Dissertations / Theses on the topic 'Plasticité métabolique'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 47 dissertations / theses for your research on the topic 'Plasticité métabolique.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Corral, Dan. "Régulation métabolique de la plasticité des ILC2 au cours de l'infection par Mycobacterium tuberculosis." Thesis, Toulouse 3, 2020. http://www.theses.fr/2020TOU30177.
Full textMucosal tissues harbor resident immune cells that play a dual role in maintaining both tissue integrity and protection against infection by pathogens. Among these, innate lymphoid cells (ILCs) are key players in tissue homeostasis and immune response. The last few years have revealed the existence of different types of ILCs, classified according to their similarity to T cells based on expression of dedicated transcription factors and the execution of specific effector functions. These include ILC1, ILC2 and ILC3, which form the innate counterparts of CD4+ T cells of the Th1, Th2 and Th17 types respectively, as well as NK for CD8+ cytotoxic lymphocytes. Similar to the associated Th subtypes, the different types of ILC have been implicated in various diseases. Within lung tissue, ILC2 is the quantitatively dominant subtype of ILC and its role has been characterized in particular in type 2 pathologies (asthma, allergies, parasitic infections). The lung is the site of entry for many infectious agents: yet the role of ILC2 in bacterial lung infections remains poorly explored. During my thesis, I was interested in the role of ILC, particularly ILC2, in the mouse model of Mycobacterium tuberculosis (Mtb) infection, the etiological agent of tuberculosis. Infection with Mtb typically induces a type 1 immune response: IFNƴ production allows the activation of the microbicidal functions of infected macrophages. Nevertheless, this dominant mechanism of TB immunity barely predicts the outcome of infection, and the current view is that other cellular actors are likely to contribute significantly to protection. Based on their presence in the lung at the entry of the pathogen and the diversity of their antimicrobial and tissue-protective effector potential, I hypothesized that ILC could be activated and participate in the antituberculous immune response. In the mouse model of tuberculosis, I could show that ILC are differentially regulated during infection: while ILC1 and ILC3 expand and become activated, ILC2 contract and become functionally inhibited. Interestingly, inhibition of ILC2 is associated with a plasticity mechanism characterized by the loss of ILC2 markers, such as GATA3, ST2, Arg1 and IL-5, together with the acquisition of ILC1 characteristic markers, such as T-bet, IL-18Ra, CD49a and IFNƴ. Different stages of ILC2 plasticity were identified based on the expression of CD49a and IL-18Ra, leading to the formation of ILC1-like cells, which display a protective potential during infection. In this infectious model, as well as through the development of an easier model of plasticity based on the administration of cytokines, we showed that IFNƴ, originating from ILC1 and NK cells, as well as the expression of the transcription factor STAT1, were essential components for the generation of ILC1-like cells. With the aim to identify the molecular mechanisms governing this plasticity, we hypothesized that the ILC2-to-ILC1-like cell plasticity was associated with a marked metabolic change. [...]
Nedara, Kenza. "Impact de l'expression de TRIAP1, substrat de la voie d'import AIF/CHCHD4, sur la prolifération des cellules cancéreuses et leur réponse au stress métabolique." Thesis, université Paris-Saclay, 2022. http://www.theses.fr/2022UPASL032.
Full textUnder physiological conditions, mitochondria play a fundamental role in cell survival, differentiation and activation by participating in bioenergetic metabolism, synthesis of macromolecules, regulation of signaling pathways or control of the epigenome. This organelle is bifunctional as its involvement is also well established in the cellular response to stress or apoptotic signals. The regulation of the mitochondrial activity is closely linked to its morphology, which is controlled by a set of proteins involved in the remodeling of its ultrastructure and fusion/fission dynamics. These proteins are crucial for the adaptation of mitochondrial biogenesis and activity to the bioenergetic needs of the cell. They are also key players in the regulation of cellular processes and signaling pathways that require the interaction of mitochondria with other cellular compartments such as the endoplasmic reticulum.Recently, a new class of mitochondria shaping proteins (TRIAP1, CHCHD2, CHCHD3, CHCHD6 and CHCHD10) was described. These proteins contain a coiled-coil-helix (CHCHD) domain and are imported into the intermembrane space of the organelle through the activity of the redox-dependent Mia40/CHCHD4 import machinery. They represent potential therapeutic targets as their abnormal expression or deficient activity has been associated with various human pathologies such as neurodegenerative diseases and cancer. During my thesis I studied the TRIAP1 protein which is overexpressed in many types of cancers. RNA interference or recombinant protein overexpression experiments , in a colorectal cancer model, showed that TRIAP1 expression promotes cell proliferation and tumor growth. Our results show that TRIAP1 depletion alters mitochondrial ultrastructure, impacts the metabolomic and lipidomic profile of the cells and induces a retrograde signaling to the nucleus that modifies the gene expression program. Furthermore, our results show that loss of TRIAP1 alters the response of cancer cells to metabolic stress conditions. Overall, our results highlight the relevance of TRIAP1 in the metabolic plasticity of cancer cells. A better understanding of the molecular basis of the mitochondrial activity of TRIAP1 in cancer cells should provide a better understanding of the selective advantage that its overexpression provides to tumor cells
Gicquiaud, Laëtitia. "Amplitude écologique et plasticité métabolique (enzymes antioxydantes et amines) : comparaison de quatre espèces génétiquement proches (Bromus scet. Genea, Poaceae)." Rennes 1, 2002. http://www.theses.fr/2002REN10067.
Full textChaumont, Daniel. "Bases physiologiques et technologiques de la conception de photobioréacteurs pour la culture contrôlé de microalgues : application à l'étude de la plasticité métabolique de Porphyridium cruentum Naegeli et Haematococcus pluvialis flotow." Aix-Marseille 3, 1995. http://www.theses.fr/1996AIX30022.
Full textEl-Hout, Mouradi. "Rôle de l'autophagie dans l'émergence des cellules souches cancéreuses : implication du métabolisme Oncostatin M-mediated autophagy orchestrates the emergence of cancer stem cells by induction of Hexokinase 2." Thesis, Sorbonne Paris Cité, 2019. http://www.theses.fr/2019USPCB035.
Full textTumor development as recently modelized according to the concept of cancer stem cells (CSCs) is a static model in which CSCs are the only ones responsible for emergence, resistance to treatment and tumor recurrence. However, the cancer biology is complex and the plasticity of CSCs suggests the existence of a bidirectional conversion between CSCs and non-CSCs. This thesis aims to elucidate the mechanisms by which autophagy, a process of self-digestion, governs the fate of breast CSCs and provides a better understanding of the process of plasticity. Our results highlight the involvement of autophagy in metabolic remodeling by increasing glycolysis at the expense of oxidative phosphorylation and this is accompanied by the emergence of CSCs. Indeed, we show that Oncostatin M (OSM), a pro-inflammatory cytokine of the IL-6 family, regulates autophagy and the expression of hexokinase II (HK II). This enzyme, the first of the glucose metabolism pathway, is described to play a key role in the 'Warburg' effect. Here we report that inhibition of HK II and PI3K / AKT prevent the induction of CSC population. Notably, the results presented in this thesis attribute to autophagy a new role which confers, by acetylation, a protection to HK II against the degradation by the proteasome, making it possible to maintain an increased glycolysis required for the emergence and maintenance of CSCs
Guedj, Eric. "Etude par IRM fonctionnelle et TEP métabolique des réorganisations mnésiques dans l'épilepsie temporale." Thesis, Aix-Marseille 2, 2010. http://www.theses.fr/2010AIX20696/document.
Full textThe overall objective of this thesis was to characterize in vivo the human memory reorganization observed in medial temporal lobe epilepsy, in particular for recognition memory.We conducted a multimodal neuroimaging approach, combining the study of connectivity and memory activation networks with fMRI, and the study of inter-ictal cerebral metabolic rate of glucose with PET. We aimed to better understand the relative preservation of memory found in some patients, despite the involvement of the medial temporal lobe within their epileptic networks. Our findings, obtained for the encoding of non material-specific single items, provide new insights into the functional adaptation of cognitive networks, within and outside the epileptogenic zone, and help to explain the differences in recognition performance, and their possible relationship with epileptic networks. These studies suggest, in particular, the existence of local and remote compensatory mechanisms which are functionally effective and involve the ventral visual stream bilaterally. These could be influenced by the exact involvement of medial temporal structures within the epileptogenic zone. The impairment of this perceptive-memory system may lead to a more large-scale reorganization with the alternative activation of an inefficient network of attention-related areas involving fronto-cingulate and parietal cortices
Souchet, Jérémie. "Effets de l'hypoxie d'altitude sur le développement embryonnaire et les performances juvéniles chez la couleuvre vipérine, Natrix maura, dans le contexte actuel du changement climatique." Thesis, Toulouse 3, 2020. http://www.theses.fr/2020TOU30179.
Full textBy 2100, climate change could lead to an increase in the average temperature on the Earth's surface of 1°C to 6.5°C compared to the average temperature estimated between 1986 and 2005. This is likely to increase the risk of species extinction or change species ranges by impacting the reproductive phenology and the migration of organisms, leading to a change in biodiversity patterns on a global level. Ectotherms, whose set of physiological and behavioural traits are dependent on environmental temperatures, will be further affected by climate change and will have to migrate to more favourable thermal zones, such as to high altitude. However, at higher altitudes, the decrease in the partial pressure of the air reduces the availability of oxygen. This new environmental constraint, high-elevation hypoxia, could limit organisms' chances of colonizing these environments. This thesis seeks to highlight the physiological responses to high-elevation hypoxia in the Viperine snake, Natrix maura, a historical colonizer currently undergoing an upward range expansion, and to define its capacity to use mountain areas as a refuge in the context of climate change. The objectives are, in the first instance, to measure the effects of high-elevation hypoxia and the interaction it may have with temperature on development through monitoring embryonic metabolic activity and development rates. The second objective is to observe the potential persistence of these effects on the performance and metabolism of juveniles. The results of this work suggest that, in the Viperine Snake, the plastic physiological responses of embryos to high-elevation hypoxia could facilitate the expansion of the altitudinal range through the maintenance of body phenotypes and physical performance of juveniles
Jeanson, Yannick. "Métabolisme redox et plasticité tissulaire des tissus adipeux." Thesis, Toulouse 3, 2015. http://www.theses.fr/2015TOU30034.
Full textA very dynamic literature daims that specific metabolic and redox profiles are associated with specific cellular states including stemness, differentiation or cell activation. Furthermore, some metabolism derivatives affect cellular behavior through the fine regulation of signaling pathways. Whereas white adipose tissue development and plasticity is highly dependent on the general metabolic context, few studies investigated the role ofmetabolism on its cell plasticity. Beside white adipocytes, some UCPI (uncoupling protein 1)-expressing adipocytes, that are distinct from classical brown adipocytes and named beige adipocytes arise among white fat in thermogenic conditions by the so-called browning process. The putative existence of different populations of precursors giving rise to the different types of adipocytes together with the transdifferentiation process appear as mechanisms at the origin of the browning process. The aim of our work was to define i) the putative existence ofmetabolic and functional heterogeneity within adipose precursors and ii) the impact ofthe metabolic environment on the browning process. First, we showed that the CD38 antigen, whose activity is linked to cell redox metabolism through NAD+ consumption, constitutes a marker for white and beige adipogenic commitment. We also demonstrated that lactate, a major redox metabolic intermediate, strongly induces browning ofwhite adipose cells through a redox-dependent increase in UCPI expression. An additional pathway involving the FGF21 growth factor also contributes to lactate induced-browning. Using different approaches of Joss and gain of function in vivo, we further showed that brown-like adioocvtes, whose development is strongly increased by lactate, constitute great consumers of this metabolite which is potentially toxic at high doses. Our works highlight a new function for brown-like adipocytes. Indeed, in addition to their thermogenic function, could they constitute cellular defense against metabolic stress?
Galbes, Olivier. "Plasticité du muscle squelettique et méthodes ergogènes : aspects métaboliques et structuraux." Montpellier 1, 2009. http://www.theses.fr/2009MON14005.
Full textSkeletal muscle is the primary effector in physical exercise and ergogenic proceeds for improving endurance or strength performance are based on its plasticity. Sea-level endurance performance is quite often unchanged after altitude/hypoxia training camp. This could be due to impairment in fatty acid oxydation (FAO) induced by chronic hypoxia. As endurance training is known to improve this parameter, the aim of our first study was to determine the combined effects of both chronic hypoxia and training on rat skeletal muscle FAO. The results, obtained from isolated mitochondria respiration, indicated that training in hypoxia compensated FAO inhibition caused by hypoxia alone, and that mCPT-1 was a key regulator of FAO in response to both stimuli. Clenbutérol and other β2-agonists are frequently used as doping agent for their capacity to induce skeletal muscle hypertrophy, but the signalling pathways for this adaptation are not thoroughly known. In our second study, using a kinetic approach, we showed on rat muscles that clenbuterol transiently activated the expression of hypertrophy-related genes : IGF-1, MGF, myogenin and MCIP-1, which suggests a role for stellite cells in this hypertrophy. Moreover, the absence of muscle hypertrophy when treating animals with clenbuterol and cyclosporine A indicates a strong implication of calcineurin activity in clenbuterol-induced muscle hypertrophy
Flaven-Pouchon, Justin. "Perception des acides gras chez Drosophila melanogaster : plasticité et conséquences métaboliques." Thesis, Dijon, 2013. http://www.theses.fr/2013DIJOS069/document.
Full textFatty acids (FAs) are involved in many biological functions, from the cell membrane composition to energy storage, through hormone biosynthesis. The consequences of FAs overconsumption are of great concern in terms of public health since the WHO estimates that 2.8 million annual deaths due to obesity and its side effects. If lipid metabolism is relatively well known, the mechanisms underlying the detection and preference for FAs remain little studied. While some studies have shown that the preference of mammals for FAs is modified by early exposure to these compounds, little is known about FAs long-term effects on both their perception and food preference.The majority of studies have been conducted in mammals, invertebrates being neglected despite the benefits (life cycle, size, ease of breeding, genetic tools) of some models, such as Drosophila, and despite the good conservation of lipid metabolism actors during evolution. It has recently been shown that both Drosophila melanogaster larvae and adults are able to detect and discriminate FAs according to their unsaturation. Moreover, larval and adult preferences are different: the larvae are attracted by unsaturated FAs (UFAs) and repelled by saturated FAs (SFAs) while adults are repelled by the UFAs and indifferent to SFAs. It has been suggested that these preferences change may reflect different metabolic requirements between larvae and adults.During my PhD, I studied the effects of intra -and inter- generational exposure to a medium enriched either with a SFA (stearic acid = C18: 0) either with a UFA (oleic acid = C18: 1) on larval and adult preferences (oviposition site selection) toward these FAs, as well as on different life traits. On the other hand, I tested the evolution of both larval and adult preferences for these two FAs after two selection procedures, using these preferences as a selection criterion.My results show that if the selection processes do not permanently modify the individual preferences for both FAs considered, the behavior of individuals exposed either occasionally during development, either permanently from one to ten generations, is affected by this exposure. In particular, the egg-laying site choice by females is specifically modified by exposure to C18:0 and C18:1 during larval development. If the influence of early sensory experience on food preferences of adults had already been demonstrated in mammals and some holometabolous insects (whose nervous system is almost completely remodeled during metamorphosis), this is the first time that such a phenomenon is clearly demonstrated in Drosophila. On the other hand, continuous exposure to each of these FAs permanently alters both oviposition preferences and major life traits (development time, sex ratio, fecundity and adult survival). These results suggest that Drosophila is able to adapt to different foods, and this plasticity, probably genetically determined, may explain the success of this generalist species. In addition to their ecological interest, these results also demonstrate the usefulness of this model for the study of intra -and inter- generational preferences plasticity towards FAs
Consuegra, Bonilla Jessika. "Bases écologiques et moléculaires de la diversification adaptative chez Escherichia coli." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAV090/document.
Full textDiversification events are central issues in evolution since they generate phenotypic innovation such as colonization of novel ecological niches and, ultimately, speciation. To study the ecological and molecular drivers of adaptive diversification, we used the longest still-running evolution experiment. Twelve independent populations are propagated in a glucose limited minimal medium from a common ancestor of Escherichia coli by serial daily transfers since 1988 for more than 60,000 generations. In one of the twelve populations, called Ara–2, a unique diversification event occurred: two phenotypically-differentiated lineages, named S (Small) and L (Large) according to their cell size, emerged from a common ancestor at ~ 6500 generations. The two lineages co-exist ever since, owing to negative frequency-dependent selection whereby each lineage is favored and invades the other when rare, such that no lineage gets extinct. Moreover, and before the split between the two S and L lineages, the population Ara–2 evolved a hypermutator phenotype, owing to a defect in a DNA repair gene. The objective of this thesis is to characterize the ecological, physiological and molecular mechanisms that allowed the emergence and stable co-existence of the S and L lineages.First, we used a combination of in vivo and in silico experimental evolution to determine the ecological and physiological drivers of the emergence of the polymorphism. Several ecological mechanisms including tradeoff, seasonality and character displacement are involved in the emergence and long-term persistence of diversity. In particular, we showed that the L lineage secretes acetate which generates a new ecological opportunity that the S lineage exploited. In addition, the S and L lineages became fitter and fitter over time in their respective ecological niches, respectively acetate and glucose. Second, we propagated S and L clones separately to remove competition between the two lineages. In these conditions, frequency-dependent interactions between the S and L clones evolved separately were completely abolished, revealing the importance of competition in the maintenance of the polymorphism. Third, we combined genetic, physiological and biochemical approaches to determine the role of an S-specific mutation that was previously found in arcA, encoding a global regulator, in the emergence of the S and L polymorphism. We showed that the evolved arcA allele conferred to the S lineage the capacity to growth on acetate by increasing the transcription of target genes involved in acetate consumption. During this study, we found an additional mutation, in the acs gene involved in acetate metabolism, that was also involved in the emergence of the S lineage. We further showed that these two mutations were favorable to the S lineage early during its emergence, and that other mutations occurred later that interacted epistatically with the acs and arcA evolved alleles. Therefore, these data showed that the establishment and further maintenance of the S and L polymorphism was a multi-step process involving epistatic interactions between several mutations. Fourth, we identified the long-term dynamics of mutation rates in this divergent population. A first early rise of a hypermutator was followed by a full reversion of this mutator state twice independently in each of the two S and L lineages.The emergence of a long-term bacterial polymorphism reflects a complex restructuration of the metabolic and regulatory networks in the co-existing lineages, resulting in the generation and exploitation of a new ecological opportunity. Competition and evolution of divergent resource consumption were the selective forces driving the maintenance of the polymorphism
Fougère, Hélène. "Régulation nutritionnelle du métabolisme des lipides chez la vache et la chèvre laitières." Thesis, Université Clermont Auvergne (2017-2020), 2018. http://www.theses.fr/2018CLFAC056/document.
Full textA comparative study of the nutritional regulation of lipid metabolism in dairy cows and goats was performed to identify the mechanisms and clarify the specificities of these 2 ruminant species in order to better control milk fat yield and quality. The effects of diets containing no additional lipid (CTL) or supplemented with corn oil (5% dry matter intake (DMI)) and wheat starch (COS), marine algae powder (MAP) (1.5% DMI), or hydrogenated palm oil (HPO) (3% DMI), on milk fat plasticity and composition, and on indicators of ruminal, intermediary and mammary metabolisms were studied in cows and goats (n=12 per species) conducted simultaneously according to a 4x4 Latin square design. Dietary treatments had no significant effects on milk yield in both species. Conversely, species-specific response of milk fat content to dietary treatment were observed: in cows, milk fat content was lowered by COS (-45%) and MAP (-22%) and increased by HPO (+13%) compared with CTL, and in goats, only MAP had an effect compared with CTL by decreasing milk fat content by 15%. The major differences observed for COS among species were attributed 1/ at differences in the polyunsaturated fatty acids (FA) ruminal biohydrogenation (RBH) processes with a greater stability of the classical RBH pathways in goats; 2/ at the intermediary metabolism, with an increase in circulating lipids in goats suggesting a higher availability of long chain FA for mammary gland (MG). Responses on MAP treatment were attributed to similar mechanisms among species but different to those outlined for COS in terms of indicators of ruminal and intermediary metabolisms. In cows, HPO was characterized by an increased in milk 16:0 et cis-9 16:1 suggesting a favoured transport and/or uptake of 16:0 in this species. Whatever the dietary treatment the mammary lipid metabolism studied by the mRNA abundance of few lipogenic genes was not related with milk FA yields. Our results demonstrated that the milk fat plasticity in two closely related ruminant species is controlled by different mechanisms depending on species and dietary treatments. We produced a database on 24 animals of 2 species receiving 4 dietary treatments. The dataset analysis allowed us to enhance our knowledge on regulation mechanisms of milk fat synthesis. This research project will contribute for the development of monitoring tools based on milk composition phenotyping, and to propose husbandry strategies that modulate animal performance
Guerin, Amandine. "Fonction de la protéine LIX1 dans la régulation de la plasticité cellulaire du muscle lisse digestif." Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTT028.
Full textThe digestive tract is a vital organ ensuring food digestion, nutrient absorption and waste excretion. One of the main properties of digestive tract is the motricity which is defined as the set of contractions that allows the transition of the food from the mouth to the anus. Cells involved in the regulation of digestive plasticity are the enteric nervous cells, the interstitial cells of Cajal and the smooth muscle cells. The interstitial cells of Cajal and smooth muscle cells derived from a common mesenchymal progenitor. Mesenchyme-derived cells have the unique capacity to switch from the contractile and functional state to an immaturity state. This plasticity is responsible for motricity disorders. Our work aims to identify the mechanisms involved in the differentiation of the mesenchymal progenitors and to study those mechanisms in pathological conditions. The team previously identified the LIX1 gene (LImb eXpression 1) as the first molecular marker of the digestive smooth muscle immaturity and demonstrated its role on the differentiation of mesenchymal progenitors through the control of YAP1 (McKey et al., 2016). In this context, during my thesis, I focused on LIX1 and the mitochondrial remodeling as a putative regulatory mechanism of mesenchymal-derived cells differentiation. First, I investigated and demonstrated the role and function of LIX1 in the aggressiveness and the immaturity of the GastroIntestinal Stromal Tumor (GIST) cells. In parallel, I participated to the characterization of cells derived from CPIO (Chronic Pseudo Intestinal Obstruction) patients. Finally, I developed a new model of human gastric smooth muscle cells to evaluate the metabolism during the SMC differentiation. Altogether, we showed that LIX1 and its downstream pathways control SMC plasticity
Drouet, Jean-Baptiste. "Les mécanismes de vulnérabilité au stress : approches pharmacologique et naturaliste." Thesis, Lyon 1, 2010. http://www.theses.fr/2010LYO10095.
Full textPost-traumatic stress disorder is a pathology characterized by reexperience, avoidance and hyper-arousal symptoms. Emergence of post-traumatic stress disorder after a traumatic event can be predicted, to a certain extent, by a glucocorticoid secretion deficiency. The role of this deficiency in stress vulnerability has been analysed by two different approaches in the rat. In a first approach, a pharmacological depletion has been induced by metyrapone, then, physiological and behavioural reactions during stress have been characterized. In a second approach, inter-individual differences of a population submitted to an intense stressor has been characterized in terms of physiological, behavioural and hippocampal gene expression responses. These studies failed to evidence an increased vulnerability induced by a glucocorticoid deficiency. On the contrary, metyrapone exhibited anxiolytic-like properties independently of its effects on glucocorticoids. Metyrapone has also modified central and peripheral metabolism in a way that could explain its neuroprotective properties. Finally, the naturalistic approach has evidenced the emphasis of synaptic plasticity in the resilience to stress
Billet, Kévin. "Plasticité génotypique et environnementale du métabolisme des polyphénols dans des coproduits viticoles à visée antifongique." Thesis, Tours, 2019. http://www.theses.fr/2019TOUR4012.
Full textViticulture strongly relies on agrochemical products and only few alternative solutions are available. Grape stems are abundant byproducts rich in polyphenols with antifungal activities. This work aims to develop grape stem extracts with antifungal activities based on field-experiments and metabolomics approaches for the analysis of polyphenols. A large-scale study in vineyards showed encouraging results for the biocontrol of Plasmopara viticola on both leaves and clusters. UPLC-DAD-MS-based targeted metabolomics of grape stems discriminates eight representative varieties of Loire Valley, thus showing the genetic determinism of polyphenol signature. Metabolomic screening of a large germplasm collection of European grape varieties allowed to selection of polyphenol-rich varieties. Finally, spatialized metabolomics within a vineyard parcel showed that polyphenol composition in grape stems also depends on environmental cues particularly soil texture
Zoropogui, Anthony. "Analyse du génome de Nocardia cyriacigeorgica GUH-2 : plasticité génétique et métabolisme secondaire d'un pathogène opportuniste." Phd thesis, Université Claude Bernard - Lyon I, 2011. http://tel.archives-ouvertes.fr/tel-00838589.
Full textDoriat, Jean-François. "Adaptation fonctionnelle cérébrale et plasticité des récepteurs à la suite de convulsions expérimentales chez le rat au cours du développement." Nancy 1, 1998. http://www.theses.fr/1998NAN10353.
Full textBenani, Alexandre. "Exploration fonctionnelle chez le rat des récepteurs activés par les proliférateurs de peroxysomes (PPAR) spinaux, cibles pharmacologiques potentielles dans les douleurs inflammatoires." Nancy 1, 2003. http://www.theses.fr/2003NAN11310.
Full textCamiré, Olivier, and Olivier Camiré. "Ca²+ mechanisms of synaptic integration and plasticity in inhibitory interneurons." Doctoral thesis, Université Laval, 2019. http://hdl.handle.net/20.500.11794/37039.
Full textTableau d'honneur de la FÉSP
La signalisation calcique dendritique joue un rôle important dans la régulation de mécanismes neuronaux, tels que la plasticité synaptique et l’intégration de l’information transmise. Bien compris chez les neurones principaux, ce processus de régulation est moins étudié chez les divers types d’interneurones GABAergiques qui modulent l’acquisition et l’envoi de signaux neuronaux. Chez les interneurones à décharge rapide, un type d’interneurone commun dans les circuits corticaux, il a été démontré qu’il y a absence de rétropropagation des potentiels d’action dans les dendrites distales (Hu et al., 2010). Cette découverte a des implications fonctionnelles, car la rétropropagation des potentiels d’action est un signal important pour l’induction des formes de plasticité synaptique hebbiennes. Par contre, il a été suggéré que l’activité dendritique locale pourrait compenser pour l’absence de rétropropagation des potentiels d’action. En conséquence, ce travail porte sur l’étude des évènements calciques dans les dendrites distales des interneurones à décharge rapide. Nous avons cherché à déterminer s’il est possible de générer ces signaux calciques par stimulation dendritique locale, à étudier les mécanismes responsables de ces signaux et à déterminer si ces signaux jouent un rôle dans la régulation de la plasticité synaptique à ces synapses. Pour atteindre ces objectifs, nous avons utilisé une combinaison de méthodes électrophysiologiqes (patch-clamp en mode cellule entière), d’imagerie calcique deux-photons et de modélisation computationnelle. Nous avons pu établir qu’il est possible de générer des évènements calciques postsynaptiques supralinéaires dans les synapses excitatrices étudiées par stimulation électrique locale. Ces signaux sont médiés par l’influx calcique provenant de l’activation des récepteurs AMPA perméables au Ca2+, qui déclenche à son tour le relâchement de Ca2+ par les récepteurs ryanodine présents sur réserves calciques intracellulaires. Ces signaux comprennent aussi une contribution calcique mineure des récepteurs NMDA, et ils restent locaux (pas de propagation dans l’arbre dendritique). De plus, nous avons déterminé que ces évènements calciques supralinéaires produisent un revirement de la plasticité synaptique, car ils induisent la dépression à long-terme dans les synapses étudiées, alors que les signaux calciques de basse amplitude induisent la potentiation à long-terme. Nous avons aussi examiné si ces évènements calciques supralinéaires étaient générés de façon équivalente dans les dendrites apicales et basales, qui reçoivent des synapses de différentes sources. Nous avons observé que les signaux des dendrites apicales avaient une plus grande amplitude et étaient associés à un plus haut niveau de dépolarisation. À partir de la modélisation, nous avons pu prédire le nombre de synapses nécessaires à la génération de ces signaux et la contribution potentielle des mécanismes d’extrusion du Ca2+. Finalement, nous avons étudié la spécificité cellulaire des mécanismes d’intégration dendritique en combinant l’imagerie calcique et la modélisation dans un type différent d’interneurone, les interneurones spécifiques aux interneurones type III. En conclusion, nous avons prouvé qu’il existe dans certains interneurones des mécanismes alternatifs, médiés par des hausses de Ca2+ locales, permettant la régulation de la plasticité aux synapses excitatrices.
La signalisation calcique dendritique joue un rôle important dans la régulation de mécanismes neuronaux, tels que la plasticité synaptique et l’intégration de l’information transmise. Bien compris chez les neurones principaux, ce processus de régulation est moins étudié chez les divers types d’interneurones GABAergiques qui modulent l’acquisition et l’envoi de signaux neuronaux. Chez les interneurones à décharge rapide, un type d’interneurone commun dans les circuits corticaux, il a été démontré qu’il y a absence de rétropropagation des potentiels d’action dans les dendrites distales (Hu et al., 2010). Cette découverte a des implications fonctionnelles, car la rétropropagation des potentiels d’action est un signal important pour l’induction des formes de plasticité synaptique hebbiennes. Par contre, il a été suggéré que l’activité dendritique locale pourrait compenser pour l’absence de rétropropagation des potentiels d’action. En conséquence, ce travail porte sur l’étude des évènements calciques dans les dendrites distales des interneurones à décharge rapide. Nous avons cherché à déterminer s’il est possible de générer ces signaux calciques par stimulation dendritique locale, à étudier les mécanismes responsables de ces signaux et à déterminer si ces signaux jouent un rôle dans la régulation de la plasticité synaptique à ces synapses. Pour atteindre ces objectifs, nous avons utilisé une combinaison de méthodes électrophysiologiqes (patch-clamp en mode cellule entière), d’imagerie calcique deux-photons et de modélisation computationnelle. Nous avons pu établir qu’il est possible de générer des évènements calciques postsynaptiques supralinéaires dans les synapses excitatrices étudiées par stimulation électrique locale. Ces signaux sont médiés par l’influx calcique provenant de l’activation des récepteurs AMPA perméables au Ca2+, qui déclenche à son tour le relâchement de Ca2+ par les récepteurs ryanodine présents sur réserves calciques intracellulaires. Ces signaux comprennent aussi une contribution calcique mineure des récepteurs NMDA, et ils restent locaux (pas de propagation dans l’arbre dendritique). De plus, nous avons déterminé que ces évènements calciques supralinéaires produisent un revirement de la plasticité synaptique, car ils induisent la dépression à long-terme dans les synapses étudiées, alors que les signaux calciques de basse amplitude induisent la potentiation à long-terme. Nous avons aussi examiné si ces évènements calciques supralinéaires étaient générés de façon équivalente dans les dendrites apicales et basales, qui reçoivent des synapses de différentes sources. Nous avons observé que les signaux des dendrites apicales avaient une plus grande amplitude et étaient associés à un plus haut niveau de dépolarisation. À partir de la modélisation, nous avons pu prédire le nombre de synapses nécessaires à la génération de ces signaux et la contribution potentielle des mécanismes d’extrusion du Ca2+. Finalement, nous avons étudié la spécificité cellulaire des mécanismes d’intégration dendritique en combinant l’imagerie calcique et la modélisation dans un type différent d’interneurone, les interneurones spécifiques aux interneurones type III. En conclusion, nous avons prouvé qu’il existe dans certains interneurones des mécanismes alternatifs, médiés par des hausses de Ca2+ locales, permettant la régulation de la plasticité aux synapses excitatrices.
Dendritic Ca2+ signaling plays an important role in the regulation of neuronal processes, such as synaptic plasticity and input integration. Well-studied in principal neurons, this form of regulation is not well understood in the various types of GABAergic interneurons that modulate activity in neuronal networks. In fastspiking (FS) interneurons, a common interneuron type in cortical circuits, it has been shown that there is a lack of action potential (AP) backpropagation in distal dendrites (Hu et al., 2010). This discovery has functional implications, AP backpropagation is an important signal for the induction of Hebbian forms of synaptic plasticity. However, it has been suggested that local dendritic activity could compensate for the absence of AP backpropagation. Consequently, this work focuses on the study of Ca2+ transients in distal dendrites of FS interneurons. We sought to determine whether it is possible to generate supralinear Ca2+ transients through local dendritic stimulation, to study the mechanisms responsible for those transients and to determine whether those signals play a role in the regulation of synaptic plasticity at those synapses. To reach those objectives, we used a combination of electrophysiological methods (whole-cell patch-clamp recordings), two-photon Ca2+ imaging and of computational modeling. We were able to establish that supralinear postsynaptic Ca2+ transients can be generated through local electrical stimulation of excitatory synapses in distal dendrites. These Ca2+ transients were mediated by Ca2+ influx from the activation of Ca2+-permeable AMPA receptors, which triggers Ca2+ release through ryanodine receptors present on intracellular Ca2+ stores (Ca2+-induced Ca2+ release). These Ca2+ signals also contain a minor contribution from NMDA receptors, and stay localized (no significant propagation in the dendritic arbor). In addition, we determined that these supralinear Ca2+ signals constitute a switch in the expression of synaptic plasticity, as they induce long-term depression in local synapses, while low-amplitude Ca2+ signals induced synaptic long-term potentiation. We also examined whether these supralinear Ca2+ transients were generated in both apical and basal dendrites, which receive synaptic contacts from different sources (Schaffer collaterals vs local collaterals). We observed that Ca2+ transients in apical dendrites had a higher amplitude and were associated with a higher level of somatic depolarization. We were also able to predict, through computational modeling, the number of synapses necessary to the generation of those signals and the potential contribution of Ca2+ extrusion mechanisms. Finally, we studied the cell-specificity of dendritic integration mechanisms by combining Ca2+ imaging and modeling in a different interneuron type, interneuron-specific interneurons type III. In conclusion, we were able to prove that certain interneurons possess alternative mechanisms, mediated through local Ca2+ transients, that allow for the regulation of plasticity at excitatory synapses.
Dendritic Ca2+ signaling plays an important role in the regulation of neuronal processes, such as synaptic plasticity and input integration. Well-studied in principal neurons, this form of regulation is not well understood in the various types of GABAergic interneurons that modulate activity in neuronal networks. In fastspiking (FS) interneurons, a common interneuron type in cortical circuits, it has been shown that there is a lack of action potential (AP) backpropagation in distal dendrites (Hu et al., 2010). This discovery has functional implications, AP backpropagation is an important signal for the induction of Hebbian forms of synaptic plasticity. However, it has been suggested that local dendritic activity could compensate for the absence of AP backpropagation. Consequently, this work focuses on the study of Ca2+ transients in distal dendrites of FS interneurons. We sought to determine whether it is possible to generate supralinear Ca2+ transients through local dendritic stimulation, to study the mechanisms responsible for those transients and to determine whether those signals play a role in the regulation of synaptic plasticity at those synapses. To reach those objectives, we used a combination of electrophysiological methods (whole-cell patch-clamp recordings), two-photon Ca2+ imaging and of computational modeling. We were able to establish that supralinear postsynaptic Ca2+ transients can be generated through local electrical stimulation of excitatory synapses in distal dendrites. These Ca2+ transients were mediated by Ca2+ influx from the activation of Ca2+-permeable AMPA receptors, which triggers Ca2+ release through ryanodine receptors present on intracellular Ca2+ stores (Ca2+-induced Ca2+ release). These Ca2+ signals also contain a minor contribution from NMDA receptors, and stay localized (no significant propagation in the dendritic arbor). In addition, we determined that these supralinear Ca2+ signals constitute a switch in the expression of synaptic plasticity, as they induce long-term depression in local synapses, while low-amplitude Ca2+ signals induced synaptic long-term potentiation. We also examined whether these supralinear Ca2+ transients were generated in both apical and basal dendrites, which receive synaptic contacts from different sources (Schaffer collaterals vs local collaterals). We observed that Ca2+ transients in apical dendrites had a higher amplitude and were associated with a higher level of somatic depolarization. We were also able to predict, through computational modeling, the number of synapses necessary to the generation of those signals and the potential contribution of Ca2+ extrusion mechanisms. Finally, we studied the cell-specificity of dendritic integration mechanisms by combining Ca2+ imaging and modeling in a different interneuron type, interneuron-specific interneurons type III. In conclusion, we were able to prove that certain interneurons possess alternative mechanisms, mediated through local Ca2+ transients, that allow for the regulation of plasticity at excitatory synapses.
Olive, Sylviane. "Etudes de l'expression et du métabolisme de F3 et PSA-NCAM : relation avec la plasticité dans le système nerveux adulte." Aix-Marseille 2, 1994. http://www.theses.fr/1994AIX22089.
Full textDahan, Perrine. "Rôle de la plasticité cellulaire et du métabolisme dans la radiorésistance des cellules de glioblastomes : mise en évidence de nouvelles cibles thérapeutiques potentielles." Thesis, Toulouse 3, 2015. http://www.theses.fr/2015TOU30279/document.
Full textGlioblastomas (GBM) are some highly lethal brain tumors despite a treatment associating surgical resection and radio-chemotherapy. Amongst these tumors, a subpopulation of radio/chemoresistant GBM stem-like/initiating cells (GIC) appears to be involved in the systematic GBM recurrence through the generation of more differenciated tumoral cells. Recent studies showed that tumor cells may have the ability to dedifferentiate and acquire a GIC phenotype in response to microenvironment stresses. We hypothesized that GBM cells could be subjected to a similar dedifferentiation process after ionizing radiations (IR), then supporting the GBM rapid recurrence after radiotherapy. Indeed, I showed that the exposure of several primo-cultures of differentiated GBM cells isolated from patient resections to a subtoxic and clinically relevant IR dose potentiated the long-term reacquisition of GIC properties (self-renewal ability, expression of stemness markers and tumorigenicity). I also identified during this process (1) an up-regulation of the anti-apoptotic protein Survivin whose pharmacological down-regulation led to a blockade of the IR-induced plasticity, (2) the presence of a metabolic shift occurring quickly after IR and (3) an enzymatic target, which appears to be involved in extracellular acidification under IR and could also potentiate the long term dedifferentiation induced by IR. At term, targeting the mechanisms associated with IR-induced plasticity in order to inhibit the IR-induced adaptive processes will likely contribute to develop some innovating pharmacological strategies for an improved radio-sensitization of these brain tumors
De, Seranno Sandrine. "Rôle des cellules endothéliales dans l'induction d'une plasticité morphologique des cellules épendymogliales de l'éminence médiane, les tanycytes : implication dans le contrôle neuroendocrine de la fonction de reproduction femelle." Lille 2, 2004. http://www.theses.fr/2004LIL2S026.
Full textRidet, Jean-Luc. "Organisation ultrastructurale et plasticité des systèmes monoaminergiques dans la moelle épinière du rat." Montpellier 2, 1994. http://www.theses.fr/1994MON20116.
Full textCacquevel, Mathias. "Rôle de l'activateur tissulaire du plasminogène dans le métabolisme du peptide béta-amyloïde : mécanismes moléculaires et implications diagnostiques dans la maladie d'Alzheimer." Caen, 2005. http://www.theses.fr/2005CAEN2016.
Full textNuzzaci, Danaé. "Exploration de la plasticité neuronale et gliale dans le système à mélanocortine à l'échelle des repas dans un modèle murin." Thesis, Bourgogne Franche-Comté, 2017. http://www.theses.fr/2017UBFCK037/document.
Full textIn 2015, Nature published the largest pangenomic association study to date linking genetic variants to body mass index. This study highlighted the role of the central nervous system in vulnerability to obesity and supports an original concept that cerebral plasticity plays an important role in the control of energy balance. Thus, reduced cerebral plasticity capacities could lead to inadequate dietary behaviors, which would increase the risk of weight gain under caloric pressure. The anorectic neurons POMC and the orexigenic neurons AgRP of the melanocortin system, which control the energy balance, actually show synaptic plasticity properties in the adult brain. These phenomena are shown in response to intense hormonal fluctuations induced by drastic genetic, surgical or nutritional manipulations. However, the physiological role of this synaptic plasticity within the melanocortin system has not been demonstrated yet. This study shows that cerebral plasticity phenomena are recapitulated at the meal scale in mice, depending on the prandial state, in response to moderate metabolic and hormonal changes. Indeed, 1 h standard diet exposure increases the electrical activity of the POMC neurons, which is correlated with a retraction of the astrocytic coverage around the POMC somas, with no change in synaptic configuration compared to the preprandial state. In contrast, 1 hour of high fat diet exposure does not modify the electrical activity of the POMC neurons and does not involve retraction of the astrocytic coverage. In addition, by pharmacological blockade of postprandial hyperglycemia, we showed that glucose is required for postprandial glial retraction. Finally, by a pharmacogenetic approach, we have shown that the inactivation of astrocytes modifies the feeding behavior and decreases the astrocytic coverage around the POMC neurons. These results suggest i)that astrocytes would play an inhibitory role on the electrical activity of POMC neurons ii) and that the post-prandial astrocytic retraction around POMC somas might remove inhibition of POMC neurons and might promote the sensation of satiety. This mode of regulation would not be activated during a high-fat meal, which would explain the low satietogenic properties of this type of meal
Hédou, Julie. "Analyses fonctionnelle et protéomique du rôle de la O-N-acétylglucosaminylation dans la physiologie du muscle squelettique." Thesis, Lille 1, 2008. http://www.theses.fr/2008LIL10102/document.
Full textThe O-linked N-acetylglucosaminylation termed O-GlcNAc is a dynamic cytosolic and nuclear glycosylation on serine and threonine residus. This dynamic and reversible glycosylation is involved in many physiological as weIl as pathological processes such as diabetes, neurodegenerative diseases, cancer or cardiac ischemia. Only few studies have been performed about the role of O-GlcNAc in skeletal muscle. However, the skeletal muscle is an interesting model to study the O-GlcNAc since i) its metabolism depends on glucose, ii) many muscular processes such as contraction are dependent on phosphorylation, and iii) there is a plasticity of the muscle metabolism depending on the physiological conditions. O-GlcNAc is dependent also on the level of glucose and can interfere with phosphorylation through a phosphorylation/glycosylation balance. We clearly demonstrated that a number of key contractile proteins i.e myosin heavy and light chains and actin are O-GlcNAc modified. The role of this post-translational modification in the contractile properties was investigated by establishing T/pCa curves on skinned fibers. This study demonstrated that O-GlcNAc moieties involved in protein-protein interactions or not could modulate calcium activation properties and therefore that O-GlcNAc motifs could be involved in the modulation of contractile force. Using a mass spectrometry-based method, we determined the localization of one O-GlcNAc site in the suddomain 4 of actin (séquence 198-207) and four O-GleNAc sites in the light meromyosin region of myosin heavy chains (séquences 1094-1106; 1295-1303; 1701-1712; 1913-1922). These sites might be involved in protein-protein interactions or in the polymerization of MHC or could modulate the contractile properties of skeletal muscle. Finally, we studied the implication of O-GlcNAc in a human model of muscle atrophy (Bed-Rest). We demonstrated the existence of a phosphorylation/O-GleNAc balance for MLC2 that could modulate the activity and properties of this protein which bas a key role in the modulation of force. Moreover, our data suggested that O-GlcNAc level might be involved in the control of protein homeostasis and muscular atrophy in human as in rat. AlI these data demonstrate that O-GlcNAc is an important post-translational modification in the muscle physiology
Mayat, Ebrahim. "Rôles des récepteurs métabotropiques du glutamate dans deux formes de plasticité neuronale : développementale et post-lésionnelle." Montpellier 2, 1993. http://www.theses.fr/1993MON20134.
Full textSimonnet, Clémence. "The chloride/potassium co-transporter KCC2 in synaptic plasticity, hippocampal rhythmogenesis and memory." Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS374.
Full textInformation transfer, storage and retrieval in the brain rely on a balance between excitation and inhibition. At the cellular level, memory encoding involves long-term potentiation of excitatory synapses, while at the network level, cortical rhythmogenesis underlies memory encoding and consolidation and requires inhibitory GABAergic signaling to synchronize neuronal ensembles. To maintain the efficacy and polarity of GABA transmission, the chloride/potassium co-transporter KCC2 controls the transmembrane chloride gradients. However, KCC2 also interacts with protein partners and influences neuronal membrane excitability as well as the function and plasticity of glutamatergic synapses. Altogether, KCC2 appears at the crossroads of excitatory and inhibitory transmission. During my PhD, I explored the consequences of KCC2 down-regulation in the dorsal hippocampus on learning and memory, and the underlying mechanisms both at the cellular and network levels. My results demonstrate that KCC2 knockdown in principal neurons of the dorsal hippocampus affects both spatial and contextual memory. This effect is associated with deficits in LTP of hippocampal synapses as well as neuronal hyperexcitability and hippocampal rhythmopathy, including abnormal sharp-wave ripple generation and gamma-band activity during sleep. These alterations likely contribute to impair both memory encoding and consolidation. Since KCC2 is down-regulated in many disorders associated with cognitive impairment, my results suggest that strategies aiming to restore KCC2 expression may hold therapeutic potential in these disorders. I therefore started testing this hypothesis in experimental models of Rett syndrome
Canon, Francis. "Effets prophylactiques de l'électrostimulation sur l'atrophie musculaire : approche structurale, biochimique et biomécanique." Compiègne, 1994. http://www.theses.fr/1994COMPD751.
Full textZbili, Mickael. "Plasticités synaptiques à court et long terme via la modulation de la forme du potentiel d'action axonal dans les réseaux corticaux." Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM5039/document.
Full textGenerally, the synaptic transmission in cortical networks is described as an « all-or-none » or digital phenomenon. An Action Potential (AP) is emitted in the presynaptic cell entailing the release of neurotransmitters at presynaptic terminal and, consequently, a transient depolarization of the postsynaptic cell (Excitatory Post-Synaptic Potential or EPSP). However, several studies showed that the presynaptic AP shape depend on the subthreshold activity before his occurrence. Indeed, if the presynaptic cell is depolarized during 5 to 10 seconds before the AP emission, the AP is getting broader which leads to an increase in neurotransmitters release and EPSP amplitude. Therefore, the synaptic transmission depends on a digital phenomenon, the AP, whose shape is modulated in an analogic way, the so-called Analog-Digital transmission. The increase in AP width and synaptic transmission following a long depolarization of the presynaptic cell is named Analog Digital Facilitation induced by depolarization (d-ADF). During this thesis, we asked 3 main questions. What is the biophysic mechanism of d-ADF? Are there ADFs depending on AP amplitude modulation? Are the modulations of the AP shape all short term modulations (ms to s) or are there some long term AP shape modulations (days)? To answer the first question, we recorded pairs of hippocampal CA3 neurons and we depolarized the presynaptic cell during 10 ms before AP emission. We observed a d-ADF of 30 % which was suppressed by the phamarcological blockade of axonal potassium channels Kv1. These channels are responsible of the AP repolarization phase and have the property to inactivate during long depolarization. We concluded that the d-ADF at the CA3-CA3 synapse is due to inactivation of Kv1 channels during the depolarization preceding the AP which entails a slowing of the AP repolarization phase and a broadening of the AP. In order to answer the second question, we recorded pairs of hippocampal CA3 neurons. We observed that a short hyperpolarization of the presynaptic neuron (50 ms) before the AP emission entailed an increase of the AP amplitude leading to an increase of neurotransmitters release and EPSP amplitude. We named this phenomenon hyperpolarization induced Analog-Digital Facilitation (h-ADF). The h-ADF is due to the recovery from inactivation of sodium channels responsible of AP amplitude when the presynaptic neuron is hyperpolarized. Finally, to answer the third question, we blocked the synaptic transmission between CA3 neurons for 3 days. This provoked a compensatory increase of synaptic transmission between pairs of CA3 neurons. Interestingly, this compensatory increase is due to the downregulation of Kv1 channels leading to a broadening of the AP. Therefore, the AP shape can be modulated within days and participate to synaptic plasticity. In conclusion, we showed that the AP is not digital but that its shape is modulated within time scales going from the ms to several days, increasing information transfer ability of neuronal networks
Parker, Marine. "Ethologie et rythmes biologiques du chat." Thesis, Strasbourg, 2018. http://www.theses.fr/2018STRAJ126/document.
Full textBiological rhythms are of importance for living organisms as they help to schedule most behavioural processes within the most suitable temporal window. Literature on daily rhythmicity is scarce and conflicting regarding domestic cats. To sharpen our knowledge on the subject, we used advanced telemetry technologies to record and characterise the daily rhythms of locomotor activity and feeding in cats according to the seasons and housing conditions. The cats were sensitive to photoperiod and to human presence. Along 24-hour periodicity, they displayed bimodality in their daily patterns, with mid-day and mid-night troughs of locomotor activity and food consumption. The two main activity/eating periods corresponded to dawn and dusk at each season, regardless of the twilight timings, confirming the crepuscular intrinsic nature of the species. The feeding rhythm of the cats was more variable daily than their locomotor activity one, recalling the opportunistic character of this predator. Cats displayed plasticity in their behaviour, such as weaker daily rhythms and more nocturnal exploratory behaviour outdoors, compared to indoors where they were more prone to routine. Our results open new avenues for developing nutritional and housing guidelines fitted to the rhythms of the cats according to their way of life
Trotta, Nicola. "Regional metabolic changes related to brain plasticity: a positron emission tomography study of glucose consumption." Doctoral thesis, Universite Libre de Bruxelles, 2015. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/221111.
Full textDoctorat en Sciences biomédicales et pharmaceutiques (Médecine)
info:eu-repo/semantics/nonPublished
Ramaekers, Ariane. "Etude de la fonction du récepteur métabotropique du glutamate de la drosophile, DmGluRA." Montpellier 2, 2001. http://www.theses.fr/2001MON20153.
Full textGoeldner, Célia. "Contribution du système Nociceptine/Orphanine FQ aux fonctions mnésiques et émotionnelles associées à l’hippocampe." Université Louis Pasteur (Strasbourg) (1971-2008), 2008. https://publication-theses.unistra.fr/public/theses_doctorat/2008/GOELDNER_Celia_2008.pdf.
Full textReynaud, Quitterie. "Changements phénotypiques de la mucoviscidose, à propos du diabète associé à la mucoviscidose : évolution naturelle des troubles du métabolisme glucidique, impact pronostique et stratégie de dépistage." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSE1292.
Full textLife expectancy improvement for cystic fibrosis patients is associated with comorbidities with diabetes being the most common. The objective of this work is to better determine the prognosis impact of diabetes and high values of early times of the oral glucose tolerance test (OGTT). We present and discuss four studies on the natural evolution and prognosis impact of glucose metabolism disorders associated with cystic fibrosis. We then present two studies on the impact of diabetes in specific situations: pregnancy and lung transplantation. The following elements are important: changes in intra-individual glucose status are very important over time, and our results qualify the pejorative impact of diabetes described in the literature, and that of high blood glucose and insulin levels at one hour of the OGTT. The research perspectives are to continue the implementation of the GLYCONE cohort to increase the number of participants and the duration of follow-up, to evaluate the association between dietary intake and carbohydrate metabolism disorder, to develop a shared medical decision-making process for the introduction of insulin therapy for stable patient profiles, to determine the consumption of care and the costs of management of diabetic patients, and evaluate the epidemiological changes induced by CFTR modulators on the prevalence and the age of onset of diabetes and its prognosis
Marciniak, Elodie. "Neuroinflammation & Insulinorésistance : contribution au développement physiopathologique de la maladie d’Alzheimer." Thesis, Lille 2, 2015. http://www.theses.fr/2015LIL2S036/document.
Full textAlzheimer’s disease (AD) is a neurodegenerative disorder characterized by extracellular amyloid deposits and intraneuronal neurofibrillary tangles, made of aggregated and abnormally hyperphosphorylated Tau proteins. Other components are also involved in AD pathophysiology, including chronic neuroinflammation and central insulinoresistance that would contribute both to the development of Alzheimer lesions as well as associated synaptic and memory impairments.Neuroinflammation observed in AD is characterized by glial cell activation, lymphocyte infiltration, and the release of soluble inflammatory mediators including chemokines. CCL3 is a highly upregulated chemokine in the brain of AD patients. In our lab, we have shown, in a mouse model of Tau pathology, that hippocampal CCL3 was largely upregulated and, thus, we made the assumptions that such increase could play a key-role in the memory dysfunctions associated with Tau pathology. To address to this question, we precisely evaluated the impact of CCL3 upon hippocampal synaptic activity and memory function. Our data show that CCL3 application on hippocampal slices induces a significant decrease of basal synaptic activity and long term potentiation (LTP) impairment without affecting presynaptic activity and long term depression (LTD). Further, intracerebral elevation of CCL3 by sub-chronical intracerebroventricular injections was also found to impact hippocampal basal synaptic activity and LTP but also short term spatial memory and long term memory. Reversion of these alterations by Maraviroc finally suggests that CCL3 deleterious effects are CCR5 dependent. Overall, these studies show the important role of CCL3 towards plasticity and memory as well as in AD physiopathology.Besides chronic inflammation, insulinoresistance observed in AD brain is suggested to favor the development of amyloid and Tau lesions but also to participate to synaptic impairments underlying memory loss. However, origins of the brain insulinoresistance described in AD are unclear. Previous studies ascribed central insulin-resistance to Aβ oligomers, type II diabetes or even neuroinflammation. So far, no relationship has been established with Tau protein. The aim of the second part of the present thesis was evaluate the potential role of Tau protein towards the regulation of central insulin sensitivity. Various experiments performed in vitro and in vivo show that Tau favors the neuronal response to insulin, whereas Tau deletion favors insulin-resistance. This regulation seems to be related to an interaction between Tau and PTEN, a phospholipase inhibiting insulin signaling, which results in a reduced PTEN activity, itself favoring insulin pathway activation. Regulation of brain insulin signaling is known to modulate energy homeostasis, food intake and weight gain. In line with the idea that Tau protein modulates insulin signaling, we found that Tau deletion induces weight gain, hyperinsulinemia and glucointolerance. Together, these data provide a new function for Tau in the control of neuronal signaling and peripheral metabolism. These data also highlight that the loss of Tau function in AD might explain at last in part the central insulinoresistance described as “type 3 diabetes”.In conclusion, our data highlight two mechanisms linking Tau pathology and memory deficits, one through the detrimental effect of the chemokine CCL3 and the other involving neuronal insulin resistance
Rosspopoff, Olga. "Evolution of the human & mouse X-chromosome inactivation regulatory network." Thesis, Sorbonne Paris Cité, 2018. http://www.theses.fr/2018USPCC295.
Full textLong non-coding RNAs (lncRNAs) have emerged as the major output of mammalian transcriptomes. As of today, the function of the majority of lncRNAs remains largely enigmatic and importantly may be mediated by various entities such as the transcript itself, the act of transcription or key regulatory elements within the locus. A remarkable characteristic of lncRNAs is their poor evolutionary conservation, which raises the question of their contribution to species-specific regulatory mechanisms.X chromosome inactivation (XCI) is a paradigm for epigenetic processes mediated by lncRNA genes (LRGs) and a powerful model to explore their functional, mechanistic and evolutionary aspects. XCI is a process initiated early during embryonic development, which ensures the dosage compensation of X-linked genes between male and female in mammals. In the mouse, XCI is triggered by the combined action of several LRGs, among which Xist is the key regulator of the process. Xist is produced from a genomic region, the X-chromosome inactivation center (Xic), that is enriched for LRGs described either as positive or negative XCI regulators. In the present study, we investigated the evolutionary conservation of two candidate LRGs, JPX and FTX, and their contribution to XIST regulation in both human and mouse.In the mouse, we demonstrated that the Jpx RNA is required for proper Xist expression and acts as a post-transcriptional regulator of Xist, most likely by affecting its accumulation or stability. In striking contrast, in human, it is JPX transcription, but not the transcript itself, that controls the RNA Polymerase II (RNAPII) recruitment at XIST promoter. Accordingly, the two genes are interacting through local chromosome conformation, emphasized by RNAPII bridges in between the two loci. While the function of JPX/Jpx in promoting XIST/Xist accumulation is conserved between human and mouse, the underlying mechanisms diverge markedly. On the other hand, preliminary results on FTX function in human, suggest that it might be involved in XCI maintenance in human in very specific cellular contexts. Altogether, these results shed a new light on the functional evolution of XIST regulatory network between mouse and human that might be specifically adapted to XCI requirements in each species. This work highlights the functional plasticity of lncRNAs in evolution and how it might play important roles in species-specific mechanism of gene regulation
Inglebert, Yanis. "Règle de STDP en calcium physiologique." Thesis, Aix-Marseille, 2018. http://www.theses.fr/2018AIXM0642/document.
Full textThe use of calcium in physiological concentration may be able to reduce or eliminate any plasticity phenomenon induced by the STDP rule with standard protocols. In the CA1 region of the hippocampus, at a calcium concentration of 1.8 mM we observed an absence of LTP after positive correlation. Instead, LTD is observed for all the delays that were tested. At 1.3 mM, neither LTP nor LTD were observed under our experimental conditions. In addition to calcium, activity is an important component in the induction of plasticity by STDP. Notably, an increase in stimulation frequency during pairing or an increase in the number of postsynaptic action potential allowed us to rescue LTP induced by positive correlation at 1.3 and 1.8 mM. Similarly, an increase in the number of postsynaptic action potentials or the frequency of stimulation allowed us to rescue the LTD window at 1.3 mM. In parallel with activity modulation, we tested a third factor that showed a noticeable impact: neuromodulation. The STDP rule appeared to be predominantly modulated by the activation of dopaminergic and noradrenergic receptors. The perfusion of Isoprenaline, a noradrenergic receptor agonist, allowed us to rescue the LTP window whereas dopamine application at 1.8 mM did not rescue LTP. This study demonstrates that the STDP rule is profoundly changed under physiological calcium conditions; however, the use of specific activities or the application of neuromodulators restores a normal STDP profile
Daumas-Meyer, Virginie. "Plasticité morphologique des astrocytes glomérulaires du bulbe olfactif chez le rat : rôle dans la relation entre l'olfaction et la prise alimentaire." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLA019/document.
Full textOlfaction plays a key role in the elaboration of the hedonic value of foods and the regulation of food intake. Reciprocally, the detection of food odors is influenced by the metabolic state. Fasting increases olfactory performances, notably by increasing neuronal activity in the olfactory bulb (OB). Within the OB glomeruli, the glutamatergic synapses between olfactory sensory neurons and mitral cells are regulated by astrocytes, periglomerular neurons and centrifugal afferents. Astrocytes, which support mecanisms of metaplasticity in the brain, may drive the metabolic regulation of the olfactory response in the OB. To test whether OB glomerular astrocytes are involved in the metabolic sensing of the olfactory system, we compared the astroglial processes expansion by quantification of the GFAPlabelled area in fed and fasted rats.Astroglial spreading was markedly increased in fasting rats, as compared to fed rats, in all regions of the OB after 17h-fasting. Intra-peritoneal administration of the anorexigenic peptide PYY3-36 or glucose in 17h-fasted rats respectively decreased their food intake or restored their glycemia and both reversed the increased astroglial deployment induced by fasting. Direct application of orexigenic peptides ghrelin and NPY on OB acute slices, resulted in an increase of the astroglial deployment, whereas application of PYY3-36 oppositely resulted in astroglial retraction within the glomeruli. These results are in close agreement with the effects of fasting or satiation on the morphology of astrocytes.The deployment of the glomerular astroglial processes clearly varies according to the metabolic state of the rats, and is influenced by food intake regulatory peptides. This plasticity may participate in the adaptation of the olfactory sensitivity to food intake
Alsebaaly, Josette. "Modification de l'expression de gènes impliqués dans le métabolisme cérébral du cholestérol par l'exposition à l'alcool et à la cocaïne." Thesis, Poitiers, 2019. http://www.theses.fr/2019POIT2263/document.
Full textDrug addiction is a chronic brain disease characterized by drug-seeking and compulsive drug taking, a loss of control over drug taking despite the negative consequences and the emergence of a negative emotional state in the absence of the drug. Addiction involves persistent neuroadaptations at the cerebral level. Recent evidences show that cholesterol plays a crucial role in brain function by participating in various cellular processes in particular in the control of neurotransmission. The aim of this thesis was to investigate the potential role of cholesterol in addiction and in particular a potential dysregulation of cholesterol metabolism in response to drugs of abuse. In this work, we investigated the expression of genes encoding proteins involved in the metabolism of cerebral cholesterol after a chronic voluntary consumption of alcohol from the rats and after acute or chronic exposure to cocaine. We analyzed gene expression in brain structures involved in addiction such as the prefrontal cortex, the nucleus accumbens, the amygdala and the hippocampus. We found that exposure to alcohol and cocaine modifies the expression of proteins involved in the synthesis, the transport and the degradation of cholesterol in drug-specific, treatment- specific (acute / chronic) and region-specific manners. In the second part of the thesis, we used a viral approach to overexpress CYP46A1, the cerebral cholesterol degradation enzyme in the prefrontal cortex, in order to evaluate the impact of this overexpression on cocaine-seeking in a model of relapse. The overexpression of CYP in this structure has no effect on drug-seeking for cocaine. Future studies are needed to determine whether altering cholesterol metabolism in other structures, for example the nucleus accumbens, may have beneficial effects on relapse. Altogether these studies show that exposure to drugs of abuse might modulate cerebral metabolism of cholesterol. This thesis project opens new perspectives on the role of cholesterol cerebral metabolism in addiction which may ultimately result in new therapeutic avenues for the treatment of this costly psychiatric disorder
Chavis, Pascale. "Régulation des canaux calciques par les récepteurs métabotropiques du glutamate." Montpellier 2, 1996. http://www.theses.fr/1996MON20059.
Full textConstans, Annabelle. "Etude des effets de programmes d'endurance de haute intensité et de haut volume sur les performances physiques, cognitives ainsi que sur la plasticité musculaire et cérébrale chez le rat sain et ayant subi une ischémie cérébrale." Thesis, Aix-Marseille, 2019. http://www.theses.fr/2019AIXM0115/document.
Full textEndurance exercise is essential for different reasons in athlete and also in aging and pathological people. Two training modalities were found: high intensity interval training (HIIT) and moderate intensity aerobic training (MOD). However, the specific outcomes of these modalities on physical performance and cerebral and muscular plasticity are controversial because many exercise protocols exist. The 1st study explore the impact of these 2 training on endurance and functional capacity and also on muscular and cerebral molecular modifications throughout 8 weeks in healthy rats. HIIT and MOD programs are work-matched and training intensity are determined thanks to the lactate threshold. Our results show a superior and fast effect on endurance capacity after HIIT compared to MOD. Hippocampal plasticity is stimulated only after HIIT and muscular modifications appear to be specific to each modality. A great interest of HIIT is found in stroke patients for whom evidence of endurance modalities efficiency is still missing. A previous study has shown a beneficial effect of HIIT in the acute phase of stroke despite incomplete sensorimotor recuperation. Hence, the interest to deepen in second part of this manuscript the impact of two HIIT modalities (short and long) in recovery optimisation. Our results show that 2 HIIT strongly improve endurance performance and strength of injured paw with a fast effect for long HIIT. The 2 modalities seem to induce cerebral angiogenesis. However, these 2 training do not increase sensorimotor and cognitive functions. In perspective, it appears necessary to develop muscular and cerebral outcomes induced by these 2 HIIT modalities
Martin, Nicolas. "Programmation foetale et plasticité cérébrale : conséquences d'une carence précoce en donneurs de méthyles chez le rat-impact à long terme d'un conditionnement hypoxique néonatal." Thesis, Nancy 1, 2011. http://www.theses.fr/2011NAN10091/document.
Full textThe alteration of homocysteine metabolism has been shown to constitute a risk factor for neurodegenerative diseases. Furthermore, whereas deleterious effects of severe neonatal hypoxia have been well documented, it was shown that a moderate episode of hypoxia can exert a neuroprotection with neurogenesis stimulation. Our main goal was to study the consequences on the brain of an early deficiency of methyl donors (folate, vitamin B12) with or without a hypoxia-related stimulation of neurogenesis. The effects of deficiency were investigated in rats born from dams fed a deficient diet until weaning. In vitro neuroprogenitors were additionally used for the study of cell mechanisms involved. Data showed alterations of tissue integrity in the hippocampus and the cerebellum, with associated behavioural deficits at various ages, despite a return to normal diet at weaning. Brain alterations were shown to be mainly related to epigenetic mechanisms and to homocysteinylation of specific neuronal proteins. Moreover, a sexual dimorphism was depicted, with the participation of ER alpha receptor. Neurogenesis induced in germinative zones by a brief neonatal hypoxia led to long term beneficial effects on brain aging in male rats, with preserved hippocampus integrity, in terms of cell density, synaptic plasticity, and related cognitive functions. Finally, the combination of deficiency and hypoxia revealed that brain conditioning by brief neonatal hypoxia was able to improve tissular and functional brain outcome in deficient rats. The key mechanisms involved would occur at critical periods during the maturation of the various brain structures, thus highlighting the role of fetal programming
Marrocco, Jordan. "Novel insights in the glutamatergic hypothesis of depression : a neurochemical and pharmacological study in the rat model of prenatal restraint stress." Thesis, Lille 1, 2012. http://www.theses.fr/2012LIL10110/document.
Full textStress is a major risk factor for mood disorders, such as anxiety and depression. Rats exposed to prenatal restraint stress (PRS) - i.e. the offspring of dams submitted to repeated episodes of stress during the last 10 days of gestation - develop long-lasting biochemical and behavioral changes that recapitulate some traits of depression and anxiety. Mounting evidence suggests the involvement of hippocampal glutamatergic system in such disorders. Interestingly, the hippocampus represents an integral part of the altered programming triggered by PRS. Hence, we decided to investigate the glutamatergic hypothesis of depression in the rat model of PRS focusing on mechanisms of neuroadaptation within the hippocampal circuit. We found that PRS rats showed an impairment of glutamate release, in the ventral hippocampus, which is the specific portion of the hippocampus related to stress and emotions. Remarkably, local injections of drugs that enhanced glutamate release in the ventral hippocampus (i.e., a cocktail of GABA-B and mGlu2/3 receptor antagonists) had strong anxiolytic effects in PRS rats. In addition, chronic treatment with conventional antidepressant drugs enhanced glutamate release in the ventral hippocampus and corrected the anxious/depressive-like phenotype induced by PRS. Knowing that the ventral hippocampus modulates striatal motor programming, we extended the study of PRS rats to haloperidol-induced catalepsy, which models pharmacological parkinsonism in humans. We found that PRS rats were resistant to haloperidol-induced catalepsy as a result of an increased activity of motor thalamic nuclei, as assessed by stereologic counting of c-Fos-positive neurons. Our findings support the glutamatergic theory of stress-related mood disorders and suggest that an impairment of the ventral hippocampus and its influence on striatal circuit are key components of the neuroplastic program induced by PRS
Moiroux, Joffrey. "Evolution des stratégies de reproduction de parasitoïdes de drosophiles en réponse au climat." Phd thesis, Université Rennes 1, 2010. http://tel.archives-ouvertes.fr/tel-00588250.
Full textLim, Ai Ing. "Cytokine control of human innate lymphoid cell development and function." Thesis, Sorbonne Paris Cité, 2017. http://www.theses.fr/2017USPCC272/document.
Full textInnate lymphoid cells (ILC) represent a novel family of hematopoietic effectors that serve essential roles in early immune response by rapid cytokines production. Three distinct groups of ILC subsets have been described. Group 1 ILC include cytotoxic natural killer (NK) cells and other type-1 cytokines (IFN-? and TNF-?) producing cells that regulated by T-BET. Group 2 ILC (ILC2) express GATA-3 and ROR?, secrete type-2 cytokines, IL-5 and IL-13. Group 3 ILC (ILC3) utilize ROR?t to drive production of the TH17-associated cytokines, IL-17 and/or IL-22. In this thesis, I have performed series of experiments to uncover the developmental pathway and function of human ILC that may allow us to harness ILC in diverse clinical settings. First, I analyzed the phenotypic and functional heterogeneity of human peripheral blood ILC2. I found human IL-13+ ILC2 can acquire the capacity to produce IFN-?, thereby generating ÔplasticÕ ILC2. ILC2 cultures demonstrated that IFN-?+ ILC2 clones could be derived and were stably associated with increased T-BET expression. The inductive mechanism for ILC2 plasticity was mapped to the IL-12/IL-12R signaling pathway and was confirmed through analysis of patients with Mendelian susceptibility to mycobacterial disease (MSMD) due to IL-12R?1 deficiencies that failed to generate plastic ILC2. This IL-13+IFN-?+ ILC2 are detected ex vivo in gut tissues from CrohnÕs patients. Second, I identified and isolated ILC precursors (ILCP) in peripheral blood of healthy donors. This circulating ILCP can give rise to four lineages of mature ILC including cytotoxic NK cells and helper ILC1, 2 and 3 in vitro and in vivo. Transcirptomic and epigenetic analysis showed ILCP have ILC-committed transcription factor profiles but have mature ILC signature locus at the epigenetics poised states. We further identified ILCP in various tissues including fetal liver, cord blood, postnatal lung and tonsil. Our result proposed a new model of ÒILC-poiesisÓ where circulating ILCP serve as cellular substrates to generate mature ILC subsets in tissues. Understanding the role of IL-12 on driving ILC2 to ILC1 plasticity may allow us to target plastic ILC2 in various diseases. The identification and isolation of ILCP from circulating blood allow further transfer into clinical setting for cellular therapy, especially for various diseases that ILC has been shown to be importance including infection, allergy, cancer and metabolic diseases
Grangeray-Vilmint, Anais. "Modulation of cerebellar Purkinje cell discharge by subthreshold granule cell inputs." Thesis, Strasbourg, 2016. http://www.theses.fr/2016STRAJ023/document.
Full textRate and temporal coding in Purkinje cells (PC), the sole output of the cerebellar cortex, play a major role in motor control. PC receives excitatory inputs from granule cells (GC) which also provide feedforward inhibition on PC through the activation of molecular layer interneurons (MLI). In this thesis, I studied the influence of the combined action of excitation/inhibition (E/I) balance and short-term plasticity of GC-MLI-PC synapses on PC discharge, by using electrophysiological recordings, optogenetic stimulation and modelling. This work demonstrates that E/I balances are not equalized in the cerebellar cortex and showed a wide distribution of PC discharge modulation in response to GC inputs, from an increase to a shut down of the discharge. The number of stims in GC bursts strongly controls the strength and sign of PC modulation. Lastly, the interplay between short-term plasticity and E/I balance implements complex but reproducible output patterns of PC responses to GC inputs that should play a key role in stimulus encoding by the cerebellar cortex