PGM, exhibiting an average precipitation efficiency of 98%. Difficulty was experienced with the precipitation of platinum (average precipitation efficiency of 47%). The precipitated PGMs were readily dissolved in hydrochloric acid (6 M) and sodium chlorate (2%). A reduction in costs resulted from the discontinuation of the use of zinc for reduction purposes. An additional advantage was that zinc was no longer introduced into the PGM refinery circuits. This effectively reduced the pollution potential of the acidic effluent.
APA, Harvard, Vancouver, ISO, and other styles
3

Du, Zhifeng, Raphael E. F. de Paiva, Yun Qu, and Nicholas Farrell. "Tuning the reactivity of Sp1 zinc fingers with platinum complexes." Dalton Transactions 45, no. 21 (2016): 8712–16. http://dx.doi.org/10.1039/c6dt01128d.

Full text
Abstract:
The microenvironment around a zinc finger coordination unit affects the reactivity of apparently similar ZFs with Lewis acid platinum electrophiles. The unique dicysteine-bridged dinuclear platinum unit is the product of the reaction of [PtCl2(en)] and the F3 of the transcription factor Sp1.
APA, Harvard, Vancouver, ISO, and other styles
4

Phillips-Chavez, Caitlin, Jermaine Coward, Michael Watson, and Janet Schloss. "A Retrospective Cross-Sectional Cohort Trial Assessing the Prevalence of MTHFR Polymorphisms and the Influence of Diet on Platinum Resistance in Ovarian Cancer Patients." Cancers 13, no. 20 (October 18, 2021): 5215. http://dx.doi.org/10.3390/cancers13205215.

Full text
Abstract:
Ovarian cancer has the lowest survival rate in gynaecologic malignancies with a 5-year survival rate of 43%. Platinum resistance is one of the main drivers of ovarian cancer mortality, of which aberrant methylation has been cited as a significant contributor. Understanding the essential role of the methylenetetrahydrofolate reductase enzyme (MTHFR) on DNA synthesis and repair, and how nutrient status can vastly affect its performance, led to the investigation of MTHFR status and dietary influence on platinum response in epithelial ovarian cancer (EOC) patients. Twenty-five adult female patients who completed first-line platinum-based chemotherapy for primary ovarian cancer were selected from Icon Cancer Centres in Australia. Participants were grouped based on platinum response. A full medical and family history, food frequency questionnaire and single blood test were completed, testing for MTHFR polymorphisms, serum folate, serum and active B12 and homocysteine levels. Nineteen of twenty-five participants had an MTHFR polymorphism. Of those, 20% were compound heterozygous, 12% were heterozygous C677T (CT), 4% homozygous C677T, 12% homozygous A1298C and 28% were heterozygous A1298C (AC). Statistically significant associations were found between dietary zinc (p = 0.0086; 0.0030; 0.0189) and B12 intakes in CT genotypes (p = 0.0157; 0.0030; 0.0068) indicating that zinc or vitamin B12 intakes below RDI were associated with this genotype. There were strong associations of vitamin B6 intakes in AC genotypes (p = 0.0597; 0.0547; 0.0610), and dietary folate in compound heterozygotes with sensitive and partially sensitive disease (p = 0.0627; 0.0510). There were also significant associations between serum folate (p = 0.0478) and dietary B12 (p = 0.0350) intakes above RDI and platinum sensitivity in wild-types as well as strong associations with homocysteine levels (p = 0.0886) and zinc intake (p = 0.0514). Associations with dietary B12 (p = 0.0514) and zinc intakes (p = 0.0731) were also strong in resistant wild types. Results indicate that dietary zinc, B12 and B6 intakes may be associated with platinum sensitivity dependent on MTHFR genotype. These results require further research to clarify the dosages necessary to elicit a response; however, they provide a novel foundation for acknowledging the role of diet on treatment response in EOC.
APA, Harvard, Vancouver, ISO, and other styles
5

Jha, Pankaj Kumar, Chamorn Chawengkijwanich, Kuaanan Techato, Warakorn Limbut, and Montri Luengchavanon. "Callistemon viminalis Leaf Extract Mediated Biosynthesis of Ag, rGO-Ag-ZnO Nanomaterials for Catalytic PEM Fuel Cell Application." Trends in Sciences 19, no. 11 (June 3, 2022): 493. http://dx.doi.org/10.48048/tis.2022.493.

Full text
Abstract:
Cost-effective manufacture of hydrogen proton exchange membrane fuel cells (PEM-fuel cells) is of much interest to concerned researchers. Platinum metal has already shown good performance in the PEM fuel cell, yet its high cost means that it is not affordable to all nations. This paper identifies ways to reduce the cost by replacing platinum-based PEM fuel cells with synthesised eco-friendly silver (Ag) nanoparticles and reducing graphene oxide coated silver composited zinc oxide (rGO/Ag-ZnO) nanomaterials. Ag nanoparticles and reduced graphene oxide coated silver composited zinc oxide nanomaterials were synthesised using Callistemon viminalis leaf extract. PEM fuel cell modification was achieved using newly biosynthesised nanomaterials, while power density was compared with commercial platinum metal-based PEM fuel cells. The present study shows that modified PEM fuel cells can replace commercial platinum-based PEM fuel cells for cost-effective hydrogen proton exchange membrane fuel cells. HIGHLIGHTS Reduced graphene oxide coated Ag-ZnO nanomaterials formed by Callistemon viminalis, low-cost PEM fuel cell which uses rGO-Ag-ZnO nanoparticle. GRAPHICAL ABSTRACT
APA, Harvard, Vancouver, ISO, and other styles
6

Sangun, Mustafa Kemal, and Guray Kilincceker. "Investigation of Hydrogen Production by using Zinc Coated Platinum Electrode in Phosphate Solutions." French-Ukrainian Journal of Chemistry 7, no. 1 (2019): 16–24. http://dx.doi.org/10.17721/fujcv7i1p16-24.

Full text
Abstract:
In this study, the hydrogen gas producing was investigated at 298 K with zinc coated platinum (Pt-Zn) electrode in 0.1 M NaH2PO4 solution (pH=12.3). Electrolysis, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization techniques were used for the production of hydrogen gas. Scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and X-ray fluorescence (XRF) were used for the surface analysis of the electrodes. A practical electrocatalytic experiment was designed to examine of hydrogen production by using a Zn plated Pt electrode and the efficiency of the hydrogen gas increased by 66.66% on the surface of the zinc coated platinum electrode.
APA, Harvard, Vancouver, ISO, and other styles
7

Li, Zhao, Wenhan Niu, Zhenzhong Yang, Nusaiba Zaman, Widitha Samarakoon, Maoyu Wang, Abdelkader Kara, et al. "Stabilizing atomic Pt with trapped interstitial F in alloyed PtCo nanosheets for high-performance zinc-air batteries." Energy & Environmental Science 13, no. 3 (2020): 884–95. http://dx.doi.org/10.1039/c9ee02657f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kita, Yu, and Yutaka Amao. "pH-Controlled selective synthesis of lactate from pyruvate with a photoredox system of water-soluble zinc porphyrin, an electron mediator and platinum nanoparticles dispersed by polyvinylpyrrolidone." Sustainable Energy & Fuels 5, no. 23 (2021): 6004–13. http://dx.doi.org/10.1039/d1se01399h.

Full text
Abstract:
The pH-controlled visible-light driven selective pyruvate reduction to lactate with a system of triethanolamine, zinc tetraphenylporphyrin tetrasulfonate, methylviologen and colloidal platinum nanoparticles was achieved.
APA, Harvard, Vancouver, ISO, and other styles
9

Kononova, Olga, Nataliya Karplyakova, and Evgeniya Duba. "Sorption recovery of platinum (II, IV) in presence of copper (II) and zinc (II) from chloride solutions." Journal of the Serbian Chemical Society 80, no. 9 (2015): 1149–60. http://dx.doi.org/10.2298/jsc141217018k.

Full text
Abstract:
The sorption preconcentration of platinum (II, IV) ions was investigated in presence of accompanying copper (II) and zinc (II) ions from chloride solutions on the new ion exchangers CYBBER (Russia), previously unexplored. The initial concentrations of platinum and accompanying ions were 0.25 mmol L-1 and 2.0 mmol L-1, respectively, and the acidity of medium was 0.001 - 4.0 mol L-1. It was shown that the resins investigated - strong and weak basic anion exchangers as well as chelate ion exchangers - possess good sorption and kinetic properties. The simultaneous sorption of investigated ions results in the complete recovery of platinum, while the non-ferrous metal ions are sorbed at less than 20%. Followed by the selective elution of platinum by thiourea (80 g L-1) solution in 0.3 M H2SO4, the quantitative isolation of platinum was achieved (more than 90%). Therefore, the studied ion exchangers can be recommended for recovery and separation of Pt(II,IV), Cu(II) and Zn(II) ions.
APA, Harvard, Vancouver, ISO, and other styles
10

Vodyanoy, Vitaly. "The Role of Endogenous Metal Nanoparticles in Biological Systems." Biomolecules 11, no. 11 (October 23, 2021): 1574. http://dx.doi.org/10.3390/biom11111574.

Full text
Abstract:
The blood and tissues of vertebrate animals and mammals contain small endogenous metal nanoparticles. These nanoparticles were observed to be composed of individual atoms of iron, copper, zinc, silver, gold, platinum, and other metals. Metal nanoparticles can bind proteins and produce proteinaceous particles called proteons. A small fraction of the entire pool of nanoparticles is usually linked with proteins to form proteons. These endogenous metal nanoparticles, along with engineered zinc and copper nanoparticles at subnanomolar levels, were shown to be lethal to cultured cancer cells. These nanoparticles appear to be elemental crystalline metal nanoparticles. It was discovered that zinc nanoparticles produce no odor response but increase the odor reaction if mixed with an odorant. Some other metal nanoparticles, including copper, silver, gold, and platinum nanoparticles, do not affect the responses to odorants. The sources of metal nanoparticles in animal blood and tissues may include dietary plants and gut microorganisms. The solid physiological and biochemical properties of metal nanoparticles reflect their importance in cell homeostasis and disease.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Platinum-zinc"

1

Tsotsoros, Samantha. "Platinum Complexes and Zinc Finger Proteins: From Target Recognition to Fixation." VCU Scholars Compass, 2014. http://scholarscompass.vcu.edu/etd/610.

Full text
Abstract:
Bioinorganic chemistry strives to understand the roles of metals in biological systems, whether in the form of naturally occurring or addition of non-essential metals to natural systems. Metal ions play vital roles in many cellular functions such as gene expression/regulation and DNA transcription and repair. The study of metal-protein-DNA/RNA interactions has been relatively unexplored. It is important to understand the role of metalloprotein interactions with DNA/RNA as this enhanced knowledge may lead to better understanding of diseases and therefore more effective treatments. A major milestone in the development of this field was the discovery of the cytotoxic properties of cisplatin in 1965 and its FDA approval in 1978. Since then, two other chemotherapeutic drugs containing platinum, carboplatin and oxaliplatin, have been used in the clinic. These three compounds are all bifunctional with the ligands surrounding platinum In the cis conformation and rearrangement of the ligands to the trans orientation results in a loss of cytotoxic properties due to rapid deactivation through binding to S-containing proteins. This enhanced reactivity yields new opportunities to study the reactions between proteins and DNA. One of the first crosslinking experiments used transplatin to crosslink NCp7 to viral RNA in order to understand how/where the protein bound to RNA. We have studied the interaction between cis and trans dinuclear platinum complexes and the C-terminal zinc finger (ZF). The trans complex reacts at a faster rate than the cis isomer and causes N- terminal specific cleavage of the ZF. The dinuclear structure plays a critical role in the peptide cleavage as studies with transplatin (the mononuclear derivative) does not result in cleavage. Monofunctional trans platinum-nucleobase complexes (MPNs) serve as a model for the binding of transplatin to DNA. This provides an interesting opportunity to study their reactions with S-containing proteins, such as HIV1 NCp7. MPNs have been shown to bind to the C-terminal ZF of HIV1 NCp7, resulting in zinc ejection. This occurs through a two-step process where the nucleobase π-stacks with Trp37 on the ZF, followed by covalent binding at the labile Cl site to Cys. MPNs have also shown antiviral activity in vitro. The labile Cl on MPNs reduces specificity of these compounds, as it leaves an available coordination site on the platinum center for binding to other S-proteins or DNA. Therefore, we have moved to an inert PtN4 coordination sphere, [Pt(dien)L]2+ (dien= diethylenetri- amine). Due to the strong bond between platinum and nitrogen, covalent reactions are highly unlikely to occur at rapid rates. The strength of the pi-stacking interaction between nucleobases (free and platinated) and the aromatic amino acid, tryptophan (Trp), showed an enhanced binding constant for platinated nucleobases. This was confirmed by density functional theory (DFT) calculations as the difference in energy between the HOMO of Trp and the LUMO of the nucleobase was smaller for the platinum complex. The studies were extended to the Trp-containing C-terminal ZF of HIV1 NCp7 and an increase in association constant was seen compared to free Trp. Reaction of PtN4 nucleobases compounds with a short amino acid sequence con- taining either Ala (no pi-stacking capabilities) or Trp (pi-stacking interactions) revealed an enhanced rate of reactivity for the Trp-containing peptide. This result supports the theory of a two-step reaction mechanism where the platinum-nucleobase complex recognizes the pep- tide through a pi-stacking interaction with Trp followed by covalent binding to the platinum center. The [Pt(dien)L]2+ motif allows for systematic modification of the structural elements surrounding platinum in a search for the most effective compound. Methylation of the dien ligand should, in theory, increase lipophilicity of the compounds, however, due to 2+ charge of the compounds, this simple association does not hold true. Analysis of the cellular accumulation profiles showed little change in the uptake with the addition of methyl groups to the dien ligand, in agreement with the non-linear change in lipophilicity. Modification of L using different nucleobases allows for the tuning of the strength of the π-stacking interaction between Trp and the platinum complex. The addition of inosine (which lacks a H-bonding donor/acceptor at the C2 position) resulted in a lower association constant with both N-AcTrp and the C-terminal zinc finger of HIV1 NCp7. Interestingly, the addition of xanthosine resulted in an ehanced pi-stacking interaction with the C-terminal zinc finger of HIV1 NCp7; likely as a results of the addition of a H-bonding donor (double-bonded O) at the C2 position. The ability of PtN4 nucleobase complexes to inhibit formation of the NCp7 complexation with viral RNA was studied by mass spectrometry and gel electrophoresis. Dissociation of the NCp7-RNA complex was seen upon addition of PtN4 compounds. These compounds were also able to retard formation of the NCp7-RNA complex when pre-incubated with the protein. These results have important implications as inhibition of complex formation between NCp7 and viral RNA has negative implications for viral replication. Despite the success of platinum-nucleobase compounds, it is important to evaluate all potential pi-stacking ligands. A series of pyridine- and thiazole-based compounds were evaluated for the strength of the pi-stacking interaction with N-AcTrp and the C-terminal ZF of HIV1 NCp7. There was notable increase in association constant for the platinum- DMAP (4-dimethylaminopyridine) complex compared to other ligands studied. This result highlights the importance of exploring multiple avenues for the design of specifically targeted inhibitors and further confirms the viability of the medicinal chemistry dual approach of target recognition (non-covalent) followed by target fixation (covalent).
APA, Harvard, Vancouver, ISO, and other styles
2

Kwok, Chi-chung. "Functional light-emitting materials of platinum, zinc and boron for organic optoelectronic devices." Click to view the E-thesis via HKUTO, 2005. http://sunzi.lib.hku.hk/hkuto/record/B34617693.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

郭子中 and Chi-chung Kwok. "Functional light-emitting materials of platinum, zinc and boron for organic optoelectronic devices." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2005. http://hub.hku.hk/bib/B34617693.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lin, Yongyue, and 林勇躍. "Luminescent platinum(II), copper(I), silver(I) and zinc(II) complexes with functional pyridyl and arylacetylide ligands: structures, spectroscopic properties and applications." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2001. http://hub.hku.hk/bib/B31243381.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lin, Yongyue. "Luminescent platinum(II), copper(I), silver(I) and zinc(II) complexes with functional pyridyl and arylacetylide ligands : structures, spectroscopic properties and applications /." Hong Kong : University of Hong Kong, 2001. http://sunzi.lib.hku.hk/hkuto/record.jsp?B25155325.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rao, Harita. "Metal containing peptides as specific DNA binders." Doctoral thesis, Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2015. http://hdl.handle.net/11858/00-1735-0000-0028-86AC-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Grant, Ann W. "Surface studies of model catalysts using metal atoms and particles on ZnO(0001)-Zn and -O and TiO₂(110) /." Thesis, Connect to this title online; UW restricted, 2001. http://hdl.handle.net/1773/8499.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Daniel, A. Gerard. "Zinc Environment in Proteins: The Flexible and Reactive Core of HIV-1 NCp7 and The Inhibitory Site of Caspase-3." VCU Scholars Compass, 2013. http://scholarscompass.vcu.edu/etd/3263.

Full text
Abstract:
Zinc is an essential cofactor of several proteins. The roles of zinc in these proteins are classified as catalytic, structural or regulatory. Zinc present in structural sites is considered to be a chemically inert, static structural element. On the contrary, previous studies on a C2H2 type zinc finger model compound and the C3H type HIV-1 NCp7 C-terminal zinc knuckle have shown that zinc at these sites can undergo coordination sphere expansion under the influence of a Pt based electrophile. The pentacoordination observed around zinc in these experiments raises an important question: are the structural zinc motifs found in the proteins susceptible to coordination sphere expansion? Through DFT modeling, the existence and nature of the five coordinate zinc species was investigated. mPW1PW91 was chosen as the DFT method by benchmarking against the experimental parameters of a molecule that closely resembles those to be modeled. The results suggest that the observed coordination sphere expansion is due to the flexible nature of thiolate and chloride ligands that are part of the structure. However, if certain conditions are not met, the same flexibility can lead to the destabilization of these rather fragile structures. Unlike the stable three or four coordinate catalytic and structural zinc sites, at regulatory sites, zinc is typically bound to one or two protein ligands. Zinc inhibition of caspases which are central to the process of apoptosis is one such scenario. Several of the caspases are inhibited by zinc at low micromolar range. Regulation of caspases is a strategy for drug development toward apoptosis related diseases; thus it is important to know the molecular details of zinc inhibition of caspases. Currently, it is speculated that zinc binds to the active site His and Cys residues of caspases thus competing with the substrate. However our studies on caspase-3, using enzyme kinetics and biophysical methods, imply more than one zinc binding sites. Contrary to current beliefs, more than 50% of the inhibition is achieved by zinc without affecting substrate binding. Using DFT models, an alternative inhibitory zinc binding site, which better fits our experimental observations, is predicted.
APA, Harvard, Vancouver, ISO, and other styles
9

Atilio, Anzellotti I. "Study Of Covalent And Non-Covalent Interactions In Ternary Systems Involving: Metal/DNA-RNA/Protein, Where Metal = Platinum(II), Palladium(II)." VCU Scholars Compass, 2007. http://scholarscompass.vcu.edu/etd/1164.

Full text
Abstract:
Ternary systems comprising DNA/RNA, proteins and one (or more) metal ion are generating increased interest due to its biological relevance. The knowledge gained from the study of these systems could provide important clues regarding the precise mechanism for transcription factors, repair proteins and metal complexes with anti-tumoral/anti-viral activities.The interactions occurring among the components of these ternary systems can be broadly grouped into covalent and non-covalent. The first kind of interactions can lead to the irreversible transformation of the components in the system, while the second is thought to be reversible leading to transient states and fluxionality. Both kinds of interaction are generally present in living systems, complementing the function of each other.Monofunetional Platinum-nucleobase complexes (MPNs) are synthesized via substitution of a chloride ligand by a nucleobase in platinum complexes with trans geometry. MPNs are particularly interesting for the study of ternary systems since they mimic the first step in the formation of a platinum-DNA adduct and their interaction with aminoacids/proteins provide a good first approach for more complex systems.The presence of the nucleobase as a ligand, significantly modifies the biological activity of these complexes by reducing its cytotoxicity and generating a promising anti-viral activity, especially against HIV-1 virus. The specific role of the nucleobase ligand on these complexes as a non-covalent motif, important for protein recognition, was explored in models involving tryptophan/N-acetyl tryptophan and a small protein domain called zinc finger, containing also a tryptophan residue.The coordination of the nucleobase to a metal ion such as Pt(II) or Pd(II) was found to increase its π-stacking interaction towards aromatic residues in proteins, specifically tryptophan. The enhancing effect was found to depend on the nature of the metal ion, nature of nucleobase and size/complexity of the protein model. Furthermore, DFT studies revealed an important change in the energy for the lowest unoccupied molecular orbital (LUMO) in the coordinated nucleobases, which could place this orbital in an favored position to interact with the highest occupied molecular orbital (HOMO) in the tryptophan residue. Results from calculations showed a good correlation with experimental evidence and could indicate an important role for the frontier molecular orbitals (HOMO/LUMO) of the species involved in the π-stacking interaction.This study was extended to a zinc finger domain from an essential protein in HIV-1 virus, i.e. nucleocapsid protein NCp7. Findings showed that the nucleobase ligand in addition to modulate hydrolysis and reaction rates for MPNs can also be responsible for an initial non-covalent recognition towards a specific protein. This initial recognition has been proposed as the first stage in a two-step mechanism of action for these platinum complexes that ultimately can lead to zinc ejection from the zinc finger domain in the viral NCp7. The significance of the data presented show that is possible to modulate the ligand coordination sphere in metal complexes to can result in great differences in terms of biological effects.The novel chemistry derived from DNA adducts with platinum complexes with a trans geometry was also explored in silico. The molecular dynamics of two free DNA 20-mer is compared with the corresponding metallated-adducts, namely monofunctional, 1,2-bifunctional interstrand and 1,3-bifunctional intrastrand. The differences in terms of structure and energy are compared for these systems, in general the monofunctional adduct exhibited the most interesting feature in terms of structural change in the DNA double strand causing the destacking of the metallated nucleobase. Bifunctional adducts exhibited loss of Watson-crick bonds and localized change in sugar puckering. These results showed that important differences can be found for platinated DNA even at short simulation times < 1 ns.
APA, Harvard, Vancouver, ISO, and other styles
10

Zakhtser, Alter. "Synthesis and Reactivity of PtZn Nanostructures and Nanocrystals for Heterogeneous Catalysis Applications." Thesis, Sorbonne université, 2019. https://accesdistant.sorbonne-universite.fr/login?url=http://theses-intra.upmc.fr/modules/resources/download/theses/2019SORUS434.pdf.

Full text
Abstract:
Le but de cette thèse était d'explorer la chimie de surface des systèmes bimétalliques platine-zinc et leur activité catalytique dans la réaction d'oxydation du CO. La recherche sur ce système bimétallique a été menée sur deux fronts: une étude de surface du système modèle , une couche unique de ZnO discontinue épitaxiée sur du Pt (111), utilisant la microscopie à effet tunnel et le rayonnement synchrotron à proximité de la photoémission par rayons X à pression ambiante, et une étude davantage axée sur la «nanomatériau» du même système bimétallique, en utilisant la chimie complexe de la synthèse colloïdale , microscopie électronique à transmission et à balayage, et enfin XPS de laboratoire.Tout d'abord, une surface modèle constituée d'un film monocouche de ZnO supporté sur du Pt (111) a été fabriquée dans des conditions de vide très poussé. Sa chimie de surface a été explorée par STM puis par rayonnement synchrotron NAP-XPS dans des conditions opératoires. Nous avons pu prouver que ce système était bien un cas typique de catalyse inverse. Les effets synergiques dus à la présence des deux matériaux ont été bien observés, mais uniquement à basse température (jusqu'à 410 K). Au-delà de cette température, les effets de transport de masse empêchent la comparaison de la réactivité des surfaces de ZnO / Pt (111) et de Pt (111). Nous avons montré que des intermédiaires de réaction doivent être formés dans la zone frontière entre le ZnO et le platine, lorsque le film de ZnO est discontinu. Nous avons mis en évidence le rôle clé joué par les hydroxyles présents dans les plaques de ZnO, qui sont dus à la dissociation de H2 ou de H2O de l’atmosphère résiduelle des plaques de platine. En particulier, nous avons détecté par NAP-XPS la présence d'une espèce carboxyle (due à l'association de OH avec CO), qui précède la désorption du CO2. Au-dessus de 410 K, un formiate apparaît et cette dernière espèce est probablement spectatrice du processus d'oxydation du CO. Le transfert des connaissances accumulées dans les précédentes études de la science des surfaces et des catalyseurs modèles au cas plus réaliste des nanocristaux de l’alliage PtZn, tout en aidant à identifier certains phénomènes courants, il montre également ses limites. En fait, les nanocristaux revêtus de leurs ligands oléylamine ont des caractéristiques que les surfaces des modèles UHV ne possèdent pas, en raison du processus de fabrication de la CN lui-même: nous avons trouvé des indices spectroscopiques de la présence d’eau (éventuellement un sous-produit de la réaction, résultant d’une entre la cétone et l'amine); de plus, un recouvrement de la surface du platine par des atomes d'hydrogène est actuellement une explication de nombreux phénomènes observés. Trouver les conditions expérimentales pour produire des nano-alliages bimétalliques à partir de deux précurseurs métal-acac2 était une tâche ardue, bien plus que celle de déposer physiquement un film mince sur un monocristal d’UHV. Nos efforts ont été récompensés car nous avons pu produire des CN en alliage PtZn. C'est l'un des principaux points de la présente étude. La présence de Pt(acac)2 empêche le zinc (dont l'oxydation complète en ZnO, comme c'est le cas lorsque le Zn(acac)2 seul est présent dans l'oléylamine. L'XPS monochromatisé montre que le zinc fabrique un alliage avec le platine, où il reste métallique alors qu’une autre fraction est sous la forme de ZnO, il n’est pas clair si deux canaux de réaction sont en concurrence (alliage PtZn versus oxydation de Zn par l’eau), ou Zn est oxydé par la suite, c’est-à-dire après exposition à l’air. Les CN alliés ont été étudiés en détail par des méthodes avancées de microscopie électronique (y compris dans des conditions opératoires), de diffraction et d’EDS [...]
The purpose of this thesis was to explore the surface chemistry of platinum-zinc bimetallic systems, and their catalytic activity in the oxidation reaction of CO. The research on this bimetallic system was carried out on two fronts: a surface science study of the model system, a discontinuous ZnO single layer epitaxied on Pt(111), using scanning tunneling microscopy and synchrotron radiation near ambien pressure x-ray photoemission, and a more “nanomaterial science” oriented study of the same bi-metallic system, using complex colloidal synthesis chemistry, transmission and scanning electron microscopy, and finally laboratory XPS. First, a model surface consisting of a ZnO monolayer film supported on Pt(111) was fabricated under ultra-high vacuum conditions. Its surface chemistry was explored by STM and then by synchrotron radiation NAP-XPS under operando conditions. We were able to prove that this system was indeed a typical case of inverse catalysis. Synergetic effects due to the presence of both materials were well seen, but only at low temperatures (up to 410 K). Beyond that temperature, mass transport effects prevent the reactivity of the ZnO/Pt(111) and Pt(111) surfaces from being compared. We have shown that reaction intermediates must be formed in the border area between ZnO and platinum, when the ZnO film is discontinuous. We have highlighted the key role played by the hydroxyls present only ion the ZnO patches, which are due to the dissociation of H2 or H2O from the residual atmosphere on the platinum patches. In particular, we have detected by NAP-XPS the presence of a carboxyl species (due to the association of OH with CO), which precedes the desorption of CO2. Above 410 K, a formate appears, and the latter species is likely a spectator in the CO oxidation process. The transfer of the knowledge accumulated in the preceding surface science and model catalysts studies, to the more realistic case of nanocrystals of the PtZn alloy, while it helped identify some common phenomena, it also shows its limitations. In fact the NC coated with their oleylamine ligands have characteristics that UHV model surfaces do not possess, due to the NC fabrication process itself: we have found spectroscopic hints of the presence of water (possibly a byproduct of the reaction, arising from a condensation reaction between the ketone and the amine); in addition, a capping of the platinum surface by H atoms, is, at present, explanatory of many observed phenomena. Finding the experimental conditions to produce bimetallic nano-alloys from two metal-acac2 precursors was a daunting task, much more than that of physically depositing a thin film on a UHV monocrystal. Our efforts were rewarded as we were able to produce PtZn alloy NCs. This one of the main points of the present study. The presence of Pt(acac)2 prevents zinc (whose from being fully oxidized to ZnO, which is the case when Zn(acac)2 alone is present in oleylamine. Monochromatized XPS shows that zinc makes an alloy with platinum, where it remains metallic, while another fraction is under the form of ZnO. It is not completely clear whether two reaction channels are in competion (PtZn alloying versus Zn oxidation by water), or Zn is oxidized afterwards, i.e. after exposure to air. The alloyed NCs have been studied in detail by advanced methods of electron microscopy (including under operando conditions), diffraction and EDS. Unlike the case of the surface model where the STM images were particularly telling, we do not have at this stage of the study an exact model of the interface between the metal alloy and the zinc oxide that surrounds it. On the other hand, we know that the core of the NCs is occupied by the PtZn alloy, and that the outer planes are identical to those of pure platinum. [...]
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Platinum-zinc"

1

Crookes, William, Bruno Kerl, and Ernst Otto Röhrig. Practical Treatise on Metallurgy: Lead, Silver, Zinc, Cadmium, Tin, Mercury, Bismuth, Antimony, Nickel, Arsenic, Gold, Platinum, Sulphur. Creative Media Partners, LLC, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Crookes, William, Bruno Kerl, and Ernst Otto Rohrig. A Practical Treatise on Metallurgy: Lead, Silver, Zinc, Cadmium, Tin, Mercury, Bismuth, Antimony, Nickel, Arsenic, Gold, Platinum, Sulphur. Franklin Classics Trade Press, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Crookes, William, Bruno Kerl, and Ernst Otto Röhrig. A Practical Treatise On Metallurgy: Lead, Silver, Zinc, Cadmium, Tin, Mercury, Bismuth, Antimony, Nickel, Arsenic, Gold, Platinum, Sulphur. Franklin Classics, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Platinum-zinc"

1

Tsubomura, H., M. Matsumura, Y. Nomura, and T. Amamiya. "Dye-Sensitized Zinc Oxide: Aqueous Electrolyte: Platinum Photocell." In Renewable Energy, 205–7. Routledge, 2018. http://dx.doi.org/10.4324/9781315793245-56.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dave, Sushma, Shivani Dave, and Jayashankar Das. "Biological synthesis of platinum, palladium, copper, and zinc nanostructures." In Nanobiotechnology, 211–23. Elsevier, 2021. http://dx.doi.org/10.1016/b978-0-12-822878-4.00013-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jahan, Israt. "Phyto-Nanofabrication." In Handbook of Research on Green Synthesis and Applications of Nanomaterials, 51–76. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-7998-8936-6.ch003.

Full text
Abstract:
Green synthesis of metallic nanoparticles through natural entities (i.e., bacteria, actinomycetes, yeast, fungus, microalgae, seaweed, plants, and plant-derived materials) has become an advantageous and ecofriendly approach. However, phytocompounds of plant extract have achieved huge attention since by utilizing them high yield NPs with desirable size and shape, which can be produced through single-step synthesis scheme. Plants retain diverse biochemicals that exhibit strong hyper-accumulating potential, crucial for metallic ion reduction to metallic NPs, like platinum, gold, silver, titanium oxide, iron oxide, copper oxide, zinc oxide, palladium, etc. Here, previously published studies were reviewed for providing the latest scientific evidence on biosynthesis of metal and metal oxide NPs using different plant materials, especially medicinal plants and food and agro-wastes.
APA, Harvard, Vancouver, ISO, and other styles
4

Huu Hieu, Nguyen. "Graphene-Based Material for Fabrication of Electrodes in Dye-Sensitized Solar Cells." In Solar Cells [Working Title]. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.93637.

Full text
Abstract:
Graphene-based materials have been widely studied for the fabrication of electrodes in dye-sensitized solar cells (DSSCs). The use of graphene in the cathode is to reduce the amount of platinum (Pt), which in turn is expected to reduce the production cost of DSSCs. Additionally, in the structure of cathode, graphene acts as a supporting material to reduce the particle sizes of Pt and helps to maintain the high efficiency of DSSCs. For anodes, graphene can provide a more effective electron transfer process, resulting in the improvement of efficiency of DSSCs. In this chapter, the use of graphene-based materials for fabrication of cathodes and anodes in DSSCs, including platinum/reduced graphene oxide composite (Pt/rGO) and zinc oxide/reduced graphene oxide composite (ZnO/rGO) is discussed. The fabricated DSSCs were tested using current density-voltage (J-V) curves to evaluate the efficiency. The results of efficiency demonstrate that Pt/rGO is the potential material for fabrication of cathode in DSSCs, which helps to reduce the amount of Pt and maintain the high efficiency. The efficiency values of DSSCs fabricated from ZnO/rGO anodes show that the incorporation of reduced graphene oxide in the ZnO could improve the performance of DSSCs.
APA, Harvard, Vancouver, ISO, and other styles
5

Ravichandran, Veerasamy, Karunakaran Rohini, Anitha Roy, and S. Rajeshkumar. "Microbial Mediated Synthesis, Characterisation and Application of Selenium Nanoparticles." In Mycology: Current and Future Developments, 62–102. BENTHAM SCIENCE PUBLISHERS, 2022. http://dx.doi.org/10.2174/9789815051360122030007.

Full text
Abstract:
The development in nanotechnology, specifically the nanoparticulate system, has a great impact on medicine, engineering and other scientific areas. Inorganic nanoparticles such as silver, gold, zinc oxide, selenium, iron, lead, platinum and copper, etc. were found to exhibit antimicrobial, antioxidant and other biological activities, used as biosensors and also used in different fields of engineering. In the 21st century, microorganisms and plant parts are playing a major role in the synthesis of inorganic nanoparticles. Green synthesis of inorganic nanoparticles becomes preferable to other approaches because of its eco-friendly and non-toxic approach. Additionally, the active molecules of plants (Tannins, flavonoids, terpenoids, saponins, proteins and glycosides) which act as capping and reducing agents in the synthesis of metal nanoparticles could make them most suitable for biomedical applications. This green approach fascinated researchers across the globe to explore the potential of different microorganisms and plants in the synthesis of inorganic nanoparticles. Selenium nanoparticles are one of the inorganic nanoparticles which are widely used in the area of medicine and engineering. In this chapter, we discussed the green synthesis using microorganism and Agri based products, characterisation and various applications of selenium nanoparticles.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Platinum-zinc"

1

Hastir, Anita, Nipin Kohli, and Ravi Chand Singh. "Improvement in Hydrogen Sensing Response of Zinc Oxide Doped with Platinum." In The World Congress on Recent Advances in Nanotechnology. Avestia Publishing, 2016. http://dx.doi.org/10.11159/icnei16.105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fiedot, M., P. Suchorska-Woźniak, O. Rac, W. Nawrot, and H. Teterycz. "Chlorine sensing properties of zinc oxide resistive gas sensor doped with platinum." In 14th International Conference on Optical and Electronic Sensors, edited by Piotr Jasiński. SPIE, 2016. http://dx.doi.org/10.1117/12.2246775.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wahida, M. N., M. H. Mamat, A. A. M. Yussof, M. A. R. Abdullah, and M. Rusop. "Fabrication of platinum decorated zinc oxide nanorod array-based ultraviolet sensors and their responsivity performance." In 2014 2nd International Conference on Electronic Design (ICED). IEEE, 2014. http://dx.doi.org/10.1109/iced.2014.7015805.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kondalkar, Vijay V., Le Thai Duy, Hyungtak Seo, and Keekeun Lee. "Fabrication of Platinum Functionalized Zinc Oxide Nanorods for High-Performance Acetylene Gas Sensor Integrated with Microheater." In 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII). IEEE, 2019. http://dx.doi.org/10.1109/transducers.2019.8808763.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Myers, Philip D., D. Yogi Goswami, and Elias Stefanakos. "Molten Salt Spectroscopy for Quantification of Radiative Absorption in Novel Metal Chloride-Enhanced Thermal Storage Media." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-40157.

Full text
Abstract:
This study describes the development and characterization of novel high-temperature thermal storage media, based on inclusion of transition metal chlorides in the potassium-sodium chloride eutectic system, (K-Na)Cl (melting temperature of 657°C, latent heat of 278 J/g). At the melting temperature of (K-Na)Cl, infrared (IR) radiation can play a major role in the overall heat transfer process — 90 percent of spectral blackbody radiation falls in the range of 2 to 13 μm. The authors propose inclusion of small amounts (less than 0.2 wt %) of IR-active transition metal chlorides to increase radiative absorption and thereby enhance heat transfer rates. A new IR reflectance apparatus was developed to allow for determination of the spectral absorption coefficient of the newly formulated PCMs in the molten state. The apparatus consisted of an alumina crucible coated at the bottom with a reflective (platinum) or absorptive (graphite) surface, a heated ceramic crucible-holder, and a combination of zinc sulfide (ZnS) and zinc selenide (ZnSe) windows for containment of the salt and allowance of inert purge gas flow. Using this apparatus, IR spectra were obtained for various transition metal chloride additives in (K-Na)Cl, and improved infrared activity and radiative transfer properties were quantified. Further, thermophysical properties relevant to thermal energy storage (i.e., melting temperature, latent heat) are measured for the pure and additive-enhanced thermal storage medium.
APA, Harvard, Vancouver, ISO, and other styles
6

Mizernaya, M., B. Dyachkov, A. Miroshnikova, and A. Mizerny. "INDUSTRIAL TYPES OF GOLD DEPOSITS OF THE EAST KAZAKHSTAN." In GEOLINKS International Conference. SAIMA Consult Ltd, 2020. http://dx.doi.org/10.32008/geolinks2020/b1/v2/14.

Full text
Abstract:
The East Kazakhstan territory is the unique geologic province where a number of large-scale non-ferrous and gold deposits are concentrated [1]. Gold base metals (gold-containing) type is represented by gold containing sulphide complex deposits. It is characterized by many large-scale commercial deposits of copper, lead and zinc where gold as well as silver, cadmium, platinum, selenium and other elements are the associate component of copper-sulphide and sulphide complex deposits [2]. There are following ore types are distinguished: gold-listvenite type occurs in the Irtysh zone (Maraliha deposit); the gold-sulphide vein-disseminated type associated with island-arc, volcanogenic-carbonate-terrigenous formation С1v2-3 (Suzdalskoye, Baibura, Mirazh, Zhaima); gold-quartzite type is characterized by gold-quartzite-vein deposits in West Kalba zone (Kuludzhun, Sentash, Kazan-Chunkur and others); gold-arsenic-carbon-bearing type is presented by large, middle and small deposits of Bakyrchik’s group (Bakyrchik, Bolshevik, Gluboky Log and others). Last one is formed on middle-Hercynian collision ore-bearing level (С2-С3) [3]. Multiple-stage concentration of gold contributed to formation of very large deposits. Gold content ranges from is 0.2 to 60 g/t, average is 8-9 g/t. Considerable part of gold is found in micro- and nanoparticles, nanotubes containing Au, Ag, Pt, Pd, W, Mo, Sn, Y, Yb, Ta and other elements [
APA, Harvard, Vancouver, ISO, and other styles
7

Komirisetty, Archana, Frances Williams, Aswini Pradhan, and Meric Arslan. "Integrating Sensors With Nanostructures for Biomedical Applications." In ASME 2013 2nd Global Congress on NanoEngineering for Medicine and Biology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/nemb2013-93121.

Full text
Abstract:
This paper presents the fabrication of sensors that are integrated with nanostructures and bio-functionalized to create novel devices for biomedical applications. Biosensors are in great demand for various applications including for the agriculture and food industries, environmental monitoring, and medical diagnostics. Much research is being focused on the use of nanostructures (nanowires, nanotubes, nanoparticles, etc.) to provide for miniaturization and improved performance of these devices. The use of nanostructures is favorable for such applications since their sizes are closer to that of biological and chemical species and therefore, improve the signal generated. Moreover, their high surface-to-volume ratio results in devices with very high sensitivity. The use of nanotechnology leads to smaller, lower-power smart devices. Thus, this paper presents the integration of sensors with nanostructures for biomedical applications, specifically, glucose sensing. In the work presented, a glucose biosensor and its fabrication process flow are described. The device is based on electrochemical sensing using a working electrode with bio-functionalized zinc oxide (ZnO) nano-rods. Among all metal oxide nanostructures, ZnO nano-materials play a significant role as a sensing element in biosensors due to their properties such as high isoelectric point (IEP), fast electron transfer, non-toxicity, biocompatibility, and chemical stability which are very crucial parameters to achieve high sensitivity. Amperometric enzyme electrodes based on glucose oxidase (GOx) are used due to their stability and high selectivity to glucose. The device also consists of silicon dioxide and titanium layers as well as platinum working and counter electrodes and a silver/silver chloride reference electrode. The chlorination process on the reference electrode was optimized for various times using field emission scanning electron microscope (FESEM) and energy-dispersive X-ray spectroscopy (EDS or EDX) measurements. The ZnO nanorods were grown using the hydrothermal method and will be bio-functionalized with GOx for electrochemical sensing. Once completed, the sensors will be tested to characterize their performance, including their sensitivity and stability.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Platinum-zinc"

1

Benavides, Pahola T., Qiang Dai, John L. Sullivan, Jarod C. Kelly, and Jennifer B. Dunn. Material and Energy Flows Associated with Select Metals in GREET 2. Molybdenum, Platinum, Zinc, Nickel, Silicon. Office of Scientific and Technical Information (OSTI), September 2015. http://dx.doi.org/10.2172/1224976.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Harrison, J. C., B. M. Saumur, and D. R. Skipton. Mineral and carving-stone resources of Baffin Island. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/321858.

Full text
Abstract:
Mineral resources of Baffin Island include iron (Mary River), diamonds, carbonate-hosted zinc and lead (Nanisivik), nickel, copper, platinum group elements, uranium, thorium, gemstones (sapphire, spinel, lapis lazuli), carving stone, and coal. Iron deposits include the Mary River No. 1 to 4 deposits of northern Baffin Island, which came into production in 2015 and contain 586 Mt grading 66% Fe. The Mesoproterozoic Borden Basin hosts the Nanisivik deposit, mined between 1976 and 2002; this is a Mississippi Valley-type deposit and contains 9.0% Zn, 0.7% Pb, and 41 ppm Ag. Diamond-rich kimberlite occurs as sheets and small pipes at Chidliak on Hall Peninsula; largest by area is the CH-1 (6 ha) pipe. At least 32 carving-stone localities are known; 7 communities on Baffin Island have good access to quarried material. Coal occurs in the Cretaceous-Paleogene Eclipse Trough of Bylot and northwestern Baffin islands. Exposures near Pond Inlet have been excavated for local use.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography