Dissertations / Theses on the topic 'Plasticité du destin cellulaire'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Plasticité du destin cellulaire.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Flici, Hakima. "Différenciation et plasticité des cellules souches neurales." Phd thesis, Université de Strasbourg, 2012. http://tel.archives-ouvertes.fr/tel-01070644.
Full textFlick, Florence. "La plasticité de la chromatine oriente le destin des cellules saines et des cellules cancéreuses sur des matrices de faibles rigidités." Thesis, Strasbourg, 2016. http://www.theses.fr/2016STRAE020/document.
Full textThe aim of this thesis is to investigate the influence of soft hydrogels on the chromatin plasticity of epithelial PtK2 and cancer cells SW480. On soft hydrogels, the chromatin of PtK2 cells is organized in heterochromatin. The very soft hydrogels direct the cell death by necrosis. On these substrates, the euchromatin maintained by inhibition of HDAC guides the cells into quiescence. These cells transferred on stiff substrate enter in mitosis. A process of metastatic dissemination is developed from cancer cells grown on very soft hydrogels (E20) and stiff surfaces (glass). On the 1st seeding on E20, cells die. The 2nd seeding on E20 shows that cell viability, motility and heterochromatin percentage increase. On the 3rd seeding on E20, survival and motility continue to increase while the heterochromatin percentage decrease. From the 1st- 2nd E20 seeding, cells respond to a heterochromatin-dependent process of metastatic dissemination and from the 3rd-4th E20 seeding to an euchromatin-dependent process
Caldarelli, Paolo. "On the role of mechanical forces in embryonic self-organization." Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS189.
Full textDuring embryonic development, cells divide, migrate, rearrange, acquire different fates while organizing into a properly shaped organism. The regulation of these events is increasingly recognized to be controlled by self-organizing mechanisms. Following the seminal work of Alan Turing, who postulated, in his reaction-diffusion model, that self-organization could be controlled by the interaction between molecules, subsequent studies have focused on the identification of signaling molecules fulfilling Turing’s criteria. However, mechanical forces are generated and propagated at the tissue-scale level during morphogenesis, yet the possibility that they might act as signals in embryonic self-organization is largely underexplored. The gastrulating avian embryo, which is highly amenable to both live imaging approaches and mechanical perturbations, represents a great model to investigate the role of mechanical forces during development. Furthermore, classic experiments have demonstrated the highly regulative and self-organizing nature of early avian development: when the early epithelial disk (blastoderm) is bisected, fully formed embryos emerge from each separated part. Although recent work performed in the lab has drawn a precise mechanical picture that shapes the embryo at this stage, their role in regulating and self-organizing the embryo remains elusive, and it is the subject of this Ph.D. thesis. In collaboration with a physicist, we first formulated a mathematical model that accounts for the steady pattern of forces observed at the margin between the embryonic and extraembryonic region of the embryo. The model is based on the hypothesis that tissue mechanics at the margin self-organizes in analogy to a mechanical Turing system: tissue contractility acts as a local activator and tissue tension as a long-range inhibitor. We obtained unique predictions, which we tested experimentally to validate our model and ultimately explore the link between mechanical forces and gene expression. We found that modulation of tissue contractility at the margin alters the normal expression of Gdf1, a key morphogen in the formation of the embryo, and results in the formation of ectopic primitive streaks (primary body axis). We then perturbed the embryo mechanically. Using time-lapse imaging and laser ablation, we could orient and precisely bisect the early blastoderm. We found that in anterior halves, tissue contractility can ectopically initiate Gdf1 expression and primitive streak formation. Subsequently, to further explore the feedback between tissue mechanics and gene expression, we focused on the posterior bisected half where Gdf1 is endogenously expressed. We showed that after a few hours from the cut, the mechanical forces rescale according to the new size of the margin along with the expression domains of Gdf1. Moreover, we also found that the expression of selected embryonic territories markers follows the rescaling of the margin, suggesting an active role of tissue mechanics in allocating cell fate during development. Lastly, we showed that ectopic primitive streaks could form by placing a physical obstacle at the margin, following a prediction whereby ectopic friction is added to the motion of the tissue at the margin. This last result strongly argues against molecular diffusion as the driver of self-organization and rules out spurious events in the formation of ectopic embryos upon bisection (i.d. wound healing). Thus, this work uncovers the role of mechanical forces as signaling factors during embryonic development and demonstrates that tissue mechanics at the margin of the embryo self-organizes and underlies embryonic regulation in amniotes
Bonnet, Frédéric. "Choix du destin cellulaire et cinétique du cycle cellulaire : rôle de CDC25B durant la neurogenèse embryonnaire." Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30107/document.
Full textGenerating cell diversity is essential in developmental biology and to preserve tissue homeostasis in adulthood. This results from the choice of stem cells and progenitor cells to commit into a particular fate in response to extrinsic cues and to intrinsic properties. The aim of my PhD was to elucidate the role of the cell cycle in the neurogenesis process (i.e. in neuron generation) using the embryonic chick neural tube as a paradigm. On the one hand, I have developed a new real time imaging strategy to measure the length of the four cell cycle phases in neural progenitors. On the other hand, I performed gain and loss of function experiments of a regulator that control mitosis input, the CDC25B phosphatase, in neural progenitors and showed that this cell cycle regulator promotes neurogenic divisions at the expense of proliferative divisions, thus controlling neuronal production
Lemey, Camille. "Manipulation du destin cellulaire pour améliorer la régénération tissulaire au cours du vieillissement." Thesis, Montpellier, 2017. http://www.theses.fr/2017MONTT052.
Full textAging is a complex process which is often punctuated by the appearing of age-related diseases such as arthritis, idiopathic pulmonary fibrosis or osteoporosis, and which is associated with a decrease of regeneration abilities and of adult stem cells number. In 2007, Dr. Yamanaka and his collaborators showed for the first time that human fibroblasts could be converted into pluripotent stem cells by inducing the expression of 4 transcription factors: OCT4, SOX2, KLF4 and c-MYC. In the laboratory, it was showed in 2011 that it is possible to reprogram senescent cells which are accumulating in aging organisms and to differentiate them into rejuvenated somatic cells.In vivo, a total reprogramming would lead to teratomas formation but if the reprogramming process is induced and stopped before getting pluripotent stem cells, we think that it is possible to restore altered cell physiology and to delay tissues aging and its deleterious consequences. Dr. Izpisua Belmonte validated this hypothesis in December 2016. He designed a murine transgenic model which recapitulates the premature aging phenotype of Hutchinson Gilford syndrome and which can be induced to express OCT4, SOX2, KLF4 and c-MYC, and he proved that it is possible to increase mice lifespan and to delay the appearing of pathological aging phenotype. We built a similar murine model and showed that a transient reprogramming can not only increase lifespan, but also delay age-related weight loss and pathological aging phenotype. Moreover, we were able to maintain a higher regenerative capacity until mice death. We also modeled age-related pathologies such as arthritis or idiopathic pulmonary fibrosis in mice which were inducible for the Yamanaka’s transcription factors and we showed that transient reprogramming could prevent damages. This study will have allowed to confirm the importance that cellular reprogramming can have in the fight against aging
Mayeuf, Alicia. "Choix du destin cellulaire des progéniteurs multipotents du somite, chez l'embryon de souris." Paris 6, 2013. http://www.theses.fr/2013PA066495.
Full textThe dorsal part of the somite, the dermomyotome contains multipotent Pax3+ progenitors, which give rise to different cell types such as skeletal muscle, dermal, endothelial, mural and brown adipose cells. The aim of this thesis was to understand mechanisms underlying cell fate decisions in this context in the mouse embryo. We have first shown that the Notch signaling pathway directs multipotent progenitors towards a vascular instead of a myogenic fate, by acting on the Pax3 :Foxc2 genetic equilibrium. To determine if Foxc1, the homologue of Foxc2, is also implicated in this mecanism, we have conditionally deleted both genes in Pax3+ progenitors. We document new phenotypes, including a reduction in vascular, cells, notably endothelial cells in the forelimb, where, surprisingly myogenic cells are also absent, leading to a number of possible hypotheses. Foxc2 is also implicated in the differentiation of brown adipose tissue, which we show is a derivative of Pax3+ cells in the dermomyotome. We have studied the development of this tissue in the embryo and propose a model in two steps, with initial formation of an “undifferentiated adipogenic mass” which subsequently differentiates into brown adipocytes. Gain and loss of function approaches suggest that Foxc1/2 play a role in the control of mitochodrial function during the differentiation of brown adipocytes in the embryo. This role may also be played by Foxc1 in the slow fibers of skeletal muscle where it is specifically expressed in the adult
Bolz, Marianne. "Régulation du destin cellulaire pendant la neurogénèse postnatale : rôle de l'innervation dopaminergique issue du mésencéphale." Thesis, Aix-Marseille, 2013. http://www.theses.fr/2013AIXM4098.
Full textIn the postnatal and adult mammalian brain neurogenesis persists in the subgranular zone of the hippocampal dentate gyrus and the subventricular zone (SVZ). In the SVZ slowly dividing stem cells give rise to neuroblasts that migrate to the olfactory bulb (OB) where they reach the granule and glomerular cell layer of the OB and differentiate into different interneuron subtypes including a small fraction of dopaminergic interneurons. The discovery of postnatal and adult neurogenesis has changed the view of the plasticity of the brain remarkably and raised the hope for new therapeutical approaches in the field of neurodegenerative diseases. Since in Parkinson’s disease the main motor symptoms are caused by the dopaminergic denervation of the striatum adjacent to SVZ, the understanding of the generation and differentiation of OB dopaminergic neurons has received special attention. Interestingly, the neurotransmitter dopamine itself has been suggested to influence olfactory bulb neurogenesis via direct innervation of SVZ by midbrain dopaminergic neurons. However, data on this topic have been contradictory. In this study, I investigated how dopaminergic innervation influences SVZ neurogenesis and the fate of SVZ progenitors. I combined a 6-OHDA model of dopaminergic denervation in postnatal mice with in vivo forebrain electroporation to specifically label lateral and dorsal SVZ progenitors and to follow their fate in the olfactory bulb
Speziani, Carole. "Plasticité de différenciation cellulaire au sein du système Flt3+ de souris." Lyon, École normale supérieure (sciences), 2006. http://www.theses.fr/2006ENSL0389.
Full textAndriatsilavo, Rakoto Mahéva. "La régulation des cellules souches adultes intestinales de drosophila melanogaster : Comment SPEN influence un destin cellulaire." Electronic Thesis or Diss., Paris 6, 2015. http://www.theses.fr/2015PA066381.
Full textAdult stem cells are non-differentiated cells that maintain tissue homeostasis by supplying differentiated cells while at the same time self-renewing. How is this balance between stem cell state and differentiated state controlled? This question became one of the major interests of the Stem cell research and Translation, mostly due to the potential therapeutic perspectives that it gives. Regarding this effort, this thesis work describes a new function of a gene call split-ends/spen in adult stem cell regulation in Drosophila intestine. SPEN familly is composed by essential genes, which codes conserved proteins from Plants to Metazoa. They are involved in key cellular processes such as cell death, differentiation or proliferation, and are associated with various molecular functions controlling transcriptional and post-transcriptional gene expression. We found that a spen inactivation in Drosophila intestine leads to an abnormal increase in adult stem cells. In this work, by combining genetics tools and in vivo stem cell analysis methods, we could show that Spen works as a key factor of intestinal stem cell commitment and plays a role in their proliferation control. How does genetics programs control cellular identity? In order to investigate the molecular signature of intestinal stem cells and progenitor cells knockdowned for spen, we combined genetics, cell sorting and mRNA sequencing analysis to uncovered Spen target genes regulated in intestinal stem cells. Here, we provide a new function of spen in adult stem cell regulation, which may also shed light on its mode of action in other developmental and pathological contexts
Andriatsilavo, Rakoto Mahéva. "La régulation des cellules souches adultes intestinales de drosophila melanogaster : Comment SPEN influence un destin cellulaire." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066381/document.
Full textAdult stem cells are non-differentiated cells that maintain tissue homeostasis by supplying differentiated cells while at the same time self-renewing. How is this balance between stem cell state and differentiated state controlled? This question became one of the major interests of the Stem cell research and Translation, mostly due to the potential therapeutic perspectives that it gives. Regarding this effort, this thesis work describes a new function of a gene call split-ends/spen in adult stem cell regulation in Drosophila intestine. SPEN familly is composed by essential genes, which codes conserved proteins from Plants to Metazoa. They are involved in key cellular processes such as cell death, differentiation or proliferation, and are associated with various molecular functions controlling transcriptional and post-transcriptional gene expression. We found that a spen inactivation in Drosophila intestine leads to an abnormal increase in adult stem cells. In this work, by combining genetics tools and in vivo stem cell analysis methods, we could show that Spen works as a key factor of intestinal stem cell commitment and plays a role in their proliferation control. How does genetics programs control cellular identity? In order to investigate the molecular signature of intestinal stem cells and progenitor cells knockdowned for spen, we combined genetics, cell sorting and mRNA sequencing analysis to uncovered Spen target genes regulated in intestinal stem cells. Here, we provide a new function of spen in adult stem cell regulation, which may also shed light on its mode of action in other developmental and pathological contexts
Galbes, Olivier. "Plasticité du muscle squelettique et méthodes ergogènes : aspects métaboliques et structuraux." Montpellier 1, 2009. http://www.theses.fr/2009MON14005.
Full textSkeletal muscle is the primary effector in physical exercise and ergogenic proceeds for improving endurance or strength performance are based on its plasticity. Sea-level endurance performance is quite often unchanged after altitude/hypoxia training camp. This could be due to impairment in fatty acid oxydation (FAO) induced by chronic hypoxia. As endurance training is known to improve this parameter, the aim of our first study was to determine the combined effects of both chronic hypoxia and training on rat skeletal muscle FAO. The results, obtained from isolated mitochondria respiration, indicated that training in hypoxia compensated FAO inhibition caused by hypoxia alone, and that mCPT-1 was a key regulator of FAO in response to both stimuli. Clenbutérol and other β2-agonists are frequently used as doping agent for their capacity to induce skeletal muscle hypertrophy, but the signalling pathways for this adaptation are not thoroughly known. In our second study, using a kinetic approach, we showed on rat muscles that clenbuterol transiently activated the expression of hypertrophy-related genes : IGF-1, MGF, myogenin and MCIP-1, which suggests a role for stellite cells in this hypertrophy. Moreover, the absence of muscle hypertrophy when treating animals with clenbuterol and cyclosporine A indicates a strong implication of calcineurin activity in clenbuterol-induced muscle hypertrophy
Bouzioukh, Farima. "Plasticité des centres végétatifs bulbaires chez le rat." Aix-Marseille 3, 2001. http://www.theses.fr/2001AIX30012.
Full textThe aim of this study was to investigate 1) the regulation of PSA-NCAM expression and the synaptogenesis during postnatal development of dorsal vagal complex (DVC), 2) how synaptic activity, using vagal afferents stimulation can regulate PSA expression. The DVC is a gateway for many primary afferents and participates in the maintenance of homeostasis. The polysialyted form of the neural cell adhesion molecule (NCAM) has been implicated in many aspects of cell-cell interactions and multiple forms of plasticity. We examined PSA-NCAM expression pattern during postnatal development and in adult rat DVC. During the first postnatal week, PSA expression is5 ubiquitous in all medulla regions and becomes restricted to the DVC in adult rat. We determined the effect of electrical stimulation of vagal afferents on PSA both in vivo and in acute slices. Before P15, afferent activity induces a rapid up-regulation of PSA expression. In contrast, after P15, the same paradigm induces a rapid and time-dependent decrease in PSA expression. These results confirm that maturation and synaptogenesis continue to occur during the first postnatal weeks within thr DVC. We demonstrated that at all stages examined, NMDAR activation is required for regulation of PSA expression
Ibanez, Sébastien. "Caractérisation physicochimique des membranes cellulaires lors de la cancérogénèse : application à la plasticité cellulaire." Electronic Thesis or Diss., Lyon, 2021. https://n2t.net/ark:/47881/m6tt4qsz.
Full textThe mammary tissue is inherently heterogeneous and its development as well as homeostasis involve genetic and epigenetic mechanism allowing controlled switches of cell identity during woman’s lifetime. During tumoral context, the mechanisms linked to this cell identity modulation can be disturbed. This facilitates a large epigenetic dynamic and the acquisition of phenotypic plasticity essential for tumour development and progression. Phenotypic plasticity describes the ability of a biological system to adapt and express different phenotypes in response to variations of environmental conditions. In this context, the cells lose their cell identity and undergo profound changes in their metabolism. One of the consequences of these metabolic dysregulation is the remodelling of cell lipid composition during the acquisition of a plastic phenotype. We were able to correlate this lipid remodelling with a change in lipid chains arrangement within cell membranes, a phenomenon known to modify the membrane fluidity. The membrane fluidity is measured by a ratiometric fluorescent probe synthesized for the first time in our team. The first part of this thesis concerned the validation in a biological context of this probe, Dioll, to report its capacity of following the membrane fluidity of cell membranes. The analysis of the physicochemical properties of the fluorescent probe during the labeling of cell membranes has highlighted the advantages of this molecule compared to pre-existing probes (better quantum ratio, better distribution within disordered liquid phase and better discrimination of endomembranes). The second part of this thesis, we used the properties of Dioll to highlight the correlation between membrane fluidity and phenotypic variations at the origin of cell plasticity. Analysis of a set of breast cancer cell lines showed that we could discriminate different cell subtypes. Secondly, we used an isogenic model of modulation of cellular plasticity by inducing a process of loss of epithelial characteristics within initially epithelial immortalized human mammary cells (HMEC). From this model, we were able to observe an increase of membrane fluidity during the acquisition of a more undifferentiated phenotype. Finally, by modulating the hormonal-nutritive environment of the cell, it was possible to create a model allowing the acquisition and stabilization of a much undifferentiated phenotype, hybrid in terms of epithelial and mesenchymal component and multipotent. This so-called “metastable” phenotype makes it possible to redirect these cells into the various luminal or myoepithelial mammary differentiation pathways. We were thus able to correlate the phenotypic variations in this model with biophysical variations associated with greater membrane fluidity, the metastable cells having a very significant disorder at the level of their membrane lipid chains in comparison with their progeny having acquired a luminal cell identity or myoepithelial. All of these results are discussed with a view to using these measurements of membrane fluidity to determine an index of phenotypic plasticity or epigenetic dynamics which would then serve as a diagnostic tool and aid in the implementation of therapeutic strategies more efficient and personalized
Pontis, Julien. "Rôles d'histones méthyltransférases dans le destin cellulaire : coopération entre des méthyltransférases des lysines 9 et 27 de l'histone H3." Paris 7, 2014. http://www.theses.fr/2014PA077220.
Full textThe genome expression program is regulated by the composition of DNA sequences and the factors that may be associated. These factors may either be transcription factors or cofactors. Cofactors, even if they do not recognize specific DNA sequences, can strongly regulate the expression of the genome. In eukaryotes, some of these cofactors can post-translationally modify structural DNA proteins (histones). These enzymes and their catalized modifications can recruit other cofactors and/or directly regulate chromatin structure allowing fine modulation of the expression of the genome. For example, this allows to control the transcription program during embryonic development or terminal muscle differentiation. Thus, methylation of lysines 9 and 27 of histone H3 (H3K9, H3K27) at gene promoters is essentially associated with transcriptional répression. These lysines are methylated by different specific enzymes called lysine methyltransferases (KMT). The laboratory has previously demonstrated the existence of a complex containing 4 H3K9 methyltransferases (G9A, GLP, and SETDB1 and SUV39H1). During these experiments, the team was able to identify the interaction between H3K9 methyltransferases and H3K27 (PRC2). The main aim of my thesis project was to identify the different genomic targets of KMTs. In these experiments we mainly were able to demonstrate a cooperation between G9A and PRC2 complex
Cabillic, Florian. "Plasticité des cellules dendritiques : étude de l'influence sur l'environnement hépatique sur la différenciation de monocytes en cellules dendritiques." Rennes 1, 2006. http://www.theses.fr/2006REN1B070.
Full textAbou, Hammoud Aya. "Etudes de nouveaux paramètres environnementaux sur la plasticité des cellules souches embryonnaires murines (mESC)." Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0169/document.
Full textEmbryonic Stem Cells (ESCs) are derived from embryo at the blastocyst stage. These cells are characterized by their properties of self-renewal and pluripotency: ability to divide and maintain an undifferentiated phenotype and to differentiate into specialized cells of the three primary germ layers in the presence of stimuli. ESCs are a powerful tool to modelize genetic diseases for fundamental research and clinical applications. Mouse Embryonic Stem Cells (mESCs) are maintained pluripotent in vitro in the presence of Leukemia Inhibitory Factor (LIF), an Interleukin 6 (IL6) cytokine family member which displays pleiotropic functions, depending on both maturity and type of cells. LIF withdrawal leads to heterogeneous differentiation of mESCs and part of the differentiated cells die by apoptosis. During the kinetics of LIF withdrawal, we show that cells enter a LIF-dependent reversible (up to 36h of LIF withdrawal) and irreversible phase of differentiation in which LIF-restimulation induces differential effects. To better characterize this period and LIF-dependent processes, we settled up an in vitro « plasticity test » and investigated the impact of environmental parameters that could regulate cell plasticity in mESCs. Our results reveal that the Matrix Metalloproteinase 1 (MMP1), which can replace LIF cytokine for maintenance of mESCs pluripotency, mimics its effects in the plasticity window, but with less efficiency. In addition, we demonstrate that mESCs maintain plasticity and pluripotency potentials in vitro, under 3% O2 (physioxic condition) with a new equilibrium of gene and protein expression levels compared to 20% O2
Elisabeth, Nathalie Hortensia. "Plasticité tissulaire et cellulaire du filament branchial des Lucinidae symbiotiques côtiers Codakia orbiculata et Lucine pensylvanica." Thesis, Antilles-Guyane, 2011. http://www.theses.fr/2011AGUY0461/document.
Full textThe lateral zone of gills filaments of coastal bivalves Codakia orbiculata and Lucina pensylvanica is the site of chemoautotrophic symbiosis with sulfur-oxidizing bacteria, housed in specialized cells called bacteriocytes. The objective of this thesis is to determine the mechanisms underlying cel1 plasticity and tissue plasticity observed in the lateral zone of gills filaments during the processes of bacterial decolonization and recolonization. In order to do this, the individuals collected in their natural habitat were maintained at the laboratory in seawater filtered tanks, without food and reduced sulfur, to cause bacterial decolonization. When the gills seemed to be purged, the individuals were returned to their natural habitat in order to cause the bacterial recolonization of gills filaments. The analysis of the gills during these processes involves several techniques (histology, immunohistochemistry, molecular hybridization, flow cytometry, total protein assays, protein sulfur assays, X-ray fluorescence spectrometry).This study shows that symbiont acquisition can occur during the entire life of Codakia bivalves. It also allows a better understanding of gills filaments plasticity by highlighting apoptosis and cell proliferation during decolonization and recolonization processes.Theses processes are accompanied with of elemental sufur, relative size and genomic content of symbiontes
Julienne, Hanna. "Plasticité du programme spatio-temporel de réplication au cours du développement et de la différenciation cellulaire." Phd thesis, Ecole normale supérieure de lyon - ENS LYON, 2013. http://tel.archives-ouvertes.fr/tel-00942719.
Full textGuerin, Amandine. "Fonction de la protéine LIX1 dans la régulation de la plasticité cellulaire du muscle lisse digestif." Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTT028.
Full textThe digestive tract is a vital organ ensuring food digestion, nutrient absorption and waste excretion. One of the main properties of digestive tract is the motricity which is defined as the set of contractions that allows the transition of the food from the mouth to the anus. Cells involved in the regulation of digestive plasticity are the enteric nervous cells, the interstitial cells of Cajal and the smooth muscle cells. The interstitial cells of Cajal and smooth muscle cells derived from a common mesenchymal progenitor. Mesenchyme-derived cells have the unique capacity to switch from the contractile and functional state to an immaturity state. This plasticity is responsible for motricity disorders. Our work aims to identify the mechanisms involved in the differentiation of the mesenchymal progenitors and to study those mechanisms in pathological conditions. The team previously identified the LIX1 gene (LImb eXpression 1) as the first molecular marker of the digestive smooth muscle immaturity and demonstrated its role on the differentiation of mesenchymal progenitors through the control of YAP1 (McKey et al., 2016). In this context, during my thesis, I focused on LIX1 and the mitochondrial remodeling as a putative regulatory mechanism of mesenchymal-derived cells differentiation. First, I investigated and demonstrated the role and function of LIX1 in the aggressiveness and the immaturity of the GastroIntestinal Stromal Tumor (GIST) cells. In parallel, I participated to the characterization of cells derived from CPIO (Chronic Pseudo Intestinal Obstruction) patients. Finally, I developed a new model of human gastric smooth muscle cells to evaluate the metabolism during the SMC differentiation. Altogether, we showed that LIX1 and its downstream pathways control SMC plasticity
Martinez, Marina. "Neuroplasticité et restauration des fonctions sensorimotrices après atteinte corticale ou spinale : modulation par l'expérience et la thérapie cellulaire." Aix-Marseille 1, 2009. http://www.theses.fr/2009AIX11019.
Full textLeménager, Hélène. "Mécanismes moléculaires et cellulaires des processus de différenciation et de plasticité cellulaire pour la formation des adipocytes." Thesis, Toulouse 3, 2019. http://www.theses.fr/2019TOU30227.
Full textAdipocytes are the functional units of adipose tissue (AT). Within white AT, white adipocytes contribute to both storage and release of energy within the organism, mainly in the form of fatty acids1. On the other hand, brown adipocytes, from brown AT, have a high capacity to consume fatty acids. This results from the activity of the UnCoupling Protein 1 (UCP1)2. Finally, UCP1+ adipocytes have been described in white AT, notably in response to cold exposure3. These adipocytes are named beige adipocytes and are generated through two pathways: on one hand via adipogenesis from adipose-derived mesenchymal stem/stromal cells (ASC), and on the other hand by conversion of white-to-beige adipocytes4. Being a reversible process, beige conversion highlights the plasticity of these cells. The aim of the thesis was to characterize the molecular mechanisms involved in both processes, by using culture models of human ASC and in vivo mice models. Given the perivascular and pericyte localization of ASC in vivo5,6, we investigated the use of Endothelial Growth Medium 2 (EGM2) for their in vitro expansion as an alternative to Standard culture conditions (Eagle's medium supplemented with fetal calf serum). Our results showed that the TGFß1 contained in serum of culture medium altered the relative immature state of ASC. Indeed, TGFß1 induces their commitment toward osteoblastic, chondroblastic or vascular smooth muscle lineage. Also, the small amount of serum in EGM2 medium, and thus low TGFß1 concentration, preserves ASC immaturity in culture, as well as their strong capacities to differentiate into adipocytes, including beige phenotype. We showed that ASC with high potential to generate beige adipocytes over-expressed SOX2 protein. Our results also showed that expression of SOX2 was positively correlated to both formation of beige adipocytes and to brown adipocytes activation in vivo in cold-exposed mice. In addition, using two types of human ASC models in vitro, we observed that SOX2 was overexpressed during adipogenesis, and even more when cells were differentiated into beige adipocytes. Thus, SOX2 appears to be a key factor involved in AT browning potential and adipocyte plasticity in vivo and in vitro. This thesis has allowed the access to a better understanding of the impact of culture conditions on the biology of ASC and highlighted molecules involved in the plasticity of adipocytes
Martel, Marc-André. "La phospholipase A2 indépendante de l'ion calcium : un acteur cellulaire contribuant à la plasticité glutamatergique de l'hippocampe." Thèse, Université du Québec à Trois-Rivières, 2005. http://depot-e.uqtr.ca/1580/1/000125848.pdf.
Full textRobert, Rémi. "Étude des mécanismes contrôlant l’expression des gènes HOX et implications pour la génération in vitro de tissus humains." Electronic Thesis or Diss., Sorbonne université, 2023. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2023SORUS399.pdf.
Full textDuring embryogenesis, the formation of the vertebrate body plan depends on the spatial organization of different cell types along the anterior-posterior axis. This process is orchestrated by HOX transcription factors, which are differentially expressed along this axis, conferring positional identity on developing tissues. HOX patterns of expression are initiated by the sequential activation of HOX genes in axial progenitors, a population of stem cells fueling the progressive elongation of the body of developing embryos, forming notably the somites and the spinal cord. In parallel with the progressive induction of this gene family, these progenitors generate increasingly caudal structures, transforming the temporal sequence of activation into spatial domains of expression along the anterior-posterior axis. Nevertheless, the mechanisms that regulate the temporality of this induction and its transformation into spatial domains remain poorly understood, particularly in humans. To address these questions, during my thesis I generated progenitors from human pluripotent stem cells that display the molecular and functional characteristics of axial progenitors. Indeed, we have shown that these progenitors sequentially activate HOX genes and can give rise to organoids recapitulating multiple aspects of the generation and organization of the anterior-posterior axis, such as the formation of somites surrounding a neural tube along which the spatial expression patterns of several HOXs are recapitulated. Using these in vitro-produced axial progenitors, we first demonstrated that the tempo of induction of HOX genes is dynamically modulated by the graded activity of two extrinsic factors, FGFs and GDF11, which are sequentially expressed in the caudal region of vertebrate embryos during development. Then, we showed that 1) activated HOX genes are direct targets of signaling pathways downstream of these factors and 2) that the speed of activation of genes expressed later and later is determined by the duration of pathway activation in axial progenitors, a property of the pathways regulated by intrinsic negative feedback mechanisms. Overall, my results suggest a new model in which the timing of HOX gene activation is an emergent property of the dynamics of signaling pathways downstream of extrinsic factors. In parallel, my studies have led to improved cellular and tissue engineering of trunk cells from human pluripotent stem cells, culminating in protocols for generating the different motor neuron subtypes present along the body axis, and a new organoid model mimicking morphogenesis and the formation of cellular diversity along the human body axis
Bidan, Nadège. "Développement d’un système rapporteur de la plasticité des cellules cancéreuses du sein." Thesis, Lille, 2019. http://www.theses.fr/2019LIL1S110.
Full textMany solid cancers are thought to be organized hierarchically with a small number of cancer stem cells (CSCs) able to re-grow a tumor while their progeny lacks this feature. These CSCs are associated with radioresistance. Recent studies have revealed that non-cancer stem cells may undergo dedifferentiation subsequently obtaining the phenotype and functions of CSCs. Indeed, ionizing radiation reprogrammed differentiated breast cancer cells into induced cancer stem cells (iCSCs). This mechanism of reprogramming can contribute to relapse. CSCs and iCSCs cannot be distinguished as they share the same stem cell-like properties. Breast CSCs can be isolated based on their high ALDH1 activity while iCSC studies require originally sorting of ALDH1-negative cells. Such studies are limited to in vitro experiments. In vivo reprogramming studies require designing a specific CSC and iCSC identification system.During my PhD thesis, I showed that ALDH1A1 promoter can be used to identify cells with CSC. The cells identified by fluorescent protein in which expression is controlled by ALDH1A1 promoter possess self-renewal and differentiation properties. They also exhibited higher capacity to form tumors, and an increased resistance to anticancer therapies. Monitoring of these cells by fluorescence tracking facilitated the visualization of reprogramming phenomenon in real time following the irradiation. In addition, we were able to observed the strongest extravasation potential of these cells in a microvessel mimicking chip model. I have subsequently constructed an inducible expression vector based on the activity of this promoter in order to dynamically follow the different cell populations: non-CSCs, pre-existing CSCs and iCSCs. This vector consists of several systems, including the inducible TetON system, the CRE-loxP system and the Flp / FRT recombination system for monitoring cell populations by fluorescence. My thesis work has thus enabled the generation of tools that can be used for the dynamic monitoring of CSCs and CSCs induced by therapies
Detante, Olivier. "THERAPIE CELLULAIRE POUR L'ACCIDENT VASCULAIRE CEREBRAL." Habilitation à diriger des recherches, Université de Grenoble, 2013. http://tel.archives-ouvertes.fr/tel-00905943.
Full textIltchev, Alexandre. "Homogénéisation périodique d’un matériau cellulaire en élasto-plasticité et application au calcul de structures : des petites aux grandes déformations." Thesis, Paris, ENMP, 2014. http://www.theses.fr/2014ENMP0044/document.
Full textCellular materials have excellent specific properties, which make them attractive for aeronautical applications. However, modelling macroscopic structures including a cellular material is either very costly in terms of computational time if the whole mesoscopic structure is considered or a Homogeneous Equivalent Medium (HEM) has to be used. This Ph.D. dissertation presents, the characterisation of a cellular material built from a stacking of tubes with a square or hexagonal based pattern and the identification of a phenomenological model of their inelastic mechanical behaviour. First, the material is characterised for multi-axial loadings through a periodic finite element model in small deformations for each tube stacking pattern. The macroscopic behaviour is then used to identify a compressible anisotropic Homogeneous Equivalent Law (HEL). Within the infinitesimal strain hypothesis, a comparison is carried out between reference full scale models and HEM based ones of sandwich structures with a cellular core, confirming the relevance of the proposed multi-scale method. Then, the mechanical behaviour of each tube stacking is characterised for large deformations in order to study the influence of the boundary size effects and the instabilities in the core on the macroscopic behaviour of sandwich structures. After a study on the representative volume element, the macroscopic inelastic behaviour is characterised through the periodic homogenisation technique, especially the softening observed in compression for the hexagonal pattern. Finally, an extension of the HELs identified in small deformations is proposed to model the behaviour observed in large deformations
Juhem, Aurélie. "Identification d’un inhibiteur sélectif PP1 aux propriétés anti-tumorales." Université Joseph Fourier (Grenoble ; 1971-2015), 2008. http://www.theses.fr/2008GRE10170.
Full textChemotherapy and/or radiotherapy remain the cornerstones of the anti-cancer therapy. Although dozens of cancer drugs have been approved for clinical use, there is a continuous need for more selective, more efficient and less toxic therapeutics. Drugs perturbing the microtubule cytoskeleton via binding to tubulin dimers or polymers are widely used in cancer treatment because they arrest in mitosis and kill fast-dividing tumor cells. However, these anti-tubulin drugs have their limitations, especially in terms of chemoresistance and peripheral neurotoxicity, strongly supporting the search for anti-mitotic drugs with new molecular targets. Using phenotypical screening, we identified an isoquinoline derivative, D5, which perturbs cell division without targeting microtubules or tubulin. We characterized the activity of the drug in vitro to show that in tumor cells,D5 prevents normal cytokinesis by inducing ectopic furrows, followed by cell death. The drug also indirectly destabilizes the microtubule cytoskeleton, another phenomenon leading to cell arrest and death in mitosis. Using biochemical assays and RNAi techniques, we identified the protein target of D5. Using a panel of ten diverse human cancer cell lines, we found that HTB-177, HeLa, 786-0, RT-112, U87, MCF7 and A549 cells were the most sensitive to D5. Pilot toxicity studies on nude mice showed that D5 was well tolerated in vivo. Pilot in vivo studies in nude mice xenografted with HTB- l 77 cells showed that D5 therapy induced necrosis in all tumors. These results with other on-going experiments on D5 will provide the basis for its entering regulatory pre-clinical and clinical trials central to anti-cancer drug development
Shulz, Daniel. "Un analogue cellulaire de la plasticité fonctionnelle dans le cortex visuel : étude des mécanismes neuronaux de l'épigénèse et de l'apprentissage." Paris 11, 1987. http://www.theses.fr/1987PA112420.
Full textDaniele, Thomas. "How a differentiated cell can change its identity : study of the role of the LIN-12/Notch pathway in the establishment of the competence to transdifferentiate in vivo in C. elegans." Thesis, Strasbourg, 2013. http://www.theses.fr/2013STRAJ038/document.
Full textThe acquisition of a differentiated cell identity is often considered as final and frozen in time. However, a growing number of studies showed that differentiated cells can exhibit plasticity under certain conditions. To better understand these cell plasticity phenomena, our laboratory has developed a unique model in Caenorhabditis elegans (C. elegans) to study a transdifferentiation event in a physiological context and at the single-cell level. During the worm development, an epithelial rectal cell, named Y, will migrate anteriorly and change its identity to become a neuron named PDA. Preliminary work performed by our laboratory showed that the LIN-12/Notch signalling pathway is the earliest signal necessary for the proper conduct of the transdifferentiation of Y into PDA. In our study, we showed that: i) during embryogenesis, two canonical ligands (apx-1 and lag-2) appear to act redundantly to activate the Notch pathway in Y. ii) ectopic and controlled activation of the Notch pathway is sufficient to induce formation of a second PDA neuron. iii) Nuclear factors indentified in our laboratory as crucial for the initiation of this event are also important for transdifferentiation of the second PDA obtained by ectopic activation of Notch. iv) A prolonged activation of the Notch pathway in the Y cell maintains its epithelial identity, which results in the inhibition of the transdifferentiation of Y into PDA. Together, our results showed that the Notch pathway is necessary and sufficient to establish the competence to transdifferentiate. This can only be achieved if the Notch pathway is regulated very precisely in the Y cell
Jarjour, Meryem. "Plasticité des réseaux de cellules folliculaires dentritiques : Développement & remodelage." Thesis, Aix-Marseille, 2014. http://www.theses.fr/2014AIXM4014.
Full textFollicular Dendritic Cells (FDCs) regulate B cell function and development of high affinity antibody responses but little is known about their biology. FDCs associate in intricate cellular networks within secondary lymphoid organs. In vitro and ex vivo methods may thus be of little interest to understand the genuine immunobiology of FDCs in their native habitat. Herein, we utilised various multicolor fate mapping systems to investigate the ontogeny and dynamics of lymph node (LN) FDCs in situ. We show that LN FDC networks arise from the clonal expansion and differentiation of Marginal Reticular Cells (MRCs), a population of lymphoid stromal cells lining the LN subcapsular sinus. We further demonstrate that during an immune response, FDCs accumulate in germinal centers and that neither the recruitment of circulating progenitors nor the division of local mature FDCs significantly contributes to this accumulation. In contrast, we provide evidence that newly generated FDCs also arise from the proliferation and differentiation of MRCs, thus unraveling a critical function of this poorly defined stromal cell population
Dahan, Perrine. "Rôle de la plasticité cellulaire et du métabolisme dans la radiorésistance des cellules de glioblastomes : mise en évidence de nouvelles cibles thérapeutiques potentielles." Thesis, Toulouse 3, 2015. http://www.theses.fr/2015TOU30279/document.
Full textGlioblastomas (GBM) are some highly lethal brain tumors despite a treatment associating surgical resection and radio-chemotherapy. Amongst these tumors, a subpopulation of radio/chemoresistant GBM stem-like/initiating cells (GIC) appears to be involved in the systematic GBM recurrence through the generation of more differenciated tumoral cells. Recent studies showed that tumor cells may have the ability to dedifferentiate and acquire a GIC phenotype in response to microenvironment stresses. We hypothesized that GBM cells could be subjected to a similar dedifferentiation process after ionizing radiations (IR), then supporting the GBM rapid recurrence after radiotherapy. Indeed, I showed that the exposure of several primo-cultures of differentiated GBM cells isolated from patient resections to a subtoxic and clinically relevant IR dose potentiated the long-term reacquisition of GIC properties (self-renewal ability, expression of stemness markers and tumorigenicity). I also identified during this process (1) an up-regulation of the anti-apoptotic protein Survivin whose pharmacological down-regulation led to a blockade of the IR-induced plasticity, (2) the presence of a metabolic shift occurring quickly after IR and (3) an enzymatic target, which appears to be involved in extracellular acidification under IR and could also potentiate the long term dedifferentiation induced by IR. At term, targeting the mechanisms associated with IR-induced plasticity in order to inhibit the IR-induced adaptive processes will likely contribute to develop some innovating pharmacological strategies for an improved radio-sensitization of these brain tumors
Vallortigara, Julie. "Etude des effets de l'hypothyroïdie sur les voies d'action cellulaire de l'acide rétinoïque et de la triiodothyronineApproches expérimentale et biomédicale." Bordeaux 1, 2007. http://www.theses.fr/2007BOR13395.
Full textSeveral works permit to establish a relationship between activity of retinoic acid (RA) pathway and memory performance. Recent data obtained in vitamin A deficient (VAD) animals, comparable to those obtained in aged animals, have revealed that RA promnesic effect in brain tissues could depend on thyroid hormone status. Indeed, in these models, triiodothyronine (T3) becomes a limiting factor alone able to correct the age or VAD-related concomitant hypo-activation of retinoid and thyroid signalling and alterations of synaptic plasticity. The aim of the present study was to investigate the effects of hypothyroidism on RA and T3 cellular action in adult mice brain. Our results show that hypothyroidism led to a reduced expression of T3 nuclear receptors (TRβ) and their target genes (RC3, Rhes, CaMKII) preferentially in the striatum. RA administration has no incidence in our model, confirming an impaired function of RA with hypoactivity of T3 signalling. In addition, T3 administration permitted a restoration of molecular parameters studied, and modified phospho-Thr34 DARPP-32 protein level, a reliable indicator of synaptic plasticity involved in motor functions. A study using transgenic animals has revealed that normalization of synaptic target genes by the T3 necessitates the presence of the receptor TRα. These results provide new data regarding the molecular basis of thyroid hormone action in the synaptic plasticity process. A biomedical approach performed on peripheral blood mononuclear cells of hypothyroid patients allowed us to confirm in humans the relevance of the relationship between retinoid and thyroid signalling pathways during common thyroid disorders
Victoor, Camille. "Rôle oncogénique de nétrine-1 dans la plasticité cellulaire : mécanismes d’action et potentiel thérapeutique. Exemples des cancers mammaires,ovariens et des synovialosarcomes." Electronic Thesis or Diss., Lyon 1, 2023. http://www.theses.fr/2023LYO10148.
Full textBelonging to the laminin family, netrin-1 is a small secreted molecule with a wide range of functions now described. As a developmental protein, netrin-1 is minimally or not expressed in healthy adult tissues. However, in pathological contexts such as cancer, a re- expression of the protein is observed, involving the activation of associated signaling pathways and leading to various processes such as cell survival, angiogenesis, and inflammation. The research presented in this manuscript has highlighted the role of netrin-1 in cellular plasticity, a crucial mechanism in tumor development and a significant therapeutic challenge due to its properties of self-renewal, cell migration, and therapy resistance. Through the study of examples in breast and ovarian cancer stem cells, as well as synovial sarcomas, this manuscript describes the critical role of netrin-1 in cellular plasticity and how a monoclonal therapeutic antibody targeting this protein represents a promising therapeutic strategy
Lauriol, Jessica. "Agressivité du mélanome liée à l'expression du complexe majeur d'histocompatibilité de classe II et à la plasticité cellulaire induite par le microenvironnement." Paris 7, 2010. http://www.theses.fr/2010PA077033.
Full textThe rising incidence of cutaneous melanoma and the low effectiveness of treatments of metastatic forms imply alternative therapies should be developed and that knowledge of its development should be improved. This thesis aims first to explain the known association between MHC class II abnormal constitutive expression by melanoma cells and unfavorable clinical outcome. This study shows that, although necessary, MAPK signalling activation is not sufficient to induce MHC class II expression and that this expression is correlated to but not regulated by NFKB activity. Moreover, MHC class II expression coincides with expression and production of chemokines associated with angiogenesis and metastasis, which provides a rationale for its association with poor prognosis. Secondly, we wondered to which extent microenvironment influences melanoma aggressiveness. In that purpose, we chose to study tumor initiating potential, invasive and differentiation abilities of melanoma cells cultured under three-dimensional condition in stem cell media. We provide evidence that this culture method increases invasive abilities of melanoma cells and directs them toward dedifferentiated phenotype marked by embryonic stem cell transcription factor expression and by an increase in differentiation potential. Finally, we put forward that the expression of embryonic stem cell transcription factors might be responsible for the observed alterations in aggressiveness properties of melanoma cells. This thesis supports actual concerns about the cancer stem cell concept and the actual hypothesis that proposes to define stem ness not as an entity but rather as a state, responding to environmental cues
Detante, Olivier. "THERAPIE CELLULAIRE PAR CELLULES SOUCHES MESENCHYMATEUSES HUMAINES APRES ISCHEMIE CEREBRALE." Phd thesis, Université de Grenoble, 2010. http://tel.archives-ouvertes.fr/tel-00905941.
Full textKhlghatyan, Jivan, and Jivan Khlghatyan. "Regulation of glutamatergic neurotransmission, synaptic plasticity, sleep and behavior by D2-GSK3B-FXR1." Doctoral thesis, Université Laval, 2020. http://hdl.handle.net/20.500.11794/38090.
Full textLes études GWAS associent les variantes du gène Fxr1 à la schizophrénie, les maladies bipolaires, l’insomnie et la durée du sommeil. Gsk3β peut directement phosphoryler et ainsi réguler négativement Fxr1. De plus, les interactions fonctionnelles entre Gsk3β et Fxr1 sont associées avec la stabilité émotionnelle chez les humains. Comment Gsk3β-Fxr1 régule l’activité neuronale, la plasticité et le comportement reste inconnu. Gsk3β peut être activé en aval des récepteurs D2 de dopamine. L’activité de Gsk3β peut être modulée par les stabilisateurs d’humeur, les antipsychotiques et les antidépresseurs en régulant des comportements. Néanmoins, les corrélations neuroanatomiques de Gsk3β en aval des récepteurs D2 restent inexplorées. Nous avons étudié, en premier lieu, les relations de Gsk3β-Fxr1 avec l’activité neuronale et les comportements. Nous avons découvert que Fxr1 et son régulateur négatif Gsk3β affectent les comportements liés à l’anxiété ainsi que la neurotransmission glutamatergique via la régulation des récepteurs AMPA synaptiques. Deuxièmement, nous avons exploré l’Implication de Gsk3β-Fxr1 dans la plasticité synaptique et le sommeil. Nous avons constaté que Fxr1 est le régulateur central («maître») de la mise à l’échelle synaptique homéostatique. D’ailleurs, il est aussi engage dans l’homéostasie du sommeil et module la force synaptique en régulant les transcripts impliqués dans la synthèse locale des protéines et la structure synaptique. Troisièmement, dans le but de comprendre les corrélations neuroanatomiques nous avons généré une carte des neurones exprimant des récepteurs D2 de tout le cortex et leurs projections. En quatrième lieu, nous avons visé d’investiguer les fonctions de Gsk3β en aval des récepteurs D2 dépendamment de leur emplacement anatomique. L’invalidation (knockout) intersectoriel de Gsk3β dans les neurones D2 du cortex préfrontal murin par CRISPR/Cas9 nous a permis de révéler sa contribution dans la régulation des comportements cognitifs, sociaux et de ceux associés à l’humeur. En résumé, cette thèse de doctorat élucide les fonctions de Fxr1 dans le cerveau tout en démontrant l’utilité du CRISPR/Cas9 dans le ciblage génétique ayant pour but d’explorer les fonctions des gènes spécifiquement dans un circuit donné.
Variants in Fxr1 gene are GWAS-associated to schizophrenia, bipolar disorders, insomnia, and sleep duration. Gsk3β can directly phosphorylate and negatively regulate Fxr1. Moreover, functional interaction between Gsk3β and Fxr1 is associated with emotional stability in humans. How Gsk3β-Fxr1 regulates neuronal activity, plasticity and behaviors remains unclear. Gsk3β can be activated downstream of dopamine D2 receptors. Gsk3β activity can be modulated by mood stabilizers, antipsychotics and antidepressants to regulate behaviors. Nevertheless, neuroanatomical correlates of Gsk3β functions downstream of D2 receptors remain elusive. First, we investigated the relationship of Gsk3β-Fxr1 to neuronal activity and behaviors. We discovered that Fxr1 and its negative regulator Gsk3β affect anxiety-related behaviors and glutamatergic neurotransmission via regulation of synaptic AMPA receptors. Second, we addressed the involvement of Gsk3β-Fxr1 in synaptic plasticity and sleep. We discovered that Fxr1 is a master regulator of homeostatic synaptic scaling. Moreover, it is engaged during sleep homeostasis to modulate synaptic strength via regulation of transcripts involved in local protein synthesis and synaptic structure. Third, to understand neuroanatomical correlates of D2 receptor signaling we generated a cortex-wide map of D2 expressing neurons and their projection targets. Fourth, we aimed to understand anatomically defined functions of Gsk3β downstream of D2 receptors. CRISPR/Cas9 mediated intersectional knockout of Gsk3β in D2 neurons of mPFC elucidated its contribution to the regulation of cognitive, social and mood-related behaviors. Overall, this thesis sheds light on brain functions of a GWAS-identified risk gene Fxr1 and shows the utility of intersectional CRISPR/Cas9 mediated genetic targeting for the interrogation of circuitspecific functions of genes.
Variants in Fxr1 gene are GWAS-associated to schizophrenia, bipolar disorders, insomnia, and sleep duration. Gsk3β can directly phosphorylate and negatively regulate Fxr1. Moreover, functional interaction between Gsk3β and Fxr1 is associated with emotional stability in humans. How Gsk3β-Fxr1 regulates neuronal activity, plasticity and behaviors remains unclear. Gsk3β can be activated downstream of dopamine D2 receptors. Gsk3β activity can be modulated by mood stabilizers, antipsychotics and antidepressants to regulate behaviors. Nevertheless, neuroanatomical correlates of Gsk3β functions downstream of D2 receptors remain elusive. First, we investigated the relationship of Gsk3β-Fxr1 to neuronal activity and behaviors. We discovered that Fxr1 and its negative regulator Gsk3β affect anxiety-related behaviors and glutamatergic neurotransmission via regulation of synaptic AMPA receptors. Second, we addressed the involvement of Gsk3β-Fxr1 in synaptic plasticity and sleep. We discovered that Fxr1 is a master regulator of homeostatic synaptic scaling. Moreover, it is engaged during sleep homeostasis to modulate synaptic strength via regulation of transcripts involved in local protein synthesis and synaptic structure. Third, to understand neuroanatomical correlates of D2 receptor signaling we generated a cortex-wide map of D2 expressing neurons and their projection targets. Fourth, we aimed to understand anatomically defined functions of Gsk3β downstream of D2 receptors. CRISPR/Cas9 mediated intersectional knockout of Gsk3β in D2 neurons of mPFC elucidated its contribution to the regulation of cognitive, social and mood-related behaviors. Overall, this thesis sheds light on brain functions of a GWAS-identified risk gene Fxr1 and shows the utility of intersectional CRISPR/Cas9 mediated genetic targeting for the interrogation of circuitspecific functions of genes.
Bezin, Laurent. "Plasticité de l'expression de la tyrosine hydroxylase dans le locus cæruleus du rat au cours du développement postnatal : phénotype cellulaire et compartimentation entre aire somatique et neuropile péricæruléen." Lyon 1, 1995. http://www.theses.fr/1995LYO1T018.
Full textBrezun, Jean-Michel. "La sérotonine, un facteur régulateur de l'adhérence cellulaire et de la neurogénèse secondaire dans le système nerveux central du rat adulte." Aix-Marseille 3, 1999. http://www.theses.fr/1999AIX30059.
Full textDeveraux, Solenne. "Modélisation de la mécanique de la cellule et son noyau dans le cadre de la migration confinée." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLC063/document.
Full textOne of the fundamental properties incells is their ability to migrate. Fromembryogenesis to tumor metastasis, migratingcells must overcome mechanical obstacles toreach their intended location, squeezing throughsub-cellular and sub-nuclear gaps. It can be doneby adapting the locomotion mode to thesurrounding environment or by tuning the cell’sown mechanical properties. Migrating in aconfined space leads to intensive deformation ofthe cell and thus its nucleus. Being the largestand stiffest organelle, the nucleus can hamperthe migratory process. Its mechanical propertieshence are key to a successful migration in acomplex environment. Molecular signals behindcell migration have been extensively studied inthe literature, but what can computationalmechanics modeling unveil about themechanisms behind cell migration?Cell migration is such a complex mechanobiologicalprocess, that all aspects cannot bemodeled at once for now. We choose threedistinct situations for in-depth study. We firstseek to understand the mechanical interplaybetween the nucleus and the cytoplasm, sincenuclear plasticity seems decisive for migrationthrough sub-nuclear gaps. Second, weinvestigate the mechanics of chimneying, aspecific confined migratory mode, in which noadhesion in needed for the cell to move forward.Poroelasticity, coupled with friction, appears asthe key to successful locomotion. Eventually,cell spreading on micro-pillared substrates hasrecently been developed to study nuclearmechanical properties. The mechanism behindthis process being however unclear, we designeda large deformation model to determine whetherthe nucleus is being pushed or pulled in theinter-pillars gaps
Akchiche, Nassila. "Conséquences d'une carence en donneurs de méthyles sur la différenciation cellulaire, la survie et la neuroplasticité : approches mécanistiques in vitro sur des lignées neuronales." Thesis, Nancy 1, 2009. http://www.theses.fr/2009NAN10122/document.
Full textFolate (vitamin B9) and vitamin B12 act as cofactors in the one-carbon metabolism that regulates transmethylation reactions involved in epigenetic mechanisms. A deficiency in folate and/or B12 decreases the generation of methionine from homocysteine, a toxic amino acid that has been associated with pathologies of the central nervous system at all ages (spina bifida, Alzheimer's disease…). In order to depict the cellular and molecular mechanisms implicated in the response to the deficiency in these micronutrients, two new cell models have been developed. Thus, we have analyzed the effects of folate deficiency on proliferation, differentiation and neuroplasticity of neuronal progenitors obtained from the hippocampus of rat embryos, i.e. the H19-7 cell line. Regarding the second model, we designed an original approach by stable transfection of NIE-115 murine neuroblastoma cells to impose the anchorage of a chimeric B12 binding protein, transcobalaminoleosin (TO) to intracellular membrane in order to produce intracellular sequestration of B12. Taken together, our results have shown that deficiency-associated alterations of the one-carbon metabolism lead to reduced neurogenesis and to dramatic impairment of neuron differentiation. This suggests the existence of specific mechanisms through which vitamin B9/B12 deficiency and/or homocysteine may affect brain functioning and plasticity
Vieira, Andhira. "L’expression induite et ectopique de Neurog3 dans les cellules adultes de canaux pancréatiques révèle leur plasticité." Thesis, Nice, 2015. http://www.theses.fr/2015NICE4005.
Full textThe pancreas can be divided into two tissue types: exocrine and endocrine. The endocrine tissue is organized into clusters of cells named islets of Langerhans, comprising five cell subtypes of which the two main (α and β) secrete respectively glucagon and insulin. Type 1 diabetes is an auto-immune disease resulting in the loss of pancreatic β-cells and, consequently, in chronic hyperglycemia. Current therapies are efficient but remain highly binding, leading current research to aim at deciphering the β-cell genesis and/or regeneration to potentially establish new therapies. Many studies characterized the specific cascade of transcription factors differentiating pancreatic progenitor cells during development, including Neurog3 specifying the endocrine lineage and Pax4 favoring the β-cell lineage. Previous results obtained in the lab led us to establish the hypothesis that pancreatic ducts may contain a potential source of progenitor cells, which could become endocrine cells through re-expression of Neurog3. Thus, we investigated the consequences of the ectopic misexpression of Neurog3 in pancreatic duct cells in vivo. Using this strategy, we observed a dramatic increase in islet size, due to an augmentation in all endocrine cells types. Lineage tracing allowed us to demonstrate that the new endocrine cells have a ductal origin, while physiological studies displayed functional insulin response upon a glucose bolus. Finally, our analyses also demonstrated that the fate of these newly generated endocrine cells could be modulated by acting on the Pax4 gene
Gothie, Jean-David. "Influence de la signalisation thyroïdienne et du métabolisme mitochondrial sur le choix de destin des cellules souches neurales de la zone sous-ventriculaire chez la souris adulte." Thesis, Paris, Muséum national d'histoire naturelle, 2017. http://www.theses.fr/2017MNHN0023.
Full textThe adult mammalian brain maintains its capacity to generate new cells from neural stem cells (NSCs), mainly localized in two specific brain regions, the hippocampus and the sub-ventricular zone (SVZ). This process, named neurogenesis, results in the production of new neurons and new glial cells (astrocytes and oligodendrocytes). Several signals control NSCs proliferation and differentiation. Among those, thyroid hormones (THs) are involved in NSCs proliferation in the SVZ and in neuronal differentiation. NSC metabolism relies mainly on glycolysis associated with a low mitochondrial activity, whereas mature cells, like neurons and glia, preferentially use oxidative phosphorylation. Changes in NSC metabolism can impact cell fate. As THs play an important part in activating mitochondrial metabolism, I hypothesized that the influence of TH signaling on mitochondrial activity triggers NSC fate choice in the adult SVZ. First, I showed in vivo and in vitro that THs allow NSC determination in neuronal precursors, whereas a short hypothyroidism favors glial determination. Transthyretine, a TH binding protein, is specifically present in the SVZ cells having a neuronal fate, while type 3 deiodinase, a TH inhibitor, is expressed by oligodendrocyte precursor cells (OPCs). These results indicate that THs signaling isdifferentially activated in neuronal and glial cell lineages. I observed that cells adopting a neuronal fate display a greater mitochondrial activity when compared to OPCs, and that TH signaling favors mitochondrial respiration and ROS production in the SVZ cells. Inhibiting the mitochondrial respiratory chain prevents TH-mediated promotion of neuronal determination, proving the need of mitochondrial activation for NSC commitment toward a neuronal phenotype. Besides, it is also known that modifications of mitochondrial morphology (or mitochondrial dynamics) are required for the respiration to increase. Among mitochondrial dynamics, fission is crucial for a good intracellular repartition of energy production, and for cell migration. In the SVZ cells, I showed that, DRP1, the main inducer of mitochondrial fission, is activated by THs mainly in cells adopting a neuronal fate. Thus, THs favor NSC fate choice toward a neuronal phenotype through the activation of mitochondrial metabolism and mitochondrial fission in the adult mouse SVZ
Savasta, Marc. "Etude radioautographique de la localisation sous-régionale et cellulaire des récepteurs D1 et D2 dopaminergiques dans le striatum de rat de leur plasticité après dénervation dopaminergique." Lyon 1, 1987. http://www.theses.fr/1987LYO19038.
Full textDurufle, Harold. "Production et traitement de données omiques hétérogènes en vue de l'étude de la plasticité de la paroi chez des écotypes de la plante modèle Arabidopsis thaliana provenant d'altitudes contrastées." Thesis, Toulouse 3, 2017. http://www.theses.fr/2017TOU30219/document.
Full textGlobal warming is a current issue of great concern because of its potential effects on biodiversity and the agricultural sector. Better understanding the adaptation of plants to this recent phenomenon is therefore a major interest for science and society. The study of natural populations from an altitude gradient allows correlating a set of climatic conditions (temperature, humidity, radiation, etc...) with phenotypic traits. These different populations are considered as adapted to their climatic conditions in natura. By cultivating these plants under standardized laboratory conditions (light intensity, substrate, temperature, watering, etc.), the observed phenotypic variability, is essentially due to the genetic variability intrinsic to each genotype. The growth of these same plants by changing a single variable, for example temperature, makes possible to highlight a characteristic phenotype. This phenotype may be an acclimation response of a relevant genome. The WallOmics project aims at characterizing the adaptation of plants to altitude by studying natural populations of Arabidopsis thaliana from the Pyrenees. The molecular actors of the adaptation of plants are still poorly described, but it appears that the plant cell wall could play an important role in this process. Indeed, it represents the skeleton of plants and gives them rigidity while representing a dynamic and sensitive external barrier to environmental changes. Its structure and composition can be modified at any time. It is also possible to say that the plant cell wall gives the general shape of the plant (size, shape, density, etc.), that is its observable phenotype. This project will focus mainly on the study of the plant cell wall. New technologies have enabled the emergence of the so-called "omics" data, large sets of data at multiple biological levels, such as ecological, phenotypic, metabolomic, proteomic, transcriptomic and genomic data. The study and the links between these data have favoured the development of integrative approaches aimed at establishing a response at several scales. It is precisely by this type of non- mechanistic approach that the WallOmics project has contributed to establish the molecular players of plant cell wall modifications in the global warming context
Jourquin, Jérôme. "Système MMP/ TIMP et implication des gélatinases et de TIMP-1 dans la mort neuronale et la plasticité réactive suite à des lésions excitotoxiques dans l'hippocampe." Aix-Marseille 2, 2003. http://www.theses.fr/2003AIX20664.
Full textMatrix metalloproteinases (MMPs) are involved in tissue homeostasis and are controlled by the tissue inhibitors of metalloproteinases (TIMPs). An imbalance in the MMP/TIMP system seems to be involved in neuronal death and plasticity. After kai͏̈nate : sequential and cell-type dependent increase of gelatinolytic activity ; neuronal increase of gelatinolytic activity is neuronal-activity dependent ; broad inhibition of MMPs, or of MMP-9, protects against excitotoxicity ; MMP-9 induces cell death in the hippocampus ; the TIMP-1 KO mice : no gross phenotypic difference ; hyper-resistance to neuronal death ; reduced axonal sprouting,The TIMP-1 KO mice present an impaired learning and the TIMP-1 overexpressing mice present an improved learning
Bailleul, Justine. "Etude des mécanismes impliqués dans la reprogrammation de cellules cancéreuses non-souches en cellules souches cancéreuses induite par les radiations ionisantes dans le cancer du sein." Thesis, Lille 1, 2018. http://www.theses.fr/2018LIL1S100/document.
Full textCancer stem cells (CSCs) identification in hematologic and solid tumors has paved the way to many fundamental and translational studies. However, recent studies have highlighted cancer cells plasticity. Indeed, differentiated non-cancer stem cells (non-CSCs) can generate CSCs upon various stimuli. In particular, radiotherapy (RT) induces CSCs from non-CSCs, in vitro. This reprogramming could be involved in treatments resistance and recurrence risk. Nevertheless, reprogramming mechanisms remain unknown, and identification of new targets seems essential to prevent CSC emergence. During my PhD thesis, I have shown that media from irradiated non-CSCs induces mammary CSC reprogramming. I have demonstrated that RT lead to specific chemokines secretion, as CXCL1 and CCL5. Inhibition and recombinant proteins treatments allowed me to demonstrate the involvement of CXCL1, CCL5 and their receptors in in vitro reprogramming. Moreover, in vivo inhibition of CXCL1 and CCL5, combined with RT, lead to an increased survival, in a xenografted mouse model. Finally, transcriptomic analysis of chemokines and receptors expression from clinical databases has shown a correlation with signatures of CSCs and more agressive breast cancer subtypes, as well as a decreased metastasis-free survival. These findings denote the involvement of chemokines in non-CSCs reprogramming into CSCs in breast cancer, and the potential of chemokines to constitute new therapeutics targets, in combination with conventional anti-cancer treatments
Commere, Oustric Julie. "Apports nutritionnels en acides gras polyinsaturés n-3 et action cellulaire de la vitamine A : effets sur la plasticité cérébrale et la mémoire spatiale chez le rat agé." Thesis, Bordeaux 1, 2010. http://www.theses.fr/2010BOR14211/document.
Full textLong chain polyunsaturated fatty acids (LC-PUFA) of the n-3 series play essential roles in brain functions, including brain plasticity and memory processes which are altered during aging. It is now well accepted that these PUFA regulate gene transcription through binding and activating specific nuclear receptors such as PPAR (peroxisome proliferator-activated receptors) and RXR (retinoid X receptors, which also bind 9-cis retinoic acid). As a common heterodimeric partner of both PPAR and RAR (all-trans retinoic acid receptors), RXR is a key factor in the modulation of gene expression by fatty acids and retinoids. In this context, the purpose of this work was to study the effects of a n-3 LC-PUFA supplementation on fatty acid and retinoid signalling pathways and on cerebral plasticity and spatial memory processes. Our main results show that n-3 LC-PUFA supplementation for 21 weeks in mid-life rats, maintains the mRNA levels of RXRγ and GAP-43 (synaptic protein) which were altered in aged rat hippocampus. Besides, supplemented aged rats exhibited increased numbers of newly generated neurons and improved spatial working memory, when compared with control aged rats. To summarize, our results support the neuroprotective effects of n-3 LC-PUFA during aging, in particular on cerebral plasticity and working memory. Furthermore, our works suggest the implication of RXR in the set up of these effects through notably the regulation of some target genes involved in synaptic plasticity and hippocampal neurogenesis processes
Moussy, Alice. "Caractérisation des premières étapes de différenciation des cellules hématopoïétiques à l'échelle de la cellule unique." Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLEP029/document.
Full textDespite intensively studies, the fundamental mechanisms of cell fate decision during cellular differentiation still remain unclear. The deterministic mechanisms, often based on studies of large cell populations, cannot explain the difference between individual cell fates choices placed in the same environment. The aim of my thesis work is to study the first steps of hematopoietic cell differentiation at the single cell level thanks to transcriptomic, proteomic and morphological analyses. Two differentiation models have been used: T regulatory lymphocytes and human cord blood-derived CD34+ cells. The behavior of individual cells following stimulation has been analyzed. Using time-lapse microscopy coupled to single cell molecular analyses, we could demonstrate that the cell fate choice is not a unique, programmed event. First, the cell reaches a metastable “multi-primed” state, which is characterized by a mixed lineage gene expression pattern. After transition through an “uncertain”, unstable state, characterized by fluctuations between two phenotypes, the cell reaches a stable state. Our observations are coherent with a stochastic model of cell fate decision. The differentiation is likely to be a spontaneous, dynamic, fluctuating and not a deterministic process. The cell fate decisions are taken by individual cells
André-Ratsimbazafy, Marie. "Phenotype plasticity and populations’ dynamics : social interactions among cancer cells." Thesis, Sorbonne Paris Cité, 2016. http://www.theses.fr/2016USPCB032/document.
Full textIt is commonly accepted that tumors arise from cells that escape the homeostatic controls which underlie the healthy histological structure and that cell phenotype is not the result of deterministic biochemical and genetic processes, but rather the stochastic and dynamic outcome of multiple intra- and intercellular regulation networks. This PhD aims to quantitatively study the phenotypic homeostasis of the cell populations and to present an approach to the fundamental question, never heretofore studied, regarding the autonomy versus collective control of cell fate. We studied in the long run, using flow cytometry and in 2D and 3D conditions, the level of expression of CD24 and CD44 of two breast cancer cell lines (SUM149-PT and SUM159-PT). Three phenotypes were isolated (CD24-/CD44+, CD24+/CD44+, CD24-/CD44-), the latter had not previously been documented in the literature. The phenotypic behavior of CD44-low and CD44-high subpopulations has been characterized by assessing their proportion and analyzing the fluorescence map. Thereby, we observed both a periodic behavior of appearance and disappearance of pool of cells characteristics of each cell lines and a phenotypic re-diversification for each subpopulation. Only the resulting population derived from CD24-/CD44- provided the same balance as the original unsorted population. 3D re-diversification process was observed in tumorspheres from CD24-/CD44+ and CD24+/CD44+. The cells CD24-/CD44did not have that potential but nonetheless outlived anoikis. These behaviors suggest that there is an inter-cell coordination regulating the balance of phenotypic proportions. To discover the social rules regulating inter-phenotypic spatial organization, we have set up a reporter of the endogenous variations of CD24 and CD44 and developed a theoretical model of cell interactions. This work has confirmed our hypothesis that inter-cellular social rules are determining the phenotypic expression at both the uni- and multicellular scales
Schenck, Annette. "CYFIP, a protein family implicated in neuronal connectivity, links Rac1 GTPase signalling to the fragile X mental retardation protein." Université Louis Pasteur (Strasbourg) (1971-2008), 2003. http://www.theses.fr/2003STR13175.
Full textFragile X Syndrome is the most frequent form of hereditary mental retardation and caused by the absence of FMRP, an RNA binding protein that seems to regulate local protein translation at synapses. To better understand the physiological function of FMRP, we conducted a yeast two-hybrid screen to determine interacting proteins. We identified CYFIP1 and CYFIP2 (Cytoplasmic FMRP Interacting Proteins 1/2), two highly homologous cytoplasmic proteins, which show a different pattern of interaction with the two FMRP-related proteins FXR1P and FXR2P. The CYFIP binding site of FMRP overlaps with its homo- and heteromerisation domain, suggesting that binding to CYFIP may modulate FMRP function. Importantly, CYFIP1 has been previously reported to interact with Rac1. Rac1, a Rho GTPase, is a key regulator of actin cytoskeleton remodelling with a well-established role in maturation and maintenance of dendritic spines, which are actin-rich synaptic structures that are abnormally developed in Fragile X patients and FMRP null mice. Since several genes of Rac/Rho signalling pathways are implicated in mental retardation, our work suggested that Rac1, CYFIP and FMRP work in a common pathway determining synapse morphogenesis and cognitive function. To address this hypothesis in vivo, we have chosen the fruitfly Drosophila melanogaster as a genetic model organism. Drosophila CYFIP, a previously undescribed gene, is highly expressed in the embryonic nervous system, where it strongly accumulates in central axons and at the neuromuscular junction (NMJ). CYFIP mutations induce defects in axon growth, branching and pathfinding and result in abnormal synapse morphology at the neuromuscular junction. Hence, loss of CYFIP involves defects that have been previously described in dFMR1 and/or dRac1 mutants. Analyses of biochemical and genetic interactions amongst these three proteins suggest that upon activation, dRac1 acts antagonistically on CYFIP, which in turn negatively regulates dFMR1