Academic literature on the topic 'Plasticizers'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Plasticizers.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Plasticizers"
Wu, Hailong, Biyun Zhou, Chuanfu Cen, and Yu Cao. "Study on the influence of environmentally friendly plasticizers on the properties of polyvinyl chloride." Journal of Physics: Conference Series 2713, no. 1 (February 1, 2024): 012007. http://dx.doi.org/10.1088/1742-6596/2713/1/012007.
Full textMenčík, Přemysl, Radek Přikryl, Ivana Stehnová, Veronika Melčová, Soňa Kontárová, Silvestr Figalla, Pavol Alexy, and Ján Bočkaj. "Effect of Selected Commercial Plasticizers on Mechanical, Thermal, and Morphological Properties of Poly(3-hydroxybutyrate)/Poly(lactic acid)/Plasticizer Biodegradable Blends for Three-Dimensional (3D) Print." Materials 11, no. 10 (October 3, 2018): 1893. http://dx.doi.org/10.3390/ma11101893.
Full textHazrol, M. D., S. M. Sapuan, E. S. Zainudin, M. Y. M. Zuhri, and N. I. Abdul Wahab. "Corn Starch (Zea mays) Biopolymer Plastic Reaction in Combination with Sorbitol and Glycerol." Polymers 13, no. 2 (January 12, 2021): 242. http://dx.doi.org/10.3390/polym13020242.
Full textLi, Huabei, Xiaolin Wang, Xinding Yao, and Hongying Chu. "Synthesis and properties of chlorine and phosphorus containing rubber seed oil as a second plasticizer for flame retardant polyvinyl chloride materials." Polish Journal of Chemical Technology 25, no. 2 (June 1, 2023): 36–42. http://dx.doi.org/10.2478/pjct-2023-0015.
Full textSong, Hui Jun, and Ke Yong Tang. "Effects of Various Plasticizers on the Moisture Sorption and Mechanical Properties of Gelatin-Chitosan Composite Films." Advanced Materials Research 295-297 (July 2011): 1202–5. http://dx.doi.org/10.4028/www.scientific.net/amr.295-297.1202.
Full textSyafiq, Razali Mohamad Omar, Salit Mohd Sapuan, Mohamed Yusoff Mohd Zuhri, Siti Hajar Othman, and Rushdan Ahmad Ilyas. "Effect of plasticizers on the properties of sugar palm nanocellulose/cinnamon essential oil reinforced starch bionanocomposite films." Nanotechnology Reviews 11, no. 1 (January 1, 2022): 423–37. http://dx.doi.org/10.1515/ntrev-2022-0028.
Full textFu, Qinghe, Jihuai Tan, Fang Wang, and Xinbao Zhu. "Study on the Synthesis of Castor Oil-Based Plasticizer and the Properties of Plasticized Nitrile Rubber." Polymers 12, no. 11 (November 3, 2020): 2584. http://dx.doi.org/10.3390/polym12112584.
Full textPetchwattana, Nawadon, Paramaporn Kerdsap, and Benjatham Sukkaneewat. "Plasticization of Poly(Vinyl Chloride) by Non-Carcinogenic Bio-Plasticizers." Key Engineering Materials 862 (September 2020): 99–103. http://dx.doi.org/10.4028/www.scientific.net/kem.862.99.
Full textJia, Puyou, Haoyu Xia, Kehan Tang, and Yonghong Zhou. "Plasticizers Derived from Biomass Resources: A Short Review." Polymers 10, no. 12 (November 24, 2018): 1303. http://dx.doi.org/10.3390/polym10121303.
Full textCzogała, Joanna, Ewa Pankalla, and Roman Turczyn. "Recent Attempts in the Design of Efficient PVC Plasticizers with Reduced Migration." Materials 14, no. 4 (February 10, 2021): 844. http://dx.doi.org/10.3390/ma14040844.
Full textDissertations / Theses on the topic "Plasticizers"
Erythropel, Hanno. "Designing green plasticizers." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=103728.
Full textLes plastifiants sont des additifs ajoutés au poly (chlorure de vinyle) (PVC) pour obtenir des plastiques souples; une propriété importante pour plusieurs applications. Ces plastifiants ne forment pas de liens covalents avec la matrice de polymères, ils peuvent donc graduellement migrer hors de celle-ci. Dû à la grande utilisation du PVC souple, il n'est pas étonnant que certains plastifiants, tel le di(2-éthyle hexyl) de phtalate (DEHP), soient considérés comme des polluants omniprésents dans l'environnement. Des études ont démontrées que la biodégradation du DEHP mène à l'accumulation de produits métaboliques toxiques. Ces considérations, entre autres, ont déjà conduit à l'abolition ou à la restriction, au Canada, aux États-Unis et dans l'Union Européenne, de l'utilisation de certains phthalates. Ainsi, il y a un intérêt prononcé pour le développement de nouveaux plastifiants « verts » complètements biodégradables. Une série de composés diesters ayant l'acide maléique comme molécule de base et ressemblant partiellement à la structure chimique des phthalates, a été testée. De même, des séries basées sur l'isomère structurel de l'acide maléique, l'acide fumarique, et son équivalent saturé, l'acide succinique ont aussi été testées. L'estérification des ces acides a été réalisée avec des alcools de longueur variable allant de l'éthanol à l'octanol, incluant aussi le 2-éthyle hexanol. Tous ces diesters ont été incorporés à du PVC à une composition d'environ 30% de la masse du matériau. La température de transition vitreuse (Tg) et la résistance à la traction ont été mesurées pour déterminer l'efficacité de ces plastifiants potentiels. Ces données ont été comparées entre elles ainsi qu'avec des résultats obtenus avec le DEHP. Des échantillons de plastifiants potentiels ont été testés pour déterminer leur biodégradabilité par la bactérie Rhodococcus rhodocrous (ATCC 13808); l'hexadécane étant utilisé comme source principale de carbone. Les résultats obtenus pour les diesters de l'acide succinique et de l'acide maléique ont démontrés qu'ils étaient d'aussi bons ou de meilleurs plastifiants que le DEHP. Dans le groupe des diesters de l'acide succinique, ceux contenant des alcools plus longs étaient de meilleurs plastifiants. Il a été déterminé que la présence d'une chaîne 2-éthyle dans certains diesters avait un effet significatif sur les propriétés des composés. Les expériences de biodégradabilité avec Rhodococcus rhodocrous ont démontré l'importance de la structure chimique de l'acide central des diesters. Les maléates en particulier, dans lesquels la position des deux groupes esters ressemble à celle du DEHP, n'ont démontré aucune susceptibilité à être biodégradés après 30 jours. Les fumarates ont été dégradés partiellement tandis que les succinates l'ont été très rapidement. Ces résultats indiquent que l'orientation des deux groupes esters, comme dans le cas du DEHP, est responsable de la stabilité de ces composés dans l'environnement. L'autre facteur influençant le taux de biodégradation est la longueur des alcools utilisés pour l'estérification: les molécules les plus longues avaient des taux plus bas. Toutefois, tous les alcools sans chaîne secondaire furent dégradés sans accumulation de métabolites stables. Inversement, tous les plastifiants potentiels contenant du 2-éthyle hexanol, ont démontrés une telle accumulation. Plusieurs diesters testés pourraient être considéré comme « verts ». En ce qui a trait au choix de l'acide central, les diesters de l'acide succinique représente probablement le meilleur choix. Pour les alcools utilisés pour l'estérification, les alcools longs démontrent de meilleures propriétés plastifiantes, alors que pour la biodégradation, les alcools courts étaient meilleurs. Un candidat représentant un bon compromis entre ces propriétés est le dihexyl de succinate.
Lindström, Annika. "Environmentally Friendly Plasticizers for PVC : Improved Material Properties and Long-term Performance Through Plasticizer Design." Doctoral thesis, KTH, Fiber- och polymerteknik, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4272.
Full textQC 20100805
Lindström, Annika. "Environmentally friendly plasticizers for PVC : improved material properties and long-term performance through plasticizer design /." Stockholm : Fiber- och polymerteknologi Fibre and Polymer Technology, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4272.
Full textXuan, Wenxiang. "Glucose Levulinates as Bio-plasticizers." Thesis, KTH, Skolan för kemivetenskap (CHE), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-218153.
Full textLahdou, Gilbert. "Microbial degradation of dibenzoate plasticizers." Thesis, McGill University, 2005. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=98983.
Full textIn the present study, it was shown that the degradation of dibenzoate plasticizers is a common phenomenon among soil microorganisms. In most examples, the degradation was incomplete leading to the accumulation of the expected monoesters. However, the biodegradation of these monoesters was shown to be possible even if the rates of biodegradation were much slower than the rates of hydrolysis of the parent compounds. In addition, it was found that di(ethylene-glycol) monobenzoate was easier to biodegrade than di(propylene-glycol) monobenzoate. This difference was attributed to the methyl substituents on the di(propylene-glycol) monobenzoate. The very fast rates of degradation of simpler benzoate esters such as methyl and ethyl benzoate confirmed that steric effects could be important.
The rate of biodegradation of 1,6-hexanediol dibenzoate was much faster than that of either of the dibenzoate plasticizers. From this, it was hypothesized that the stability of the monoesters of the plasticizers was due to the presence of an ether function. It was also shown that the presence of the monoester of D(PG)DB was shown to increase the rate of hydrolysis of the parent di-ester. This was attributed to the ability of the monoester to enhance the bioavailability di-ester.
Collectively, these results do not support the use of dibenzoate plasticizers as environmentally friendly alternatives to phthalate and adipate plasticizers.
Desai, Dipen. "Solid-state plasticizers for melt extrusion /." View online ; access limited to URI, 2007. http://0-digitalcommons.uri.edu.helin.uri.edu/dissertations/AAI3276980.
Full textKermanshahi, pour Azadeh. "Towards the development of green plasticizers." Thesis, McGill University, 2010. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=95155.
Full textDes recherches ont été réalisées pour étudier l'effet des groupes chimiques fonctionnels, y compris la fonction éther et les branches d'alkyle, sur les mécanismes de biodégradation et les taux de biodégradation des plastifiants dibenzoate. La biodégradation du 1,6-dibenzoate hexanediol, un plastifiant dibenzoate potentiel, par Rhodochrous rhodococcus, a été étudiée en présence d'hexadécane comme source de carbone primaire. Les métabolites, produits dans les processus de biodégradation ont été détectés par GC/MS et techniques de spectroscopie de masse à transformée de Fourier. Aucun de ces métabolites ne sont stables, tous avaient une tendance à la dégradation durant les expériences. Les mécanismes de biodégradation ont été élucidés pour le dibenzoate de 1,6-hexanediol et de deux plastifiants commerciaux, le dibenzoate de diéthylène glycol (D(EG)DB) et le dibenzoate dipropylèneglycol (D(PG)DB). La biodégradation de l'ensemble de ces plastifiants a été initié par hydrolyse d'une liaison ester pour libérer un monobenzoate et de l'acide benzoïque. Il a été démontré que le fragment de 1,6-diol monobenzoate hexanediol est généré par une β-oxydation, ce qui n'était pas possible pour le monobenzoate diéthylène glycol (D(EG)MB) et le monobenzoate dipropylèneglycol (D(PG)MB) en raison de la présence d'une fonction éther dans les diols. Ainsi, l'accumulation de D(EG)MB et D(PG)MB a été observée dans le bouillon de biodégradation. La biodégradation des plastifiants commerciaux, D(EG)DB et D(PG)DB et trois plastifiants de remplacement, le dibenzoate de 1,3-propanediol, le dibenzoate de 2,2-méthyl-propyl-1propanediol et le dibenzoate de 1,6-hexanediol, a été modélisée à l'aide d'un modèle cinétique Michaelis-Menten/Monod-type. La biodégradation a été effectuée dans un bioréacteur aéré à l'aide de cellules au repos Rhodochrous rhodococcus, qui avaient été cultivées avec l'hexadécane comme subst
Korsieporn, Pira. "Interaction of plasticizers with mammalian cells." Thesis, McGill University, 2005. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=98982.
Full textGas chromatography and mass spectrometry showed that all of the plasticizers investigated were partially degraded, but at differing rates, depending on the plasticizer and cell line. Solubility and stearic effects were found to play important roles in determining the rate of hydrolysis. The only metabolic product observed was 2-ethyl hexanol, which accumulated in culture. This was due to the lack of alcohol dehydrogenase production in the human hepatocyte cell line used.
Hepatocyte cell viability was not significantly affected at 4 days of exposure to DEHA. By 12 days, only 50% of the cells remained viable when compared to control experiments. These results suggest that the accumulation of plasticizers metabolites, specifically 2-ethyl hexanol, may have potentially toxic effects.
Gartshore, James. "Biodegradation of plasticizers by rhodotorula rubra." Thesis, McGill University, 2001. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=33968.
Full textThe degradation of D(PG)DB or D(EG)DB led to a significant increase in solution toxicity. This increase in toxicity was associated with the production of metabolites resulting from the incomplete breakdown of the original plasticizers. The metabolites responsible for the acute toxicity in the D(PG)DB system were identified as isomers of di-propylene glycol monobenzoate. A mechanism for the formation of this metabolite was proposed. Although the metabolite observed when D(EG)DB was being degraded was not isolated, it was tentatively identified as di-ethylene glycol monobenzoate by analogy to the D(PG)DB system. This same metabolite was observed when D(EG)DB was degraded by the fungus, Aspergillus niger ATCC 9642-U.
In contrast, there were no observable metabolites nor increases in toxicity in the media during the degradation of B(EH)A, DOP, or DOTP by R. rubra. These observations also differ from those of earlier work in which it was reported that the degradation of all three of these plasticizers by bacteria resulted in the production of toxic metabolites.
Collectively, these results do not support the use of D(PG)DB and D(EG)DB as environmentally safe alternatives to B(EH)A, DOP or DOTP.
Sauvageau, Dominic. "Microbial esterase and the degradation of plasticizers." Thesis, McGill University, 2004. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=81563.
Full textBy means of esterase activity and growth studies, it was possible to determine that the esterase produced by R. rhodochrous was constitutive and bound to the cell membrane. Treatment with a non-ionic surfactant, Triton X-100, caused solubilization of the enzyme. The esterase exhibited high stability, retaining activity for more than 48 hours, even after separation from the cell. Esterase activity was highest at 30°C but observed at temperatures as low as 4°C.
The comparison of the rates of hydrolysis of different esters showed that the solubility of the substrate had an important impact, with the less soluble compounds generally having lower rates. However, steric hindrance also appeared to play an important role in the determination of the rate of hydrolysis. The most common plasticizer, di(2-ethylhexyl) phthalate, had the slowest rate of hydrolysis. Therefore, given the increasing and widespread use of DEHP and other di-ester plasticizers, such plasticizers will continue to accumulate in the environment. This growing pool of plasticizers will undergo slow biodegradation, resulting in the increasing production of toxic metabolites.
Books on the topic "Plasticizers"
George, Wypych, ed. Handbook of plasticizers. Toronto: ChemTecPub, 2004.
Find full textLuqman, Mohammad. Recent advances in plasticizers. Crotia: INTECH, 2012.
Find full textInstitute, American Concrete, and Canada Centre for Mineral and Energy Technology., eds. Super-plasticizers in concrete. Ann Arbor, MI: University Microfilms, 1989.
Find full textWilson, Alan S. Plasticisers: Selection, applications and implications. Shrewsbury: RAPRA Technology, 1995.
Find full textWilson, Alan S. Plasticisers: Principles and practice. London: Institute of Materials, 1995.
Find full textLiu, Zhongyi. Green Catalytic Hydrogenation of Phthalate Plasticizers. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-9789-0.
Full textMercer, Angela. Migration studies of plasticizers from PVC film into food. Leicester: Leicester Polytechnic, 1990.
Find full textCANMET/ACI, International Conference on Superplasticizers and other Chemical Admixtures in Concrete (4th 1994 Montréal Québec). Fourth CANMET/ACI International Conference on Superplasticizers and other Chemical Admixtures in Concrete. Detroit, Mich: American Concrete Institute, 1994.
Find full textGołaszewski, Jacek. Wpływ superplastyfikatorów na właściwości reologiczne mieszanek na spoiwach cementowych w układzie zmiennych czynników technologicznych. Gliwice: Wydawn. Politechniki Śląskiej, 2006.
Find full textM, Malhotra V., Canada Centre for Mineral and Energy Technology., American Concrete Institute, and CANMET/ACI International Conference on Superplasticizers and other Chemical Admixtures in Concrete (5th : 1997 : Rome, Italy), eds. Superplasticizers and other chemical admixtures in concrete: Proceedings, fifth CANMET/ACI international conference, Rome, Italy, 1997. Farmington Hills, Mich: ACI International, 1997.
Find full textBook chapters on the topic "Plasticizers"
Narvaéz Rincón, Paulo César, and Oscar Yesid Suárez Palacios. "Plasticizers." In Polymers and Polymeric Composites: A Reference Series, 1–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-37179-0_73-1.
Full textSEARS, J. K., N. W. TOUCHETTE, and J. R. DARBY. "Plasticizers." In ACS Symposium Series, 611–41. Washington, D.C.: American Chemical Society, 1985. http://dx.doi.org/10.1021/bk-1985-0285.ch026.
Full textGrossman, Elizabeth. "Plasticizers." In Chasing Molecules, 83–98. Washington, DC: Island Press/Center for Resource Economics, 2009. http://dx.doi.org/10.5822/978-1-61091-157-3_5.
Full textHowick, C. J. "Plasticizers." In Plastics Additives, 499–504. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5862-6_54.
Full textDonskoi, A. A., M. A. Shashkina, and G. E. Zaikov. "Plasticizers." In Fire Resistant and Thermally Stable Materials Derived from Chlorinated Polyethylene, 123–33. London: CRC Press, 2023. http://dx.doi.org/10.1201/9780429070723-7.
Full textGooch, Jan W. "Compatibility of Plasticizers." In Encyclopedic Dictionary of Polymers, 160. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_2721.
Full textCadogan, D. F. "Plasticizers: health aspects." In Plastics Additives, 505–12. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5862-6_55.
Full textGonzález-Mariño, Iria, Rosa Montes, José Benito Quintana, and Rosario Rodil. "Plasticizers." In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Elsevier, 2018. http://dx.doi.org/10.1016/b978-0-12-409547-2.14009-0.
Full textGodwin, Allen D. "Plasticizers." In Applied Plastics Engineering Handbook, 533–53. Elsevier, 2017. http://dx.doi.org/10.1016/b978-0-323-39040-8.00025-0.
Full textWadey, B. L. "Plasticizers." In Encyclopedia of Physical Science and Technology, 441–56. Elsevier, 2003. http://dx.doi.org/10.1016/b0-12-227410-5/00586-x.
Full textConference papers on the topic "Plasticizers"
Zhesheng, Hou, Qiu Bofeng, and Yin Jinghua. "PROPERTIES OF DIFFERENT COMPONENT STARCH PLASTICIZERS AND REINFORCEMENT OF PLASTICIZED STARCH FIBERS." In International Conference on New Materials and Intelligent Manufacturing (ICNMIM). Volkson Press, 2018. http://dx.doi.org/10.26480/icnmim.01.2018.439.442.
Full textParavanová, Gordana, and Berenika Hausnerová. "Dispersion effectiveness of organic plasticizers." In 6TH INTERNATIONAL CONFERENCE ON TIMES OF POLYMERS (TOP) AND COMPOSITES. AIP, 2012. http://dx.doi.org/10.1063/1.4738466.
Full textWadey, Brian L., and Jürgen Holzmann. "Plasticizers for Automotive Interior Trim." In SAE International Congress and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1987. http://dx.doi.org/10.4271/870318.
Full textOLEA, NICOLAS. "PLASTIC, PLASTICIZERS AND CONSUMER PRODUCTS." In International Seminar on Nuclear War and Planetary Emergencies 42nd Session. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814327503_0076.
Full textHeinlaan, Margit, Heiki Vija, and Irina Blinova. "Novel Plasticizers Are Emerging Contaminants." In International Conference EcoBalt. Basel Switzerland: MDPI, 2023. http://dx.doi.org/10.3390/proceedings2023092061.
Full textJermolovicius, Luiz Alberto, Eduardo V. S. Pouzada, Edmilson R. Castro, Renata B. Nascimento, and José T. Senise. "FASTER PLASTICIZERS PRODUCTION BY MICROWAVE IRRADIATION." In Ampere 2019. Valencia: Universitat Politècnica de València, 2019. http://dx.doi.org/10.4995/ampere2019.2019.9777.
Full textЗагороднюк, Л. Х., L. H. Zagorodnyuk, Д. С. Махортов, D. S. Mahortov, А. С. Чепенко, A. S. Chepenko, И. Н. Туцкая, I. N. Tuckaya, Н. А. Науменко, and N. A. Naumenko. "PLASTICIZERS BASED ON ANIMAL PROTEIN PROTEIN." In International Scientific and Practical 65th anniversary conference BSTU them. V.G. Shukhov "HIGH-TECH TECHNOLOGIES AND INNOVATIONS (XXIII scientific readings)". Belgorod State Technological University named after V.G. Shukhov, 2019. http://dx.doi.org/10.12737/conferencearticle_5cecedc24d0f67.83326643.
Full text"Chemical Characterization of Plasticizers and Superplasticizers." In SP-119: Superplasticizers and Other Chemical Admixtures in Concrete. American Concrete Institute, 1989. http://dx.doi.org/10.14359/2420.
Full textJustnes, H. "Counteracting retardation of plasticizers by calcium nitrate." In 2nd International RILEM Symposium on Advances in Concrete through Science and Engineering. RILEM Publications, 2006. http://dx.doi.org/10.1617/2351580028.066.
Full textCozar, Onuc, Nicolae Cioica, Constantin Coţa, Elena Mihaela Nagy, and Radu Fechete. "Plasticizers effect on native biodegradable package materials." In HIGH ENERGY GAMMA-RAY ASTRONOMY: 6th International Meeting on High Energy Gamma-Ray Astronomy. Author(s), 2017. http://dx.doi.org/10.1063/1.4972386.
Full textReports on the topic "Plasticizers"
Colletti, Catherine, and Eric Neuman. Evaluation of Binders and Plasticizers in Kollidon VA 64-PEG Binder Systems. Office of Scientific and Technical Information (OSTI), July 2022. http://dx.doi.org/10.2172/1877853.
Full textEdwards, Stephanie L. Aging Studies on Nitro-Plasticizer. Office of Scientific and Technical Information (OSTI), August 2013. http://dx.doi.org/10.2172/1091322.
Full textSwearengen, P. M., and J. S. Johnson. Toxicology study of the high-energy plasticizer FEFO. Office of Scientific and Technical Information (OSTI), March 1989. http://dx.doi.org/10.2172/6408650.
Full textShear, Trevor Allan. Using Statistical Analysis Software to Advance Nitro Plasticizer Wettability. Office of Scientific and Technical Information (OSTI), August 2017. http://dx.doi.org/10.2172/1377391.
Full textEdwards, Stephanie L. The Effects of Temperature, Aging, and Plasticizer Content on VCE. Office of Scientific and Technical Information (OSTI), June 2013. http://dx.doi.org/10.2172/1082236.
Full textWROBLESKI, DEBRA A., DAVID A. LANGLOIS, E. BRUCE ORLER, ANDREA LABOURIAU, MARIANA M. URIBE, ROBERT J. HOULTON, JOEL D. KRESS, and BRIAN K. KENDRICK. ACCELERATED AGING AND CHARACTERIZATION OF A PLASTICIZED POLY(ESTER URETHANE) BINDER. Office of Scientific and Technical Information (OSTI), September 2007. http://dx.doi.org/10.2172/1074589.
Full textGitti, Rossitza K., and Stanley A. Ostazeski. Saturation Transfer Difference NMR as an Analytical Tool for Detection and Differentiation of Plastic Explosives on the Basis of Minor Plasticizer Composition. Fort Belvoir, VA: Defense Technical Information Center, May 2015. http://dx.doi.org/10.21236/ada621999.
Full text