Academic literature on the topic 'Plasticity'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Plasticity.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Plasticity"

1

Sturiale, Samantha L., and Nathan W. Bailey. "Within-generation and transgenerational social plasticity interact during rapid adaptive evolution." Evolution 77, no. 2 (December 15, 2022): 409–21. http://dx.doi.org/10.1093/evolut/qpac036.

Full text
Abstract:
Abstract The effects of within-generation plasticity vs. transgenerational plasticity on trait expression are poorly understood, but important for evaluating plasticity’s evolutionary consequences. We tested how genetics, within-generation plasticity, and transgenerational plasticity jointly shape traits influencing rapid evolution in the field cricket Teleogryllus oceanicus. In Hawaiian populations attacked by acoustically orienting parasitoid flies, a protective, X-linked variant (“flatwing”) eliminates male acoustic sexual signals. Silent males rapidly spread to fixation, dramatically changing the acoustic environment. First, we found evidence supporting flatwing-associated pleiotropy in juveniles: pure-breeding flatwing males and females exhibit greater locomotion than those with normal-wing genotypes. Second, within-generation plasticity caused homozygous-flatwing females developing in silence, which mimics all-flatwing populations, to attain lower adult body condition and reproductive investment than those experimentally exposed to song. Third, maternal song exposure caused transgenerational plasticity in offspring, affecting adult, but not juvenile, size, condition, and reproductive investment. This contrasted with behavioral traits, which were only influenced by within-generation plasticity. Fourth, we matched and mismatched maternal and offspring social environments and found that transgenerational plasticity sometimes interacted with within-generation plasticity and sometimes opposed it. Our findings stress the importance of evaluating plasticity of different traits and stages across generations when evaluating its fitness consequences and role in adaptation.
APA, Harvard, Vancouver, ISO, and other styles
2

Vriz, Sophie, and Alain Joliot. "Homéoprotéines et plasticité cellulaire / Homeoproteins and cell plasticity." L’annuaire du Collège de France, no. 116 (June 15, 2018): 662–64. http://dx.doi.org/10.4000/annuaire-cdf.13506.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Vriz, Sophie, and Alain Joliot. "Homéoprotéines et plasticité cellulaire / Homeoproteins and cell plasticity." L’annuaire du Collège de France, no. 117 (September 1, 2019): 648–50. http://dx.doi.org/10.4000/annuaire-cdf.14791.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Vriz, Sophie, and Alain Joliot. "Homéoprotéines et plasticité cellulaire / Homeoproteins and cell plasticity." L’annuaire du Collège de France, no. 118 (December 30, 2020): 672–73. http://dx.doi.org/10.4000/annuaire-cdf.16188.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Joliot, Responsables :. Sophie Vriz et. "Homéoprotéines et plasticité cellulaire / Homeoproteins and cell plasticity." L’annuaire du Collège de France, no. 120 (February 13, 2023): 552. http://dx.doi.org/10.4000/annuaire-cdf.18891.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Joliot, Alain, and Sophie Vriz. "Homéoprotéines et plasticité cellulaire / Homeoproteins and cell plasticity." L’annuaire du Collège de France 121 (2024): 688. http://dx.doi.org/10.4000/12kvm.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fine, Cordelia, Rebecca Jordan-Young, Anelis Kaiser, and Gina Rippon. "Plasticity, plasticity, plasticity…and the rigid problem of sex." Trends in Cognitive Sciences 17, no. 11 (November 2013): 550–51. http://dx.doi.org/10.1016/j.tics.2013.08.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bibi, Zubaira, Muhammad Junaid Maqsood, Ayesha Idrees, Hafisa Rafique, Aliza Amjad Butt, Rameesha Ali, Zunaira Arif, and Mutie Un Nabi. "Exploring the Role of Phenotypic Plasticity in Plant Adaptation to Changing Climate: A Review." Asian Journal of Research in Crop Science 9, no. 1 (January 2, 2024): 1–9. http://dx.doi.org/10.9734/ajrcs/2024/v9i1241.

Full text
Abstract:
Global ecosystems are threatened by climate change, thus understanding plant response is vital. Phenotypic plasticity allows genotypes to produce different phenotypes in response to different environmental conditions, helping plants adapt to changing climates. The reviewsynthesizes molecular, physiological, and morphological data on plant phenotypic plasticity as a dynamic and responsive survival strategy in unpredictable environments. Review analyses how phenotypic plasticity influences plant resilience and persistence under climate change using empirical data from diverse plant species and settings. The study also analyses how phenotypic plasticity influences plant community dynamics, biodiversity, and ecosystem functioning. Phenotypic plasticity's potential to attenuate climate change and facilitate range alterations is also explored, showing its importance in plant ranges. Study reviewsgenetic, genomic, ecological, and climatological research on plant phenotypic plasticity in climate adaptation. Findings stressplant species' resilience in reducing climate change's impact on global ecosystems and influencing conservation and management.
APA, Harvard, Vancouver, ISO, and other styles
9

Cree, Dylan Jeffrey. "Of Force? Plasticity, Annihilation and Change." Humanities 11, no. 4 (June 30, 2022): 83. http://dx.doi.org/10.3390/h11040083.

Full text
Abstract:
Catherine Malabou’s conception of plasticity as potentially having a creative or destructive form provides both philosophy and the neurosciences with a dynamic and generative concept for describing the workings and transformations of psychological, social, and material phenomena. Exploring the dynamism of Malabou’s plasticity, I question: how is plasticity, whether as a giving or receiving form, constituted to be so dynamic? Drawing somewhat from Heidegger’s account of change, I propose thinking of form as existing within a world of forces, to be a force, and be composed of force(s). The problem being, though somewhat presupposed and even alluded to in her elaborations of form and destructive plasticity, Malabou doesn’t conceptualize force nor advance it as a necessity for conceptualizing plasticity. Nevertheless, developing upon Christopher Watkin’s idea for engaging Malabou’s plasticity relationally within a broader ecology, we come to see how, whether ontically or ontologically, force(s) appear to be what makes plasticity dynamic. As a result, in order to address the figure of force as being integral to form, I argue that Malabou will need to somehow transfigure her conception of plasticity. Ultimately, in my estimation, such elaboration may lead to plasticity’s conceptual re-birth in the form of a mediating force.
APA, Harvard, Vancouver, ISO, and other styles
10

Morris, Matthew R. J. "Plasticity-Mediated Persistence in New and Changing Environments." International Journal of Evolutionary Biology 2014 (October 15, 2014): 1–18. http://dx.doi.org/10.1155/2014/416497.

Full text
Abstract:
Baldwin’s synthesis of the Organicist position, first published in 1896 and elaborated in 1902, sought to rescue environmentally induced phenotypes from disrepute by showing their Darwinian significance. Of particular interest to Baldwin was plasticity’s mediating role during environmental change or colonization—plastic individuals were more likely to successfully survive and reproduce in new environments than were nonplastic individuals. Once a population of plastic individuals had become established, plasticity could further mediate the future course of evolution. The evidence for plasticity-mediated persistence (PMP) is reviewed here with a particular focus on evolutionary rescue experiments, studies on invasive success, and the role of learning in survival. Many PMP studies are methodologically limited, showing that preexistent plasticity has utility in new environments (soft PMP) rather than directly demonstrating that plasticity is responsible for persistence (hard PMP). An ideal PMP study would be able to demonstrate that (1) plasticity preexisted environmental change, (2) plasticity was fortuitously beneficial in the new environment, (3) plasticity was responsible for individual persistence in the new environment, and (4) plasticity was responsible for population persistence in succeeding generations. Although PMP is not ubiquitous, Baldwin’s hypotheses have been largely vindicated in theoretical and empirical studies, but much work remains.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Plasticity"

1

Sherwood, James Lawrence. "Mossy fibre plasticity." Thesis, University of Bristol, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.618313.

Full text
Abstract:
This study used extracellular field potential recordings (fEPSP) to investigate the role of kainate receptors (containing GLUK5) in short- and long-term potentiation (S-/L-TP) in the mossy fibre (MF) pathway. In vitro, the role of GLUK5 in synaptic plasticity is dependent on extracellular calcium concentration. So the physiological importance was investigated in vivo. In a single experiment GLUK5 selective antagonist, LY382884 (10 mg.kg-l, i.v.), attenuated STP. Notwithstanding, there is continued controversy regarding the role of GLUK5 in MF synaptic plasticity. Using GLUK5 selective antagonists, LY382884 and ACET, the method of hippocampal slice preparation is identified as deterministic. In parasagittal slices prepared in standard aCSF (PsH), STP, measured as ratio of 1st and 5th pulse (P5:P1) evoked at 25Hz, was antagonised by 10uM LY382884; NMDAR independent L TP, evoked by 100 pulses at 100Hz in 50uM AP5, was reversibly antagonised by 50nM ACET. Transverse hippocampal slices prepared in standard aCSF were not viable. In transverse slices prepared in high sucrose aCSF (TH), 10uM LY382884 had no effect on P5:P1-25Hz or P5:P1-50Hz; furthermore 100nM ACET had no effect on P5:P1-50Hz, or on the induction of NMDAR independent LTP. The depression of transmission by Group II mGluR agonists is reportedly a characteristic MF property. In PsH, DCG-IV had no effect on MF fEPSP but depressed P5:Pt-25Hz. In TH, DCG-IV and LY395756 (mGlu2 selective agonist) transiently depressed MF fEPSP. This was attenuated by a Group U competitive antagonist L Y341495. DCG-IV and LY395756 induced a concentration dependent long-term depression (LTD). While 100nM L Y341495 had no effect on OCGI-IV L TO, 300nM transiently reversed L Y395756 L TO. In conclusion, the pharmacology of synaptic plasticity in vitro is critically dependent on slice preparation; preliminary data suggest that GLUK5 receptors contribute to MF plasticity in vivo. Disparity in EC50 values for DCG-IV and L Y395756 induced depression suggests the possible involvement of mGlu3.
APA, Harvard, Vancouver, ISO, and other styles
2

Klempin, Friederike Claudia. "Adult brain plasticity." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2008. http://dx.doi.org/10.18452/15844.

Full text
Abstract:
Der Hippocampus ist eine von zwei Gehirnregionen, in der zeitlebens kontinuierlich neue Nervenzellen gebildet werden. Er spielt eine wichtige Rolle bei der Gedächtniskonsolidierung und wird mit der funktionellen Entstehung neurodegenerativer Erkrankungen in Verbindung gebracht. Strukturveränderungen im erwachsenen Gehirn, die mit einer Depression einhergehen, sind laut Literatur auf einen geringen Serotoninspiegel und reduzierte hippocampale Neurogenese zurückzuführen. Selektive Serotonin-Wiederaufnahmehemmer (SSRI) erhöhen die Serotoninkonzentration im synaptischen Spalt und üben einen positiven Effekt auf die adulte Neurogenese aus. In der vorliegenden Arbeit wird untersucht, wie Veränderungen in der Serotonin (5-HT)-Neurotransmission durch einmalige oder chronische Gaben von Fluoxetin und speziellen Agonisten und Antagonisten für die Serotoninrezeptoren 5-HT1a und 5-HT2 in der erwachsenen Maus die Proliferation und Differenzierung von neugebildeten Nervenzellen im Gyrus dentatus beeinflussen. Die Ergebnisse zeigen, dass ein konträres Agieren beider Rezeptoren zu einem ausgewogenen Serotoninspiegel führt. 5-HT1a- und 5-HT2c-Rezeptoren haben einen Einfluss auf das Überleben neugebildeter Nervenzellen, wobei sie unterschiedliche Entwicklungsstadien innerhalb der adulten Neurogenese kontrollieren. Die vorliegende Arbeit bekräftigt außerdem, dass die chronische Gabe von Fluoxetin die adulte Neurogenese steigert.
The hippocampus as one region with ongoing neurogenesis throughout life contributes to the formation of long-term memory and has also been implicated in the pathology of major depression. Studies suggest that depression might be due to decreased levels of serotonin and reduced neurogenesis in the adult brain and that the beneficial effects of selective serotonin reuptake inhibitors would require adult hippocampal neurogenesis. Here, I investigated how modulation of serotonergic neurotransmission by acute and chronic treatment with the antidepressant fluoxetine, and selective serotonin receptor agonists and antagonists in adult mice influences precursor cell activity during development. I focused on 5-HT1a and 5-HT2 receptors as major mediators of serotonin action. The present findings suggest that an opposed action of 5-HT1a and 5-HT2c receptor subtypes result in a balanced regulation of serotonin levels in the dentate gyrus. Both receptors differentially affect intermediate cell stages in adult hippocampal neurogenesis and play an important role in the survival of newly generated neurons. Furthermore, this study confirms that chronic fluoxetine treatment increases adult neurogenesis. In conclusion, the latency of onset of fluoxetine action can be explained by a balanced interplay of 5-HT1a and 5-HT2c receptor subtypes.
APA, Harvard, Vancouver, ISO, and other styles
3

Elramah, Sara. "Towards a Better Understanding of miRNA Function in Neuronal Plasticity : implications in Synaptic Homeostasis and Maladaptive Plasticity in Bone Cancer Pain Condition." Thesis, Bordeaux 2, 2013. http://www.theses.fr/2013BOR22073/document.

Full text
Abstract:
Les micro-ARNs (miRNAs) sont de petits ARNs (20-25 nt) qui ont un rôle important dans les mécanismes d'interférence ARN. Les miRNAs sont des inhibiteurs de l'expression génique qui interviennent au niveau post-traductionnel en s'hybridant à des sites spécifiques de leurs ARNm cibles. Ce mécanisme induit la dégradation de l'ARNm ou l'inhibition de sa traduction. Puisque l'hybridation partielle du miRNA est suffisante pour induire une inhibition, chaque miRNA peut avoir des centaines de cibles. Les miRNAs sont impliqués dans de nombreuses fonctions biologiques et en particulier dans processus neuronaux. Plus de la moitié des miRNAs connus sont exprimés dans le cerveau de mammifère avec une distribution spécifique du miRNA considéré. A l'échelle sub-cellulaire il y a également une distribution hétérogène des miRNAs. De plus, il a été montré récemment une implication des miRNAs dans la régulation de la traduction locale dans les neurones. En effet, des miRNAs et des protyeines impliquées dans la biogenèse et la fonction des miRNAs ont été retrouvés dans le soma, les dendrites et les axones. Il a été montré que la dérégulation des miRNAs été impliquée dans de nombreux mécanismes pathologiques. Cette thèse a pour objectif de révéler le rôle des miRNAs dans la plasticité synaptique. Nous avons étudié l'implication des miRNAs dans les mécanismes de la plasticité synaptique homéostatique et dans la plasticité dysfonctionnelle rencontrée en condition de douleur cancéreuse.Notre hypothèse était que la régulation de la traduction locale des récepteurs AMPA dans les dendrites en condition d'homéostasie synaptique implique les miRNAs. Par bio-informatique, qRT-PCR et test luciférase, nous avons identifié le miRNA miR-92a comme régulateur de la traduction de l'ARNm de GluA1. Des immunomarquages des récepteurs AMPA et des enregistrements des courants miniatures AMPA montrent que miR-92a régule spécifiquement l'incorporation synaptique de nouveau récepteurs AMPA contenant GluA1 en réponse à un blocage de l'activité synaptique. La douleur est un symptôme très fréquemment associé au cancer et constitue un challenge pour les médecins puisque aucun traitement spécifique et efficace n'existe. C'est sans doute le résultat d'un manque de connaissances des mécanismes moléculaires responsables de la douleur cancéreuse. En combinant les screening des miRNA et des ARNm, nous avons mis en évidence une voie de régulation impliquant miR-124, un miRNA enrichi dans le système nerveux. Ainsi, dans un modèle de douleur cancéreuse chez la souris, la diminution de miR-124 est associée à une augmentation de ces cibles : calpain 1, synaptopodine et tropomyosine 4. Toutes ces protéines ont précédemment été identifiées comme des molécules clef de la fonction et de la plasticité synaptique. Des experiences in vitro ont confirmé que miR-124 exercait une inhibition multiple de calpain 1, synaptopodine et tropomyosine 4. La pertinence clinique de cette découverte a été vérifiée par le screening du liquide cérébro-spinal de patients souffrant de douleur cancéreuse qui montre également une diminution de miR-124. Ce résultat suggère un fort potentiel thérapeutique du ciblage de miR-124 dans les douleurs cancéreuses. Enfin, l'injection intrathécale de miR-124 dans des souris cancéreuses a permis de normaliser l'expression de la synaptopodine et de stopper la douleur cancéreuse lors de la phase initiale de la maladie
MicroRNAs (miRNAs) are a type of small RNA molecules (21-25nt), with a central role in RNA silencing and interference. MiRNAs function as negative regulators of gene expression at the post-transcriptional level, by binding to specific sites on their targeted mRNAs. A process results in mRNA degradation or repression of productive translation. Because partial binding to target mRNA is enough to induce silencing, each miRNA has up to hundreds of targets. miRNAs have been shown to be involved in most, if not all, fundamental biological processes. Some of the most interesting examples of miRNA activity regulation are coming from neurons. Almost 50% of all identified miRNAs are expressed in the mammalian brain. Furthermore, miRNAs appear to be differentially distributed in distinct brain regions and neuron types. Importantly, miRNAs are reported to be differentially distributed at the sub-cellular level. Recently, miRNAs have been suggested to be involved in the local translation of neuronal compartments. This has been derived from the observations reporting the presence of miRNAs and the protein complexes involved in miRNA biogenesis and function in neuronal soma, dendrites, and axons. Deregulation of miRNAs has been shown to be implicated in pathological conditions. The present thesis aimed at deciphering the role of miRNA regulation in neuronal plasticity. Here we investigated the involvement of miRNA in synaptic plasticity, specifically in homeostatic synaptic plasticity mode. In addition, we investigated the involvement of miRNAs in the maladaptive nervous system state, specifically, in bone cancer pain condition.We hypothesized that local regulation of AMPA receptor translation in dendrites upon homeostatic synaptic scaling may involve miRNAs. Using bioinformatics, qRT-PCR and luciferase reporter assays, we identified several brain-specific miRNAs including miR-92a, targeting the 3’UTR of GluA1 mRNA. Immunostaining of AMPA receptors and recordings of miniature AMPA currents in primary neurons showed that miR-92a selectively regulates the synaptic incorporation of new GluA1-containing AMPA receptors during activity blockade.Pain is a very common symptom associated with cancer and is still a challenge for clinicians due to the lack of specific and effective treatments. This reflects the crucial lack of knowledge regarding the molecular mechanisms responsible for cancer-related pain. Combining miRNA and mRNA screenings we were able to identify a regulatory pathway involving the nervous system-enriched miRNA, miR-124. Thus, miR-124 downregulation was associated with an upregulation of its predicted targets, Calpain 1, Synaptopodin and Tropomyosin 4 in a cancer-pain model in mice. All these targets have been previously identified as key proteins for the synapse function and plasticity. Clinical pertinence of this finding was assessed by the screening of cerebrospinal fluid from cancer patient suffering from pain who presented also a downregulation of miR-124, strongly suggesting miR-124 as a therapeutic target. In vitro experiments confirmed that miR-124 exerts a multi-target inhibition on Calpain 1, Synaptopodin and Tropomyosin 4. In addition, intrathecal injection of miR-124 was able to normalize the Synaptopodin expression and to alleviate the initial phase of cancer pain in mice
APA, Harvard, Vancouver, ISO, and other styles
4

VanDam, Mark. "Plasticity of phonological categories." [Bloomington, Ind.] : Indiana University, 2007. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3277973.

Full text
Abstract:
Thesis (Ph.D.)--Indiana University, Dept. of Linguistics, 2007.
Source: Dissertation Abstracts International, Volume: 68-09, Section: A, page: 3830. Adviser: Robert F. Port. Title from dissertation t.p. (viewed May 1, 2008).
APA, Harvard, Vancouver, ISO, and other styles
5

Brookes, Jill. "The plasticity of diamond." Thesis, University of Hull, 1992. http://hydra.hull.ac.uk/resources/hull:6745.

Full text
Abstract:
Aspects of the crystal structure of diamond, and its associated defects, have been considered with reference to the effect such characteristics might have on its mechanical properties. Also, established resolved shear stress models, which account for anisotropy in conventional Knoop indentation hardness of all single crystals, have been reviewed. Particular attention has been given to the role of microplasticity and the nature of crack formation in the deformed zone formed beneath the indenter. It is then shown that a similar approach can be applied to the case where a cone, made from a softer material, replaces the conventional rigid indenter. By using different materials covering a range of hardness, impressions can be formed beneath which there is a controlled density and depth of dislocations. In this work, the 'soft' indenter technique has been extended to high temperatures and applied to study the plasticity of various types of natural and synthetic diamond. Consequently, the effect of temperature on the critical resolved shear stress of synthetic type Ib, and natural type Ia and type IIa has been established. Above a critical threshold temperature for the onset of plasticity, time dependent growth of the impression volume occurs whilst the mean contact pressure is decreasing. It is shown that geometrical similarity, i.e. the ratio of the impression size to dislocated volume, is maintained whilst the critical mean pressure continues to be exceeded during this process of 'impression creep'. Activation energies of about 2.9 eV and 1.2 eV were determined, from rates of volume change, for natural (both type I and II) and synthetic type Ib respectively. Whilst no significant differences were observed between 98.9% 12C (natural abundance) and 99.9% 12C (isotopically enriched) synthetic diamonds, their behaviour was most like that of a type IIb diamond. Finally, by studying type la diamonds with a nitrogen concentration ranging from 14 - 750 ppm, evidence is obtained which supports the suggestion that this element reduces the intrinsic resistance to dislocation movement and encourages the initiation of cracks in the diamond structure.
APA, Harvard, Vancouver, ISO, and other styles
6

Tsakmaki, Anastasia. "Plasticity of the endoderm." Thesis, University of Bath, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.538557.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Castell, Martin R. "Indentation plasticity in semiconductors." Thesis, University of Cambridge, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.363040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kothari, Manish. "Rate independent crystal plasticity." Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/36611.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Guinnee, Meghan A. "Plasticity in reproductive traits." Thesis, University of Edinburgh, 2005. http://hdl.handle.net/1842/16998.

Full text
Abstract:
In this thesis, I explore how an individual’s environment, or the environment of its mother, affects its reproductive life-history characteristics (age at maturity, size at maturity, offspring size, offspring number). I attempt to explain observed responses using adaptive reasoning and/or mathematical modelling. I find that mean egg size decreases with increasing clutch size in Daphnia, and explore possible causes of this using a mathematical model. This pattern could be an adaptive response, if larger offspring have greater fitness advantages in food-limited environments. However, such a pattern can also result from a minimum viable egg size that is similar to the optimal egg size. I also empirically test the fitness effects of hatching from a small or large egg in Daphnia. I find that offspring from food-limited mothers are larger, but that they mature later, produce less offspring per clutch, do not produce larger offspring and produce fewer offspring per unit time. I find that the nematode parasites Strongyloides ratti and Nippostrongylus brasiliensis mature at different rates depending on the efficacy of the host immune response, but that differences are species-dependent. In addition, female N. brasiliensis suffer decreased fecundity at higher densities, but only in hosts with fully-functioning immune systems; in hosts with no thymus-based immune system, there is no density-dependent fecundity effect. This suggests that the density-dependent effects often observed in parasitic nematodes are mediated by the host immune system. This thesis reminds us that small differences in an individual’s surroundings, or even its mother’s surroundings, can profoundly affect when, how, and how successfully an animal reproduces. Often, these effects can be explained using adaptive reasoning, and/or mathematical modelling. When and how an animal reproduces is certain to have consequences for its fitness. Implications and future research directions are also discussed.
APA, Harvard, Vancouver, ISO, and other styles
10

Dekkers, Martijn. "Plasticity in Caenorhabditis elegans." [S.l.] : Rotterdam : [The Author] ; Erasmus University [Host], 2008. http://hdl.handle.net/1765/13961.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Plasticity"

1

Han, Weimin, and B. Daya Reddy. Plasticity. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-5940-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Borja, Ronaldo I. Plasticity. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38547-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, Zhongren, Weilong Hu, S. J. Yuan, and Xiaosong Wang. Engineering Plasticity. Singapore: John Wiley & Sons Singapore Pte. Ltd., 2018. http://dx.doi.org/10.1002/9781119237310.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chakrabarty, J. Applied Plasticity. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4757-3268-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chen, W. F., and H. Zhang. Structural Plasticity. New York, NY: Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4612-2984-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kreutz, Michael R., and Carlo Sala, eds. Synaptic Plasticity. Vienna: Springer Vienna, 2012. http://dx.doi.org/10.1007/978-3-7091-0932-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Filogamo, Guido, Antonia Vernadakis, Fulvia Gremo, Alain M. Privat, and Paola S. Timiras, eds. Brain Plasticity. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4757-9551-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yu, Maohong, Jianchun Li, and Guowei Ma. Structural Plasticity. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-88152-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chevreux, Laurent, Wim Plaizier, Christian Schuh, Wayne Brown, and Alenka Triplat. Corporate Plasticity. Berkeley, CA: Apress, 2014. http://dx.doi.org/10.1007/978-1-4302-6748-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yu, Mao-Hong, and Jian-Chun Li. Computational Plasticity. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-24590-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Plasticity"

1

McAllister-Williams, R. Hamish, Daniel Bertrand, Hans Rollema, Raymond S. Hurst, Linda P. Spear, Tim C. Kirkham, Thomas Steckler, et al. "Plasticity." In Encyclopedia of Psychopharmacology, 1034. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-68706-1_4466.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bodin, Doug, Keith Owen Yeates, and Jennifer Cass. "Plasticity." In Encyclopedia of Clinical Neuropsychology, 1956–57. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-0-387-79948-3_1587.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bertram, Albrecht. "Plasticity." In Elasticity and Plasticity of Large Deformations, 255–320. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-24615-9_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bodin, Doug, Keith Owen Yeates, and Jennifer Cass. "Plasticity." In Encyclopedia of Clinical Neuropsychology, 1–3. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56782-2_1587-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Munz, Dietrich, and Theo Fett. "Plasticity." In Ceramics, 265–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-58407-7_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Khandker, Wahida. "Plasticity." In Process Metaphysics and Mutative Life, 145–68. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43048-1_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bodin, Doug, Keith Owen Yeates, and Jennifer Cass. "Plasticity." In Encyclopedia of Clinical Neuropsychology, 2700–2702. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-57111-9_1587.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Loos, H., G. M. Innocenti, S. H. C. Hendry, R. K. Carder, T. Kasamatsu, A. Artola, S. Bröcher, T. Hensch, and S. Singer. "Plasticity." In Structural and Functional Organization of the Neocortex, 47–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-78499-6_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Macaulay, M. "Plasticity." In Introduction to Impact Engineering, 41–58. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3159-6_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Maggiore, Valeria. "Plasticity." In Lecture Notes in Morphogenesis, 417–19. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51324-5_95.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Plasticity"

1

Nallur, Vivek, Nicolás Cardozo, and Siobhán Clarke. "Clonal plasticity." In ICSE '16: 38th International Conference on Software Engineering. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2897053.2897067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

"Design Plasticity." In Oct. 5-6, 2017 Paris - France. EIRAI, 2017. http://dx.doi.org/10.17758/eirai.f1017305.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Li, Yang, and Shihao Ji. "Neural Plasticity Networks." In 2021 International Joint Conference on Neural Networks (IJCNN). IEEE, 2021. http://dx.doi.org/10.1109/ijcnn52387.2021.9534123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Coutaz, Joëlle. "User interface plasticity." In the 2nd ACM SIGCHI symposium. New York, New York, USA: ACM Press, 2010. http://dx.doi.org/10.1145/1822018.1822019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

DEBONO, Marc-Williams. "Transdisciplinary Chair & Human Plasticity." In For an international transdisciplinary chair. ADJURIS – International Academic Publisher, 2024. http://dx.doi.org/10.62768/adjuris/2024/2/02.

Full text
Abstract:
Abstract: The creation of an international transdisciplinary chair is essential in a society that is losing its fundamental values and points of reference. The experience accumulated by the international center for transdisciplinary research (CIRET) over the last three decades under the impetus of B. Nicolescu and E. Morin in France is exemplary in this respect. Echoing many transdisciplinary approaches worldwide, it has initiated a reform of thinking that must be pursued and extended without interruption. Here are two examples that are fully in line with this perspective: 1/the initiative of the PSA (Plasticités Sciences Arts) experimental transdisciplinary research group, which has been working since the charter was established (1994) to set up transdisciplinary practices around the concept of plasticity; 2/ the joint proposal by French and Brazilian transdisciplinary structures to create a Transdisciplinary chair at the university (2007) and contemporary works on the plasticity of living systems in line with these pioneering initiatives (20192023). The fact that transdisciplinarity has been established in several academic institutions and that some of the major areas of research undertaken by the PSA group, such as the study of posturology in experimental medicine, highlighting essential plastic interfaces in living systems and the study of relationships between art and science, now have powerful ramifications, including institutions, shows us the extent to which plasticity of life and transdisciplinary attitude are complementary. It’s a mutation of cultures and consciousness that highlights human plasticity and encourages us to keep moving forward!
APA, Harvard, Vancouver, ISO, and other styles
6

Yaman, Anil, Giovanni Iacca, Decebal Constantin Mocanu, George Fletcher, and Mykola Pechenizkiy. "Novelty producing synaptic plasticity." In GECCO '20: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3377929.3389976.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zuev, Lev. "Autowave mechanics of plasticity." In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES 2019. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5132276.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Oliveira, Raquel, Sophie Dupuy-Chessa, and Gaëlle Calvary. "Plasticity of user interfaces." In EICS'15: ACM SIGCHI Symposium on Engineering Interactive Computing Systems. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2774225.2775078.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Teixeira, Filipe Peliz Pinto, and Murray Shanahan. "Does plasticity promote criticality?" In 2014 International Joint Conference on Neural Networks (IJCNN). IEEE, 2014. http://dx.doi.org/10.1109/ijcnn.2014.6889562.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Demeure, Alexandre, and Gaëlle Calvary. "Plasticity of user interfaces." In the 15th French-speaking conference on human-computer interaction. New York, New York, USA: ACM Press, 2003. http://dx.doi.org/10.1145/1063669.1063681.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Plasticity"

1

Valanis, Kirk C., and Harold E. Read. Endochronic Plasticity. Fort Belvoir, VA: Defense Technical Information Center, December 1987. http://dx.doi.org/10.21236/ada200758.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dvorak, George J. Plasticity of Fibrous Composites. Fort Belvoir, VA: Defense Technical Information Center, May 1987. http://dx.doi.org/10.21236/ada184637.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Olson, G. B. Transformation plasticity in ductile solids. Office of Scientific and Technical Information (OSTI), February 1993. http://dx.doi.org/10.2172/6739411.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lynch, Gary. Synaptic Plasticity and Memory Formation. Fort Belvoir, VA: Defense Technical Information Center, May 1992. http://dx.doi.org/10.21236/ada253904.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lynch, Gary. Synaptic Plasticity and Memory Formation. Fort Belvoir, VA: Defense Technical Information Center, March 2000. http://dx.doi.org/10.21236/ada376184.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lester, Brian T., and William M. Scherzinger. Adiabatic Heating in Modular Plasticity Models. Office of Scientific and Technical Information (OSTI), December 2019. http://dx.doi.org/10.2172/1592912.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pritchard, Robert S. Plasticity Constitutive Law for Sea Ice. Fort Belvoir, VA: Defense Technical Information Center, September 1999. http://dx.doi.org/10.21236/ada630554.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Anand, Lallit. Large Deformation Plasticity of Polycrystalline Tantalum. Fort Belvoir, VA: Defense Technical Information Center, December 2000. http://dx.doi.org/10.21236/ada391221.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Janney, M. A., M. C. Vance, A. C. Jordan, and M. P. Kertesz. Bibliography of ceramic extrusion and plasticity. Office of Scientific and Technical Information (OSTI), March 1987. http://dx.doi.org/10.2172/6545977.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lester, Brian, and William Scherzinger. Modular Plane Stress Plasticity Material Model. Office of Scientific and Technical Information (OSTI), March 2019. http://dx.doi.org/10.2172/1761882.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography