Journal articles on the topic 'Plasticità Hebbiana'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Plasticità Hebbiana.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Yee, Ada X., Yu-Tien Hsu, and Lu Chen. "A metaplasticity view of the interaction between homeostatic and Hebbian plasticity." Philosophical Transactions of the Royal Society B: Biological Sciences 372, no. 1715 (March 5, 2017): 20160155. http://dx.doi.org/10.1098/rstb.2016.0155.
Full textHsu, Yu-Tien, Jie Li, Dick Wu, Thomas C. Südhof, and Lu Chen. "Synaptic retinoic acid receptor signaling mediates mTOR-dependent metaplasticity that controls hippocampal learning." Proceedings of the National Academy of Sciences 116, no. 14 (February 19, 2019): 7113–22. http://dx.doi.org/10.1073/pnas.1820690116.
Full textFox, Kevin, and Michael Stryker. "Integrating Hebbian and homeostatic plasticity: introduction." Philosophical Transactions of the Royal Society B: Biological Sciences 372, no. 1715 (March 5, 2017): 20160413. http://dx.doi.org/10.1098/rstb.2016.0413.
Full textTurrigiano, Gina G. "The dialectic of Hebb and homeostasis." Philosophical Transactions of the Royal Society B: Biological Sciences 372, no. 1715 (March 5, 2017): 20160258. http://dx.doi.org/10.1098/rstb.2016.0258.
Full textCosta, Rui Ponte, Beatriz E. P. Mizusaki, P. Jesper Sjöström, and Mark C. W. van Rossum. "Functional consequences of pre- and postsynaptic expression of synaptic plasticity." Philosophical Transactions of the Royal Society B: Biological Sciences 372, no. 1715 (March 5, 2017): 20160153. http://dx.doi.org/10.1098/rstb.2016.0153.
Full textZenke, Friedemann, and Wulfram Gerstner. "Hebbian plasticity requires compensatory processes on multiple timescales." Philosophical Transactions of the Royal Society B: Biological Sciences 372, no. 1715 (March 5, 2017): 20160259. http://dx.doi.org/10.1098/rstb.2016.0259.
Full textCard, H. C., C. R. Schneider, and W. R. Moore. "Hebbian plasticity in mos synapses." IEE Proceedings F Radar and Signal Processing 138, no. 1 (1991): 13. http://dx.doi.org/10.1049/ip-f-2.1991.0003.
Full textMagee, Jeffrey C., and Christine Grienberger. "Synaptic Plasticity Forms and Functions." Annual Review of Neuroscience 43, no. 1 (July 8, 2020): 95–117. http://dx.doi.org/10.1146/annurev-neuro-090919-022842.
Full textMiller, Kenneth D. "Derivation of Linear Hebbian Equations from a Nonlinear Hebbian Model of Synaptic Plasticity." Neural Computation 2, no. 3 (September 1990): 321–33. http://dx.doi.org/10.1162/neco.1990.2.3.321.
Full textGuzman-Karlsson, Mikael C., Jarrod P. Meadows, Cristin F. Gavin, John J. Hablitz, and J. David Sweatt. "Transcriptional and epigenetic regulation of Hebbian and non-Hebbian plasticity." Neuropharmacology 80 (May 2014): 3–17. http://dx.doi.org/10.1016/j.neuropharm.2014.01.001.
Full textFélix-Oliveira, A., R. B. Dias, M. Colino-Oliveira, D. M. Rombo, and A. M. Sebastião. "Homeostatic plasticity induced by brief activity deprivation enhances long-term potentiation in the mature rat hippocampus." Journal of Neurophysiology 112, no. 11 (December 1, 2014): 3012–22. http://dx.doi.org/10.1152/jn.00058.2014.
Full textStefanescu, Roxana A., and Susan E. Shore. "Muscarinic acetylcholine receptors control baseline activity and Hebbian stimulus timing-dependent plasticity in fusiform cells of the dorsal cochlear nucleus." Journal of Neurophysiology 117, no. 3 (March 1, 2017): 1229–38. http://dx.doi.org/10.1152/jn.00270.2016.
Full textCard, H. C., and W. R. Moore. "EEPROM synapses exhibiting pseudo-Hebbian plasticity." Electronics Letters 25, no. 12 (1989): 805. http://dx.doi.org/10.1049/el:19890543.
Full textMartens, Marijn B., Tansu Celikel, and Paul H. E. Tiesinga. "A Developmental Switch for Hebbian Plasticity." PLOS Computational Biology 11, no. 7 (July 14, 2015): e1004386. http://dx.doi.org/10.1371/journal.pcbi.1004386.
Full textZiegler, Martin, Christoph Riggert, Mirko Hansen, Thorsten Bartsch, and Hermann Kohlstedt. "Memristive Hebbian Plasticity Model: Device Requirements for the Emulation of Hebbian Plasticity Based on Memristive Devices." IEEE Transactions on Biomedical Circuits and Systems 9, no. 2 (April 2015): 197–206. http://dx.doi.org/10.1109/tbcas.2015.2410811.
Full textKeck, Tara, Taro Toyoizumi, Lu Chen, Brent Doiron, Daniel E. Feldman, Kevin Fox, Wulfram Gerstner, et al. "Integrating Hebbian and homeostatic plasticity: the current state of the field and future research directions." Philosophical Transactions of the Royal Society B: Biological Sciences 372, no. 1715 (March 5, 2017): 20160158. http://dx.doi.org/10.1098/rstb.2016.0158.
Full textElliott, Terry. "An Analysis of Synaptic Normalization in a General Class of Hebbian Models." Neural Computation 15, no. 4 (April 1, 2003): 937–63. http://dx.doi.org/10.1162/08997660360581967.
Full textRauschecker, Josef P. "Reverberations of Hebbian thinking." Behavioral and Brain Sciences 18, no. 4 (December 1995): 642–43. http://dx.doi.org/10.1017/s0140525x00040358.
Full textGainey, Melanie A., and Daniel E. Feldman. "Multiple shared mechanisms for homeostatic plasticity in rodent somatosensory and visual cortex." Philosophical Transactions of the Royal Society B: Biological Sciences 372, no. 1715 (March 5, 2017): 20160157. http://dx.doi.org/10.1098/rstb.2016.0157.
Full textVitureira, Nathalia, and Yukiko Goda. "The interplay between Hebbian and homeostatic synaptic plasticity." Journal of Cell Biology 203, no. 2 (October 28, 2013): 175–86. http://dx.doi.org/10.1083/jcb.201306030.
Full textAcker, Daniel, Suzanne Paradis, and Paul Miller. "Stable memory and computation in randomly rewiring neural networks." Journal of Neurophysiology 122, no. 1 (July 1, 2019): 66–80. http://dx.doi.org/10.1152/jn.00534.2018.
Full textJackson, Meyer B. "Hebbian and non‐Hebbian timing‐dependent plasticity in the hippocampal CA3 region." Hippocampus 30, no. 12 (August 20, 2020): 1241–56. http://dx.doi.org/10.1002/hipo.23252.
Full textWitten, Ilana B., Eric I. Knudsen, and Haim Sompolinsky. "A Hebbian Learning Rule Mediates Asymmetric Plasticity in Aligning Sensory Representations." Journal of Neurophysiology 100, no. 2 (August 2008): 1067–79. http://dx.doi.org/10.1152/jn.00013.2008.
Full textLazari, Alberto, Piergiorgio Salvan, Michiel Cottaar, Daniel Papp, Matthew F. S. Rushworth, and Heidi Johansen-Berg. "Hebbian activity-dependent plasticity in white matter." Cell Reports 39, no. 11 (June 2022): 110951. http://dx.doi.org/10.1016/j.celrep.2022.110951.
Full textRubin, Jonathan, Daniel D. Lee, and H. Sompolinsky. "Equilibrium Properties of Temporally Asymmetric Hebbian Plasticity." Physical Review Letters 86, no. 2 (January 8, 2001): 364–67. http://dx.doi.org/10.1103/physrevlett.86.364.
Full textAndersen, Niels, Nathalie Krauth, and Sadegh Nabavi. "Hebbian plasticity in vivo: relevance and induction." Current Opinion in Neurobiology 45 (August 2017): 188–92. http://dx.doi.org/10.1016/j.conb.2017.06.001.
Full textWang, Daliang, and Leonard Maler. "In Vitro Plasticity of the Direct Feedback Pathway in the Electrosensory System of Apteronotus leptorhynchus." Journal of Neurophysiology 78, no. 4 (October 1, 1997): 1882–89. http://dx.doi.org/10.1152/jn.1997.78.4.1882.
Full textMendes, Alexandre, Gaetan Vignoud, Sylvie Perez, Elodie Perrin, Jonathan Touboul, and Laurent Venance. "Concurrent Thalamostriatal and Corticostriatal Spike-Timing-Dependent Plasticity and Heterosynaptic Interactions Shape Striatal Plasticity Map." Cerebral Cortex 30, no. 8 (March 7, 2020): 4381–401. http://dx.doi.org/10.1093/cercor/bhaa024.
Full textKoch, G., V. Ponzo, F. Di Lorenzo, C. Caltagirone, and D. Veniero. "Hebbian and Anti-Hebbian Spike-Timing-Dependent Plasticity of Human Cortico-Cortical Connections." Journal of Neuroscience 33, no. 23 (June 5, 2013): 9725–33. http://dx.doi.org/10.1523/jneurosci.4988-12.2013.
Full textBains, Amarpreet Singh, and Nicolas Schweighofer. "Time-sensitive reorganization of the somatosensory cortex poststroke depends on interaction between Hebbian and homeoplasticity: a simulation study." Journal of Neurophysiology 112, no. 12 (December 15, 2014): 3240–50. http://dx.doi.org/10.1152/jn.00433.2013.
Full textRizzo, Francesca Romana, Alessandra Musella, Francesca De Vito, Diego Fresegna, Silvia Bullitta, Valentina Vanni, Livia Guadalupi, et al. "Tumor Necrosis Factor and Interleukin-1β Modulate Synaptic Plasticity during Neuroinflammation." Neural Plasticity 2018 (2018): 1–12. http://dx.doi.org/10.1155/2018/8430123.
Full textStefanescu, Roxana A., Seth D. Koehler, and Susan E. Shore. "Stimulus-timing-dependent modifications of rate-level functions in animals with and without tinnitus." Journal of Neurophysiology 113, no. 3 (February 1, 2015): 956–70. http://dx.doi.org/10.1152/jn.00457.2014.
Full textBasura, Gregory J., Seth D. Koehler, and Susan E. Shore. "Bimodal stimulus timing-dependent plasticity in primary auditory cortex is altered after noise exposure with and without tinnitus." Journal of Neurophysiology 114, no. 6 (December 1, 2015): 3064–75. http://dx.doi.org/10.1152/jn.00319.2015.
Full textFrank, Marcos Gabriel. "Erasing Synapses in Sleep: Is It Time to Be SHY?" Neural Plasticity 2012 (2012): 1–15. http://dx.doi.org/10.1155/2012/264378.
Full textHuupponen, J., T. Atanasova, T. Taira, and S. E. Lauri. "GluA4 subunit of AMPA receptors mediates the early synaptic response to altered network activity in the developing hippocampus." Journal of Neurophysiology 115, no. 6 (June 1, 2016): 2989–96. http://dx.doi.org/10.1152/jn.00435.2015.
Full textUleru, George-Iulian, Mircea Hulea, and Alexandru Barleanu. "The Influence of the Number of Spiking Neurons on Synaptic Plasticity." Biomimetics 8, no. 1 (January 11, 2023): 28. http://dx.doi.org/10.3390/biomimetics8010028.
Full textMatsumoto, Narihisa, and Masato Okada. "Self-Regulation Mechanism of Temporally Asymmetric Hebbian Plasticity." Neural Computation 14, no. 12 (December 1, 2002): 2883–902. http://dx.doi.org/10.1162/089976602760805322.
Full textScarpetta, Silvia, L. Zhaoping, and John Hertz. "Hebbian Imprinting and Retrieval in Oscillatory Neural Networks." Neural Computation 14, no. 10 (October 1, 2002): 2371–96. http://dx.doi.org/10.1162/08997660260293265.
Full textMagotra, Arjun, and Juntae Kim. "Neuromodulated Dopamine Plastic Networks for Heterogeneous Transfer Learning with Hebbian Principle." Symmetry 13, no. 8 (July 26, 2021): 1344. http://dx.doi.org/10.3390/sym13081344.
Full textFernando, Subha, and Koichi Yamada. "Spike-Timing-Dependent Plasticity and Short-Term Plasticity Jointly Control the Excitation of Hebbian Plasticity without Weight Constraints in Neural Networks." Computational Intelligence and Neuroscience 2012 (2012): 1–15. http://dx.doi.org/10.1155/2012/968272.
Full textCooke, Sam F., and Mark F. Bear. "How the mechanisms of long-term synaptic potentiation and depression serve experience-dependent plasticity in primary visual cortex." Philosophical Transactions of the Royal Society B: Biological Sciences 369, no. 1633 (January 5, 2014): 20130284. http://dx.doi.org/10.1098/rstb.2013.0284.
Full textCho, Myoung Won. "Temporal Hebbian plasticity designed for efficient competitive learning." Journal of the Korean Physical Society 64, no. 8 (April 2014): 1213–19. http://dx.doi.org/10.3938/jkps.64.1213.
Full textMoore, Jason J., Jesse D. Cushman, Lavanya Acharya, Briana Popeney, and Mayank R. Mehta. "Linking hippocampal multiplexed tuning, Hebbian plasticity and navigation." Nature 599, no. 7885 (October 20, 2021): 442–48. http://dx.doi.org/10.1038/s41586-021-03989-z.
Full textvan Rossum, M. C. W., G. Q. Bi, and G. G. Turrigiano. "Stable Hebbian Learning from Spike Timing-Dependent Plasticity." Journal of Neuroscience 20, no. 23 (December 1, 2000): 8812–21. http://dx.doi.org/10.1523/jneurosci.20-23-08812.2000.
Full textCaporale, Natalia, and Yang Dan. "Spike Timing–Dependent Plasticity: A Hebbian Learning Rule." Annual Review of Neuroscience 31, no. 1 (July 2008): 25–46. http://dx.doi.org/10.1146/annurev.neuro.31.060407.125639.
Full textHuang, S., C. Rozas, M. Trevino, J. Contreras, S. Yang, L. Song, T. Yoshioka, H. K. Lee, and A. Kirkwood. "Associative Hebbian Synaptic Plasticity in Primate Visual Cortex." Journal of Neuroscience 34, no. 22 (May 28, 2014): 7575–79. http://dx.doi.org/10.1523/jneurosci.0983-14.2014.
Full textKoch, G. "T017 Hebbian plasticity in the parieto-frontal network." Clinical Neurophysiology 128, no. 3 (March 2017): e5-e6. http://dx.doi.org/10.1016/j.clinph.2016.10.116.
Full textKronberg, Greg, Asif Rahman, Mahima Sharma, Marom Bikson, and Lucas C. Parra. "Direct current stimulation boosts hebbian plasticity in vitro." Brain Stimulation 13, no. 2 (March 2020): 287–301. http://dx.doi.org/10.1016/j.brs.2019.10.014.
Full textPehlevan, Cengiz, Anirvan M. Sengupta, and Dmitri B. Chklovskii. "Why Do Similarity Matching Objectives Lead to Hebbian/Anti-Hebbian Networks?" Neural Computation 30, no. 1 (January 2018): 84–124. http://dx.doi.org/10.1162/neco_a_01018.
Full textEdeline, JM. "Does Hebbian synaptic plasticity explain learning-induced sensory plasticity in adult mammals?" Journal of Physiology-Paris 90, no. 3-4 (January 1996): 271–76. http://dx.doi.org/10.1016/s0928-4257(97)81437-4.
Full text