Journal articles on the topic 'Platinum Dioxide'

To see the other types of publications on this topic, follow the link: Platinum Dioxide.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Platinum Dioxide.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Huang, Shengyang, Prabhu Ganesan, and Branko N. Popov. "Titanium Dioxide-Supported Platinum Catalysts." ECS Transactions 41, no. 1 (December 16, 2019): 2255–68. http://dx.doi.org/10.1149/1.3635758.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Maya, L., E. W. Hagaman, R. K. Williams, G. D. Del Cul, and J. N. Fiedor. "Carbon in α-Platinum Dioxide." Journal of Physical Chemistry B 102, no. 11 (March 1998): 1951–55. http://dx.doi.org/10.1021/jp9802331.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Oleksenko, L. P. "Platinum containing sensor nanomaterials based on tin dioxide to detect methane in air." Functional materials 25, no. 4 (December 19, 2018): 741–47. http://dx.doi.org/10.15407/fm25.04.741.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ursov, E. D., M. S. Kondratenko, and M. O. Gallyamov. "Electrodeposition of platinum from carbon dioxide based supercritical electrolyte." Доклады Академии наук 489, no. 6 (December 23, 2019): 606–10. http://dx.doi.org/10.31857/s0869-56524896606-610.

Full text
Abstract:
For the first time, the electrodeposition of platinum from a carbon dioxide-based supercritical electrolyte with the addition of acetonitrile as a co-solvent and tetrabutylammonium tetrafluoroborate salt was studied. Dimethyl (1,5-cyclooctadiene) platinum is used as a precursor. It has been established that as a result of potentiostatic electrodeposition, not a continuous film is formed, but agglomerates of densely packed platinum nanoparticles.
APA, Harvard, Vancouver, ISO, and other styles
5

Aso, Ryotaro, Hajime Hojo, Yoshio Takahashi, Tetsuya Akashi, Yoshihiro Midoh, Fumiaki Ichihashi, Hiroshi Nakajima, et al. "Direct identification of the charge state in a single platinum nanoparticle on titanium oxide." Science 378, no. 6616 (October 14, 2022): 202–6. http://dx.doi.org/10.1126/science.abq5868.

Full text
Abstract:
A goal in the characterization of supported metal catalysts is to achieve particle-by-particle analysis of the charge state strongly correlated with the catalytic activity. Here, we demonstrate the direct identification of the charge state of individual platinum nanoparticles (NPs) supported on titanium dioxide using ultrahigh sensitivity and precision electron holography. Sophisticated phase-shift analysis for the part of the NPs protruding into the vacuum visualized slight potential changes around individual platinum NPs. The analysis revealed the number (only one to six electrons) and sense (positive or negative) of the charge per platinum NP. The underlying mechanism of platinum charging is explained by the work function differences between platinum and titanium dioxide (depending on the orientation relationship and lattice distortion) and by first-principles calculations in terms of the charge transfer processes.
APA, Harvard, Vancouver, ISO, and other styles
6

Lintz, Hans Guenther. "Spectrophotometric determination of platinum in cordierite-supported platinum-tin dioxide catalysts." Industrial & Engineering Chemistry Research 30, no. 8 (August 1991): 2012–13. http://dx.doi.org/10.1021/ie00056a052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhang, Dongzhi, Maosong Pang, Junfeng Wu, and Yuhua Cao. "Experimental and density functional theory investigation of Pt-loaded titanium dioxide/molybdenum disulfide nanohybrid for SO2 gas sensing." New Journal of Chemistry 43, no. 12 (2019): 4900–4907. http://dx.doi.org/10.1039/c9nj00399a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Maya, L., L. Riester, T. Thundat, and C. S. Yust. "Characterization of sputtered amorphous platinum dioxide films." Journal of Applied Physics 84, no. 11 (December 1998): 6382–86. http://dx.doi.org/10.1063/1.368883.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Volochaev, V. A., I. N. Novomlinskii, E. M. Bayan, and V. E. Guterman. "Nanostructured Platinum Catalyst Supported by Titanium Dioxide." Russian Journal of Electrochemistry 55, no. 10 (October 2019): 1021–30. http://dx.doi.org/10.1134/s1023193519090143.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ahmed, Luma M., Irina Ivanova, Falah H. Hussein, and Detlef W. Bahnemann. "Role of Platinum Deposited on TiO2in Photocatalytic Methanol Oxidation and Dehydrogenation Reactions." International Journal of Photoenergy 2014 (2014): 1–9. http://dx.doi.org/10.1155/2014/503516.

Full text
Abstract:
Titania modified nanoparticles have been prepared by the photodeposition method employing platinum particles on the commercially available titanium dioxide (Hombikat UV 100). The properties of the prepared photocatalysts were investigated by means of the Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), atomic force microscopy (AFM), and UV-visible diffuse spectrophotometry (UV-Vis). XRD was employed to determine the crystallographic phase and particle size of both bare and platinised titanium dioxide. The results indicated that the particle size was decreased with the increasing of platinum loading. AFM analysis showed that one particle consists of about 9 to 11 crystals. UV-vis absorbance analysis showed that the absorption edge shifted to longer wavelength for 0.5% Pt loading compared with bare titanium dioxide. The photocatalytic activity of pure and Pt-loaded TiO2was investigated employing the photocatalytic oxidation and dehydrogenation of methanol. The results of the photocatalytic activity indicate that the platinized titanium dioxide samples are always more active than the corresponding bare TiO2for both methanol oxidation and dehydrogenation processes. The loading with various platinum amounts resulted in a significant improvement of the photocatalytic activity of TiO2. This beneficial effect was attributed to an increased separation of the photogenerated electron-hole charge carriers.
APA, Harvard, Vancouver, ISO, and other styles
11

Hollingsworth, Nathan, S. F. Rebecca Taylor, Miguel T. Galante, Johan Jacquemin, Claudia Longo, Katherine B. Holt, Nora H. de Leeuw, and Christopher Hardacre. "CO2 capture and electrochemical conversion using superbasic [P66614][124Triz]." Faraday Discussions 183 (2015): 389–400. http://dx.doi.org/10.1039/c5fd00091b.

Full text
Abstract:
The ionic liquid trihexyltetradecylphosphonium 1,2,4-triazolide, [P66614][124Triz], has been shown to chemisorb CO2 through equimolar binding of the carbon dioxide with the 1,2,4-triazolide anion. This leads to a possible new, low energy pathway for the electrochemical reduction of carbon dioxide to formate and syngas at low overpotentials, utilizing this reactive ionic liquid media. Herein, an electrochemical investigation of water and carbon dioxide addition to the [P66614][124Triz] on gold and platinum working electrodes is reported. Electrolysis measurements have been performed using CO2 saturated [P66614][124Triz] based solutions at −0.9 V and −1.9 V on gold and platinum electrodes. The effects of the electrode material on the formation of formate and syngas using these solutions are presented and discussed.
APA, Harvard, Vancouver, ISO, and other styles
12

Juodkazis, Saulius, Hidekazu Ishii, Shigeki Matsuo, and Hiroaki Misawa. "Photoelectrochemical submicrometer patterning of titanium dioxide by platinum." Journal of Electroanalytical Chemistry 473, no. 1-2 (September 1999): 235–39. http://dx.doi.org/10.1016/s0022-0728(99)00026-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Shivalingappa, L., J. Sheng, and T. Fukami. "Photocatalytic effect in platinum doped titanium dioxide films." Vacuum 48, no. 5 (May 1997): 413–16. http://dx.doi.org/10.1016/s0042-207x(97)00005-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Sheppard, Leigh R., Marta Bello Lamo, John Holik, Kirsty J. Mayfield, and David R. Nelson. "Solute Diffusion of Platinum in Rutile Titanium Dioxide." Journal of the American Ceramic Society 96, no. 2 (December 24, 2012): 407–11. http://dx.doi.org/10.1111/jace.12130.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Kalinkin, A. V., M. Yu Smirnov, and V. I. Bukhtiyarov. "Oxidation of a platinum foil with nitrogen dioxide." Kinetics and Catalysis 57, no. 6 (November 2016): 826–30. http://dx.doi.org/10.1134/s0023158416060069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Martin, T. P., C. P. Tripp, and W. J. DeSisto. "Composite Platinum/Silicon Dioxide Films Deposited using CVD." Chemical Vapor Deposition 11, no. 3 (March 2005): 170–74. http://dx.doi.org/10.1002/cvde.200406344.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Blackmore, Caroline E., Neil V. Rees, and Richard E. Palmer. "Modular construction of size-selected multiple-core Pt–TiO2 nanoclusters for electro-catalysis." Physical Chemistry Chemical Physics 17, no. 42 (2015): 28005–9. http://dx.doi.org/10.1039/c5cp00285k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Siuzdak, K., M. Sawczak, M. Klein, G. Nowaczyk, S. Jurga, and A. Cenian. "Preparation of platinum modified titanium dioxide nanoparticles with the use of laser ablation in water." Phys. Chem. Chem. Phys. 16, no. 29 (2014): 15199–206. http://dx.doi.org/10.1039/c4cp01923g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Therrien, J. A., M. O. Wolf, and B. O. Patrick. "Synthesis and comparison of nickel, palladium, and platinum bis(N-heterocyclic carbene) pincer complexes for electrocatalytic CO2 reduction." Dalton Transactions 47, no. 6 (2018): 1827–40. http://dx.doi.org/10.1039/c7dt04089j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Onyszko, Magdalena, Karolina Urbas, Malgorzata Aleksandrzak, and Ewa Mijowska. "Reduced graphene oxide and inorganic nanoparticles composites – synthesis and characterization." Polish Journal of Chemical Technology 17, no. 4 (December 1, 2015): 95–103. http://dx.doi.org/10.1515/pjct-2015-0074.

Full text
Abstract:
Abstract Graphene – novel 2D material, which possesses variety of fascinating properties, can be considered as a convenient support material for the nanoparticles. In this work various methods of synthesis of reduced graphene oxide with metal or metal oxide nanoparticles will be presented. The hydrothermal approach for deposition of platinum, palladium and zirconium dioxide nanoparticles in ethylene glycol/water solution was applied. Here, platinum/reduced graphene oxide (Pt/RGO), palladium/reduced graphene oxide (Pd/RGO) and zirconium dioxide/reduced graphene oxide (ZrO2/RGO) nanocomposites were prepared. Additionally, manganese dioxide/reduced graphene oxide nanocomposite (MnO2/RGO) was synthesized in an oleic-water interface. The obtained nanocomposites were investigated by transmission electron microscopy (TEM), X-ray diffraction analysis (XRD), Raman spectroscopy and thermogravimetric analysis (TGA). The results shows that GO can be successfully used as a template for direct synthesis of metal or metal oxide nanoparticles on its surface with a homogenous distribution.
APA, Harvard, Vancouver, ISO, and other styles
21

Randle, TH, and AT Kuhn. "The Lead Dioxide Anode. I. A Kinetic Study of the Electrolytic Oxidation of Cerium(III) and Manganese(II) in Sulfuric Acid at the Lead Dioxide Electrode." Australian Journal of Chemistry 42, no. 2 (1989): 229. http://dx.doi.org/10.1071/ch9890229.

Full text
Abstract:
The electrolytic oxidation reactions of cerium(III) and manganeseII) in sulfuric acid have been used as probes to investigate the mechanism of the lead dioxide anode. The kinetics observed for such reactions at the lead dioxide surface provide no direct support for the proposal that the lead dioxide anode functions by a sequential 'two-step' mechanism (heterogeneous chemical oxidation of solution species followed by electrochemical oxidation of the reduced lead dioxide surface); rather the kinetics show characteristics similar to those observed previously for the oxidation of cerium(III) and manganese(II) at the platinum electrode, suggesting that the lead dioxide surface functions as a simple, 'inert' electron-transfer agent.
APA, Harvard, Vancouver, ISO, and other styles
22

Tostón, Susana, Rafael Camarillo, Fabiola Martínez, Carlos Jiménez, and Jesusa Rincón. "Supercritical synthesis of platinum-modified titanium dioxide for solar fuel production from carbon dioxide." Chinese Journal of Catalysis 38, no. 4 (April 2017): 636–50. http://dx.doi.org/10.1016/s1872-2067(17)62766-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Jasiñski, P., and A. Nowakowski. "Simultaneous detection of sulphur dioxide and nitrogen dioxide by Nasicon sensor with platinum electrodes." Ionics 6, no. 3-4 (May 2000): 230–34. http://dx.doi.org/10.1007/bf02374071.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Kocemba, Ireneusz, Justyna Nadajczyk, Jacek Góralski, and M. Szynkowska. "Photoreduction of carbon dioxide with hydrogen using temperature programmed method." Polish Journal of Chemical Technology 12, no. 3 (January 1, 2010): 1–2. http://dx.doi.org/10.2478/v10026-010-0022-1.

Full text
Abstract:
Photoreduction of carbon dioxide with hydrogen using temperature programmed method The photocatalytic reduction of carbon dioxide with hydrogen was studied by Temperature-Programmed Surface Reaction (TPSR). This process was carried out in a flow reactor that was especially designed and constructed for this purpose. Titanium dioxide (TiO2, Degussa P-25) was used as supports for platinum, ruthenium and nickel catalysts. The experimental results indicated that the activity of photoreduction of CO2 changes as follows: Ru/TiO2 > Ni/TiO2 > = Pt/TiO2 > TiO2.
APA, Harvard, Vancouver, ISO, and other styles
25

Bartram, Michael E., R. G. Windham, and B. E. Koel. "Coadsorption of nitrogen dioxide and oxygen on platinum(111)." Langmuir 4, no. 2 (March 1988): 240–46. http://dx.doi.org/10.1021/la00080a001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Shcherbakov, A. I., I. V. Kasatkina, V. V. Vysotskii, A. A. Averin, V. A. Kotenev, and A. Yu Tsivadze. "Formation of nanocomposites of platinum with nanotubular titanium dioxide." Protection of Metals and Physical Chemistry of Surfaces 50, no. 6 (November 2014): 803–8. http://dx.doi.org/10.1134/s2070205114060203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Arsatov, Andrei V., Lyudmila S. Leonova, Aleksandr E. Ukshe, Yuri A. Dobrovolsky, and Evgenii A. Astaf’ev. "Hydrogen spillover in the platinum–hydrous tin dioxide system." Mendeleev Communications 19, no. 5 (September 2009): 292–93. http://dx.doi.org/10.1016/j.mencom.2009.09.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Correia, A. N., S. A. S. Machado, and L. A. Avaca. "Electrocrystallization of manganese dioxide on disc-shaped platinum ultramicroelectrodes." Journal of Electroanalytical Chemistry 439, no. 1 (December 1997): 145–51. http://dx.doi.org/10.1016/s0022-0728(97)00379-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Sun, Y. M., D. N. Belton, and J. M. White. "Characteristics of platinum thin films on titanium dioxide(110)." Journal of Physical Chemistry 90, no. 21 (October 1986): 5178–82. http://dx.doi.org/10.1021/j100412a057.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Huang, Min, and Peter W. Faguy. "Carbon dioxide reduction on platinum |Nafion®|carbon electrodes." Journal of Electroanalytical Chemistry 406, no. 1-2 (April 1996): 219–22. http://dx.doi.org/10.1016/0022-0728(96)04560-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Keister, J. W., J. E. Rowe, J. J. Kolodziej, and T. E. Madey. "Photoemission spectroscopy of platinum overlayers on silicon dioxide films." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 18, no. 4 (2000): 2174. http://dx.doi.org/10.1116/1.1305872.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Ursov, E. D., M. S. Kondratenko, and M. O. Gallyamov. "Platinum Electrodeposition from a Carbon Dioxide-Based Supercritical Electrolyte." Doklady Physical Chemistry 489, no. 2 (December 2019): 173–76. http://dx.doi.org/10.1134/s0012501619120029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Schneider, T., M. Sommer, and J. Goschnick. "SNMS investigations of platinum-doped nanogranular tin dioxide layers." Applied Surface Science 252, no. 1 (September 2005): 257–60. http://dx.doi.org/10.1016/j.apsusc.2005.02.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Hayden, Brian E., Dzmitry V. Malevich, and Derek Pletcher. "Platinum catalysed nanoporous titanium dioxide electrodes in H2SO4 solutions." Electrochemistry Communications 3, no. 8 (August 2001): 395–99. http://dx.doi.org/10.1016/s1388-2481(01)00182-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Seok, Jeesoo, Ka Yeon Ryu, Jin Ah Lee, Inyoung Jeong, Nam-Suk Lee, Jeong Min Baik, Joo Gon Kim, Min Jae Ko, Kyungkon Kim, and Myung Hwa Kim. "Ruthenium based nanostructures driven by morphological controls as efficient counter electrodes for dye-sensitized solar cells." Physical Chemistry Chemical Physics 17, no. 5 (2015): 3004–8. http://dx.doi.org/10.1039/c4cp04506h.

Full text
Abstract:
We introduce a facile approach to use ruthenium dioxide (RuO2) and ruthenium (Ru) nanostructures as effective counter electrodes instead of using platinum (Pt) for dye-sensitized solar cells (DSSCs).
APA, Harvard, Vancouver, ISO, and other styles
36

Gao, Xiao-Tong, Zheng Zhang, Xin Wang, Jun-Song Tian, Shi-Liang Xie, Feng Zhou, and Jian Zhou. "Direct electrochemical defluorinative carboxylation of α-CF3 alkenes with carbon dioxide." Chemical Science 11, no. 38 (2020): 10414–20. http://dx.doi.org/10.1039/d0sc04091f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Fu, Xin, Ruisong Li, and Yucang Zhang. "High electrocatalytic activity of Pt on porous Nb-doped TiO2 nanoparticles prepared by aerosol-assisted self-assembly." RSC Advances 12, no. 34 (2022): 22070–81. http://dx.doi.org/10.1039/d2ra03821h.

Full text
Abstract:
A niobium-doped titanium dioxide electrocatalyst support for proton-exchange membrane fuel cells was prepared by an aerosol-assisted method and then loaded with platinum nanoparticles in the presence of ethylene glycol as a reducing agent.
APA, Harvard, Vancouver, ISO, and other styles
38

Schwarz, Kathleen A., Ravishankar Sundararaman, Thomas P. Moffat, and Thomas C. Allison. "Formic acid oxidation on platinum: a simple mechanistic study." Physical Chemistry Chemical Physics 17, no. 32 (2015): 20805–13. http://dx.doi.org/10.1039/c5cp03045e.

Full text
Abstract:
Formic acid oxidation on Pt(111) under electrocatalytic conditions occurs when a formate anion approaches the Pt(111) surface in the CH-down orientation, and barrierlessly releases carbon dioxide as the H binds to the surface.
APA, Harvard, Vancouver, ISO, and other styles
39

Resasco, D. E., R. J. Fenoglio, M. P. Suarez, and J. O. Cechini. "Different strong metal-support interaction effects on rhodium/titanium dioxide and platinum/titanium dioxide catalysts." Journal of Physical Chemistry 90, no. 18 (August 1986): 4330–33. http://dx.doi.org/10.1021/j100409a021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Abassian, Maryam, Rahele Zhiani, Alireza Motavalizadehkakhky, Hossein Eshghi, and Jamshid Mehrzad. "A new class of organoplatinum-based DFNS for the production of cyclic carbonates from olefins and CO2." RSC Advances 10, no. 26 (2020): 15044–51. http://dx.doi.org/10.1039/d0ra01696a.

Full text
Abstract:
We studied the potential application of an efficient, reusable, and easily recoverable catalyst of dendritic fibrous nanosilica (DFNS)-supported platinum(ii) complexes (DFNS/Pt(ii) NPs) to form cyclic carbonates in the presence of epoxides by converting carbon dioxide.
APA, Harvard, Vancouver, ISO, and other styles
41

Oh, Duck-kyu, Young-Jae Lee, Kwan-Young Lee, and Jong-Soo Park. "Nitrogen Monoxide and Soot Oxidation in Diesel Emissions with Platinum–Tungsten/Titanium Dioxide Catalysts: Tungsten Loading Effect." Catalysts 10, no. 11 (November 4, 2020): 1283. http://dx.doi.org/10.3390/catal10111283.

Full text
Abstract:
Compared with Pt/TiO2, tungsten-loaded Pt–W/TiO2 catalysts exhibit improved activity for NO and soot oxidation. Using catalysts prepared by an incipient wetness method, the tungsten loading effect was investigated using Brunauer–Emmett–Teller surface areas, X-ray diffraction, transmission electron microscopy (TEM), CO pulse chemisorption, H2 temperature-programmed reduction, NH3 temperature-programmed desorption (NH3-TPD), and pyridine Fourier transform infrared (FT-IR) spectroscopy. Loading tungsten on the Pt/TiO2 catalyst reduced the platinum particle size, as revealed in TEM images. CO pulse chemisorption showed that platinum was covered with tungsten and the dispersion of platinum decreased when 5 wt.% or more of tungsten was loaded. The NH3-TPD and pyridine-FT-IR results demonstrated that the number of strong acid sites and Brønsted acid sites in the catalyst were increased by the presence of tungsten. Therefore, a catalyst containing an appropriate amount of tungsten increased the dispersion of platinum, thereby increasing the number of active sites for NO and soot oxidation, and increased the acidity of the catalyst, thereby increasing the activity of soot oxidation by NO2
APA, Harvard, Vancouver, ISO, and other styles
42

Feinle, A., S. Flaig, M. Puchberger, U. Schubert, and N. Hüsing. "Stable carboxylic acid derivatized alkoxy silanes." Chemical Communications 51, no. 12 (2015): 2339–41. http://dx.doi.org/10.1039/c4cc08025d.

Full text
Abstract:
A convenient and straightforward one-pot hydrosilylation reaction of different unsaturated carboxylic acids with trialkoxysilanes in the presence of catalytic amounts of platinum(iv) dioxide resulted in excellent yields in organofunctional silanes combining carboxy- and alkoxy groups within one molecule.
APA, Harvard, Vancouver, ISO, and other styles
43

Pereira, Julio F., Raul S. Figueiredo, Carlos Ponce-de-León, and Rodnei Bertazzoli. "Platinum-free lead dioxide electrode for electrooxidation of organic compounds." Journal of Solid State Electrochemistry 20, no. 4 (July 3, 2015): 1167–73. http://dx.doi.org/10.1007/s10008-015-2950-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Manorama, Sunkara V., Noriya Izu, Woosuck Shin, Ichiro Matsubara, and Norimitsu Murayama. "On the platinum sensitization of nanosized cerium dioxide oxygen sensors." Sensors and Actuators B: Chemical 89, no. 3 (April 2003): 299–304. http://dx.doi.org/10.1016/s0925-4005(03)00005-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Uchida, Tatsuya, Hiroyuki Sugimura, Atsushi Sekiguchi, Noboru Kitamura, Nobuo Shimo, and Hiroshi Masuhara. "Photoelectrolysis of water on a titanium dioxide/platinum microelectrode array." Journal of Electroanalytical Chemistry 351, no. 1-2 (June 1993): 343–48. http://dx.doi.org/10.1016/0022-0728(93)80245-d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Miyazaki, Satoshi, Tomokazu Kiyonaga, Tetsuro Kawahara, and Hiroaki Tada. "Photoinduced Sulfur Desorption from Platinum Nanoparticles Loaded on Titanium Dioxide." Chemistry Letters 36, no. 10 (October 5, 2007): 1214–15. http://dx.doi.org/10.1246/cl.2007.1214.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Tsivadze, A. Yu, O. V. Lozovaya, M. R. Tarasevich, V. A. Bogdanovskaya, and I. Yu Pinus. "A platinum-free cathode catalyst supported on nanosized titanium dioxide." Doklady Physical Chemistry 438, no. 1 (May 2011): 86–89. http://dx.doi.org/10.1134/s0012501611050034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Sugita, Tsuyoshi, Masanobu Mori, and Naofumi Kozai. "Photocatalytic unification of iodine species using platinum-loaded titanium dioxide." Journal of Photochemistry and Photobiology A: Chemistry 438 (April 2023): 114548. http://dx.doi.org/10.1016/j.jphotochem.2023.114548.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Ríos, Pablo, Josefina Díez, Joaquín López-Serrano, Amor Rodríguez, and Salvador Conejero. "Cationic Platinum(II) σ-SiH Complexes in Carbon Dioxide Hydrosilation." Chemistry - A European Journal 22, no. 47 (October 11, 2016): 16791–95. http://dx.doi.org/10.1002/chem.201603524.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Schnorr, L., M. Cerchez, D. Ostermann, and T. Heinzel. "Deep-level transient spectroscopy at platinum/titanium-dioxide hydrogen sensors." physica status solidi (b) 253, no. 4 (December 3, 2015): 690–96. http://dx.doi.org/10.1002/pssb.201552518.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography