Contents
Academic literature on the topic 'Plasticité cellulaire – métabolisme'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Plasticité cellulaire – métabolisme.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Dissertations / Theses on the topic "Plasticité cellulaire – métabolisme"
Guerin, Amandine. "Fonction de la protéine LIX1 dans la régulation de la plasticité cellulaire du muscle lisse digestif." Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTT028.
Full textThe digestive tract is a vital organ ensuring food digestion, nutrient absorption and waste excretion. One of the main properties of digestive tract is the motricity which is defined as the set of contractions that allows the transition of the food from the mouth to the anus. Cells involved in the regulation of digestive plasticity are the enteric nervous cells, the interstitial cells of Cajal and the smooth muscle cells. The interstitial cells of Cajal and smooth muscle cells derived from a common mesenchymal progenitor. Mesenchyme-derived cells have the unique capacity to switch from the contractile and functional state to an immaturity state. This plasticity is responsible for motricity disorders. Our work aims to identify the mechanisms involved in the differentiation of the mesenchymal progenitors and to study those mechanisms in pathological conditions. The team previously identified the LIX1 gene (LImb eXpression 1) as the first molecular marker of the digestive smooth muscle immaturity and demonstrated its role on the differentiation of mesenchymal progenitors through the control of YAP1 (McKey et al., 2016). In this context, during my thesis, I focused on LIX1 and the mitochondrial remodeling as a putative regulatory mechanism of mesenchymal-derived cells differentiation. First, I investigated and demonstrated the role and function of LIX1 in the aggressiveness and the immaturity of the GastroIntestinal Stromal Tumor (GIST) cells. In parallel, I participated to the characterization of cells derived from CPIO (Chronic Pseudo Intestinal Obstruction) patients. Finally, I developed a new model of human gastric smooth muscle cells to evaluate the metabolism during the SMC differentiation. Altogether, we showed that LIX1 and its downstream pathways control SMC plasticity
Dahan, Perrine. "Rôle de la plasticité cellulaire et du métabolisme dans la radiorésistance des cellules de glioblastomes : mise en évidence de nouvelles cibles thérapeutiques potentielles." Thesis, Toulouse 3, 2015. http://www.theses.fr/2015TOU30279/document.
Full textGlioblastomas (GBM) are some highly lethal brain tumors despite a treatment associating surgical resection and radio-chemotherapy. Amongst these tumors, a subpopulation of radio/chemoresistant GBM stem-like/initiating cells (GIC) appears to be involved in the systematic GBM recurrence through the generation of more differenciated tumoral cells. Recent studies showed that tumor cells may have the ability to dedifferentiate and acquire a GIC phenotype in response to microenvironment stresses. We hypothesized that GBM cells could be subjected to a similar dedifferentiation process after ionizing radiations (IR), then supporting the GBM rapid recurrence after radiotherapy. Indeed, I showed that the exposure of several primo-cultures of differentiated GBM cells isolated from patient resections to a subtoxic and clinically relevant IR dose potentiated the long-term reacquisition of GIC properties (self-renewal ability, expression of stemness markers and tumorigenicity). I also identified during this process (1) an up-regulation of the anti-apoptotic protein Survivin whose pharmacological down-regulation led to a blockade of the IR-induced plasticity, (2) the presence of a metabolic shift occurring quickly after IR and (3) an enzymatic target, which appears to be involved in extracellular acidification under IR and could also potentiate the long term dedifferentiation induced by IR. At term, targeting the mechanisms associated with IR-induced plasticity in order to inhibit the IR-induced adaptive processes will likely contribute to develop some innovating pharmacological strategies for an improved radio-sensitization of these brain tumors
Nedara, Kenza. "Impact de l'expression de TRIAP1, substrat de la voie d'import AIF/CHCHD4, sur la prolifération des cellules cancéreuses et leur réponse au stress métabolique." Thesis, université Paris-Saclay, 2022. http://www.theses.fr/2022UPASL032.
Full textUnder physiological conditions, mitochondria play a fundamental role in cell survival, differentiation and activation by participating in bioenergetic metabolism, synthesis of macromolecules, regulation of signaling pathways or control of the epigenome. This organelle is bifunctional as its involvement is also well established in the cellular response to stress or apoptotic signals. The regulation of the mitochondrial activity is closely linked to its morphology, which is controlled by a set of proteins involved in the remodeling of its ultrastructure and fusion/fission dynamics. These proteins are crucial for the adaptation of mitochondrial biogenesis and activity to the bioenergetic needs of the cell. They are also key players in the regulation of cellular processes and signaling pathways that require the interaction of mitochondria with other cellular compartments such as the endoplasmic reticulum.Recently, a new class of mitochondria shaping proteins (TRIAP1, CHCHD2, CHCHD3, CHCHD6 and CHCHD10) was described. These proteins contain a coiled-coil-helix (CHCHD) domain and are imported into the intermembrane space of the organelle through the activity of the redox-dependent Mia40/CHCHD4 import machinery. They represent potential therapeutic targets as their abnormal expression or deficient activity has been associated with various human pathologies such as neurodegenerative diseases and cancer. During my thesis I studied the TRIAP1 protein which is overexpressed in many types of cancers. RNA interference or recombinant protein overexpression experiments , in a colorectal cancer model, showed that TRIAP1 expression promotes cell proliferation and tumor growth. Our results show that TRIAP1 depletion alters mitochondrial ultrastructure, impacts the metabolomic and lipidomic profile of the cells and induces a retrograde signaling to the nucleus that modifies the gene expression program. Furthermore, our results show that loss of TRIAP1 alters the response of cancer cells to metabolic stress conditions. Overall, our results highlight the relevance of TRIAP1 in the metabolic plasticity of cancer cells. A better understanding of the molecular basis of the mitochondrial activity of TRIAP1 in cancer cells should provide a better understanding of the selective advantage that its overexpression provides to tumor cells
El-Hout, Mouradi. "Rôle de l'autophagie dans l'émergence des cellules souches cancéreuses : implication du métabolisme Oncostatin M-mediated autophagy orchestrates the emergence of cancer stem cells by induction of Hexokinase 2." Thesis, Sorbonne Paris Cité, 2019. http://www.theses.fr/2019USPCB035.
Full textTumor development as recently modelized according to the concept of cancer stem cells (CSCs) is a static model in which CSCs are the only ones responsible for emergence, resistance to treatment and tumor recurrence. However, the cancer biology is complex and the plasticity of CSCs suggests the existence of a bidirectional conversion between CSCs and non-CSCs. This thesis aims to elucidate the mechanisms by which autophagy, a process of self-digestion, governs the fate of breast CSCs and provides a better understanding of the process of plasticity. Our results highlight the involvement of autophagy in metabolic remodeling by increasing glycolysis at the expense of oxidative phosphorylation and this is accompanied by the emergence of CSCs. Indeed, we show that Oncostatin M (OSM), a pro-inflammatory cytokine of the IL-6 family, regulates autophagy and the expression of hexokinase II (HK II). This enzyme, the first of the glucose metabolism pathway, is described to play a key role in the 'Warburg' effect. Here we report that inhibition of HK II and PI3K / AKT prevent the induction of CSC population. Notably, the results presented in this thesis attribute to autophagy a new role which confers, by acetylation, a protection to HK II against the degradation by the proteasome, making it possible to maintain an increased glycolysis required for the emergence and maintenance of CSCs
Lim, Ai Ing. "Cytokine control of human innate lymphoid cell development and function." Thesis, Sorbonne Paris Cité, 2017. http://www.theses.fr/2017USPCC272/document.
Full textInnate lymphoid cells (ILC) represent a novel family of hematopoietic effectors that serve essential roles in early immune response by rapid cytokines production. Three distinct groups of ILC subsets have been described. Group 1 ILC include cytotoxic natural killer (NK) cells and other type-1 cytokines (IFN-? and TNF-?) producing cells that regulated by T-BET. Group 2 ILC (ILC2) express GATA-3 and ROR?, secrete type-2 cytokines, IL-5 and IL-13. Group 3 ILC (ILC3) utilize ROR?t to drive production of the TH17-associated cytokines, IL-17 and/or IL-22. In this thesis, I have performed series of experiments to uncover the developmental pathway and function of human ILC that may allow us to harness ILC in diverse clinical settings. First, I analyzed the phenotypic and functional heterogeneity of human peripheral blood ILC2. I found human IL-13+ ILC2 can acquire the capacity to produce IFN-?, thereby generating ÔplasticÕ ILC2. ILC2 cultures demonstrated that IFN-?+ ILC2 clones could be derived and were stably associated with increased T-BET expression. The inductive mechanism for ILC2 plasticity was mapped to the IL-12/IL-12R signaling pathway and was confirmed through analysis of patients with Mendelian susceptibility to mycobacterial disease (MSMD) due to IL-12R?1 deficiencies that failed to generate plastic ILC2. This IL-13+IFN-?+ ILC2 are detected ex vivo in gut tissues from CrohnÕs patients. Second, I identified and isolated ILC precursors (ILCP) in peripheral blood of healthy donors. This circulating ILCP can give rise to four lineages of mature ILC including cytotoxic NK cells and helper ILC1, 2 and 3 in vitro and in vivo. Transcirptomic and epigenetic analysis showed ILCP have ILC-committed transcription factor profiles but have mature ILC signature locus at the epigenetics poised states. We further identified ILCP in various tissues including fetal liver, cord blood, postnatal lung and tonsil. Our result proposed a new model of ÒILC-poiesisÓ where circulating ILCP serve as cellular substrates to generate mature ILC subsets in tissues. Understanding the role of IL-12 on driving ILC2 to ILC1 plasticity may allow us to target plastic ILC2 in various diseases. The identification and isolation of ILCP from circulating blood allow further transfer into clinical setting for cellular therapy, especially for various diseases that ILC has been shown to be importance including infection, allergy, cancer and metabolic diseases