Academic literature on the topic 'Plasmonic properties'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Plasmonic properties.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Plasmonic properties"

1

Hu, Bin, Ying Zhang, and Qi Jie Wang. "Surface magneto plasmons and their applications in the infrared frequencies." Nanophotonics 4, no. 4 (2015): 383–96. http://dx.doi.org/10.1515/nanoph-2014-0026.

Full text
Abstract:
Abstract Due to their promising properties, surface magneto plasmons have attracted great interests in the field of plasmonics recently. Apart from flexible modulation of the plasmonic properties by an external magnetic field, surface magneto plasmons also promise nonreciprocal effect and multi-bands of propagation, which can be applied into the design of integrated plasmonic devices for biosensing and telecommunication applications. In the visible frequencies, because it demands extremely strong magnetic fields for the manipulation of metallic plasmonic materials, nano-devices consisting of m
APA, Harvard, Vancouver, ISO, and other styles
2

Semchuk, O. Yu, O. O. Havrylyuk, A. I. Biliuk, and A. A. Biliuk. "Plasmons in graphene: overview and perspectives of use." Surface 16(31) (December 30, 2024): 51–73. https://doi.org/10.15407/surface.2024.16.051.

Full text
Abstract:
Due to its excellent electrical, mechanical, thermal and optical properties, graphene has attracted much interest since it was discovered in 2004. Its two-dimensional nature and other remarkable properties meet the needs of surface plasmons and have greatly enriched the field of plasmonics. The paper will review recent advances and applications of graphene in plasmonic, including theoretical mechanisms, experimental observations, and meaningful applications. Due to its flexibility and good tunability, graphene can be a promising plasmonic material as an alternative to noble metals. Optical con
APA, Harvard, Vancouver, ISO, and other styles
3

You, Chenglong, Apurv Chaitanya Nellikka, Israel De Leon, and Omar S. Magaña-Loaiza. "Multiparticle quantum plasmonics." Nanophotonics 9, no. 6 (2020): 1243–69. http://dx.doi.org/10.1515/nanoph-2019-0517.

Full text
Abstract:
AbstractA single photon can be coupled to collective charge oscillations at the interfaces between metals and dielectrics forming a single surface plasmon. The electromagnetic near-fields induced by single surface plasmons offer new degrees of freedom to perform an exquisite control of complex quantum dynamics. Remarkably, the control of quantum systems represents one of the most significant challenges in the field of quantum photonics. Recently, there has been an enormous interest in using plasmonic systems to control multiphoton dynamics in complex photonic circuits. In this review, we discu
APA, Harvard, Vancouver, ISO, and other styles
4

Babicheva, Viktoriia E. "Optical Processes behind Plasmonic Applications." Nanomaterials 13, no. 7 (2023): 1270. http://dx.doi.org/10.3390/nano13071270.

Full text
Abstract:
Plasmonics is a revolutionary concept in nanophotonics that combines the properties of both photonics and electronics by confining light energy to a nanometer-scale oscillating field of free electrons, known as a surface plasmon. Generation, processing, routing, and amplification of optical signals at the nanoscale hold promise for optical communications, biophotonics, sensing, chemistry, and medical applications. Surface plasmons manifest themselves as confined oscillations, allowing for optical nanoantennas, ultra-compact optical detectors, state-of-the-art sensors, data storage, and energy
APA, Harvard, Vancouver, ISO, and other styles
5

Genç, Aziz, Javier Patarroyo, Jordi Sancho-Parramon, Neus G. Bastús, Victor Puntes, and Jordi Arbiol. "Hollow metal nanostructures for enhanced plasmonics: synthesis, local plasmonic properties and applications." Nanophotonics 6, no. 1 (2017): 193–213. http://dx.doi.org/10.1515/nanoph-2016-0124.

Full text
Abstract:
AbstractMetallic nanostructures have received great attention due to their ability to generate surface plasmon resonances, which are collective oscillations of conduction electrons of a material excited by an electromagnetic wave. Plasmonic metal nanostructures are able to localize and manipulate the light at the nanoscale and, therefore, are attractive building blocks for various emerging applications. In particular, hollow nanostructures are promising plasmonic materials as cavities are known to have better plasmonic properties than their solid counterparts thanks to the plasmon hybridizatio
APA, Harvard, Vancouver, ISO, and other styles
6

Khan, Pritam, Grace Brennan, James Lillis, Syed A. M. Tofail, Ning Liu, and Christophe Silien. "Characterisation and Manipulation of Polarisation Response in Plasmonic and Magneto-Plasmonic Nanostructures and Metamaterials." Symmetry 12, no. 8 (2020): 1365. http://dx.doi.org/10.3390/sym12081365.

Full text
Abstract:
Optical properties of metal nanostructures, governed by the so-called localised surface plasmon resonance (LSPR) effects, have invoked intensive investigations in recent times owing to their fundamental nature and potential applications. LSPR scattering from metal nanostructures is expected to show the symmetry of the oscillation mode and the particle shape. Therefore, information on the polarisation properties of the LSPR scattering is crucial for identifying different oscillation modes within one particle and to distinguish differently shaped particles within one sample. On the contrary, the
APA, Harvard, Vancouver, ISO, and other styles
7

Tao, Z. H., H. M. Dong, and Y. F. Duan. "Anomalous plasmon modes of single-layer MoS2." Modern Physics Letters B 33, no. 18 (2019): 1950200. http://dx.doi.org/10.1142/s0217984919502002.

Full text
Abstract:
The electronic plasmons of single layer MoS2 induced by different spin subbands owing to spin-orbit couplings (SOCs) are theoretically investigated. The study shows that two new and anomalous plasmonic modes can be achieved via inter-spin subband transitions around the Fermi level due to the SOCs. The plasmon modes are optic-like, which are very different from the plasmons reported recently in single-layer (SL) MoS2, and the other two-dimensional systems. The frequency of such plasmons ascends with the increasing of electron density or spin polarizability, and decreases with the increasing of
APA, Harvard, Vancouver, ISO, and other styles
8

Kuzmin, Dmitry A., Igor V. Bychkov, Vladimir G. Shavrov, and Vasily V. Temnov. "Plasmonics of magnetic and topological graphene-based nanostructures." Nanophotonics 7, no. 3 (2018): 597–611. http://dx.doi.org/10.1515/nanoph-2017-0095.

Full text
Abstract:
AbstractGraphene is a unique material in the study of the fundamental limits of plasmonics. Apart from the ultimate single-layer thickness, its carrier concentration can be tuned by chemical doping or applying an electric field. In this manner, the electrodynamic properties of graphene can be varied from highly conductive to dielectric. Graphene supports strongly confined, propagating surface plasmon polaritons (SPPs) in a broad spectral range from terahertz to mid-infrared frequencies. It also possesses a strong magneto-optical response and thus provides complimentary architectures to convent
APA, Harvard, Vancouver, ISO, and other styles
9

Verma, Sneha, Akhilesh Kumar Pathak, and B. M. Azizur Rahman. "Review of Biosensors Based on Plasmonic-Enhanced Processes in the Metallic and Meta-Material-Supported Nanostructures." Micromachines 15, no. 4 (2024): 502. http://dx.doi.org/10.3390/mi15040502.

Full text
Abstract:
Surface plasmons, continuous and cumulative electron vibrations confined to metal-dielectric interfaces, play a pivotal role in aggregating optical fields and energies on nanostructures. This confinement exploits the intrinsic subwavelength nature of their spatial profile, significantly enhancing light–matter interactions. Metals, semiconductors, and 2D materials exhibit plasmonic resonances at diverse wavelengths, spanning from ultraviolet (UV) to far infrared, dictated by their unique properties and structures. Surface plasmons offer a platform for various light–matter interaction mechanisms
APA, Harvard, Vancouver, ISO, and other styles
10

Abed, Jehad, Nitul S. Rajput, Amine El Moutaouakil, and Mustapha Jouiad. "Recent Advances in the Design of Plasmonic Au/TiO2 Nanostructures for Enhanced Photocatalytic Water Splitting." Nanomaterials 10, no. 11 (2020): 2260. http://dx.doi.org/10.3390/nano10112260.

Full text
Abstract:
Plasmonic nanostructures have played a key role in extending the activity of photocatalysts to the visible light spectrum, preventing the electron–hole combination and providing with hot electrons to the photocatalysts, a crucial step towards efficient broadband photocatalysis. One plasmonic photocatalyst, Au/TiO2, is of a particular interest because it combines chemical stability, suitable electronic structure, and photoactivity for a wide range of catalytic reactions such as water splitting. In this review, we describe key mechanisms involving plasmonics to enhance photocatalytic properties
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Plasmonic properties"

1

Cole, R. M. "Plasmonic properties of metal nanovoids." Thesis, University of Cambridge, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.597832.

Full text
Abstract:
This thesis describes a study into the plasmonic properties of nanostructured metallic films. Structures are produced by electrochemically depositing metal through a self-assembled template of polymer micro-spheres. This versatile technique allows nano-structures made from metals which can be electrodeposited to be produced quickly and cheaply. Geometries ranging from arrays of shallow dishes, to sharp metallic spikes and encapsulated spherical cavities can all be produced on the same sample. This thesis presents an in-depth study into the properties of delocalised and localised surface plasmo
APA, Harvard, Vancouver, ISO, and other styles
2

Dieleman, Frederik. "Quantum properties of plasmonic waveguides." Thesis, Imperial College London, 2017. http://hdl.handle.net/10044/1/49436.

Full text
Abstract:
This thesis investigates properties of quantum states of light while travelling as surface plasmon polaritons in plasmonic waveguides and structures. The bosonic nature of SPPs has been shown in previous work by performing a Hong-Ou-Mandel interference experiment with a plasmonic scattering-based beam splitter. Here, we show the same interference with a higher statistical power thanks to an improved set-up. A visibility of 59 ± 1 % is obtained in the two-photon interference, clearly breaking the classical limit of 50 %. The importance of the phase-relations between the different modes in the b
APA, Harvard, Vancouver, ISO, and other styles
3

Indrehus, Sunniva. "Plasmonic properties of supported nanoparticles." Electronic Thesis or Diss., Sorbonne université, 2020. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2020SORUS136.pdf.

Full text
Abstract:
Après quelques rappels d’électromagnétisme et sur la permittivité des métaux, le premier chapitre est dévolu à la présentation des nanoparticules en optique, et comment les modèles analytiques de polarisabilité permettent de prendre en compte la présence d’un substrat et de nanoparticules voisines. Les deux chapitres suivants reprend un certain nombre d’éléments de la théorie de Bedeaux-Vlieger sur la charge excédentaire et les susceptibilités de surface, et sa mise en œuvre pour les nanoparticules sur un substrat plan. Cette théorie, dont les bases ont été établies à la fin des années 70, a d
APA, Harvard, Vancouver, ISO, and other styles
4

Peruch, Silvia. "Ultrafast properties of plasmonic nanorod metamaterial." Thesis, King's College London (University of London), 2016. https://kclpure.kcl.ac.uk/portal/en/theses/ultrafast-properties-of-plasmonic-nanorod-metamaterial(d981b5e4-b959-4193-8cf1-219b68de08d6).html.

Full text
Abstract:
Plasmonic metamaterials have customized linear and nonlinear optical properties. This thesis investigates the properties of an anisotropic plasmonic metamaterial, consisting of aligned, interacting gold nanorods, to perform ultrafast light modulation, exploiting the intrinsic Kerr nonlinearity of gold. This e ect is based on an illumination-intensity-dependent change in the gold's permittivity, which takes place on ultrafast timescales and induces the intensity-dependent change of the metamaterial's re ection and transmission. A comprehensive theoretical and numerical analysis of the linear an
APA, Harvard, Vancouver, ISO, and other styles
5

Chen, Lihui. "Synthesis and Plasmonic Properties of Copper-based Nanocrystals." 京都大学 (Kyoto University), 2016. http://hdl.handle.net/2433/217134.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Strandberg, Östman Felicia. "Optical Properties of Plasmonic Ag/Ni Square Nanostructures." Thesis, Uppsala universitet, Materialfysik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-256885.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ching, Suet Ying. "Plasmonic properties of silver-based alloy thin films." HKBU Institutional Repository, 2015. https://repository.hkbu.edu.hk/etd_oa/194.

Full text
Abstract:
The plasmonic properties of silver-based alloy thin films were studied. Silver-ytterbium (Ag-Yb) and silver-magnesium (Ag-Mg) prepared by thermal co-evaporation were investigated extensively for various thin film properties. The optical properties were intensively analyzed and discussed because the dielectric response of a material is particularly significant in terms of its plasmonic properties. The study of silver-based alloy thin films has been mostly about Ag alloying with other transition metals, but the results of Ag-Yb and Ag-Mg in this work showed that the intensity of plasma resonance
APA, Harvard, Vancouver, ISO, and other styles
8

Hung, Yu-Ju. "Studies of the optical properties of plasmonic nanostructures." College Park, Md.: University of Maryland, 2007. http://hdl.handle.net/1903/7735.

Full text
Abstract:
Thesis (Ph. D.) -- University of Maryland, College Park, 2007.<br>Thesis research directed by: Dept. of Electrical and Computer Engineering. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
APA, Harvard, Vancouver, ISO, and other styles
9

Kolkowski, Radoslaw. "Studies of nonlinear optical properties of plasmonic nanostructures." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLN001/document.

Full text
Abstract:
Le but de cette thèse et de la recherche associée est une démonstration des avantages d’une combinaison de propriétés inhabituelles de nanostructures plasmoniques avec des aspects parmi les plus intéressants de l’optique non-linéaire. Pour cet effet, la modélisation analytique et numérique a été combiné avec le travail expérimental, qui comprenait la production de nanostructures et les mesures effectuées au moyen de la microscopie confocale non-linéaire résolue en polarisations et de la technique Z-scan modifiée (nommée “f-scan”).Il a été montré que l’anisotropie efficace de génération de seco
APA, Harvard, Vancouver, ISO, and other styles
10

MAGNOZZI, MICHELE. "Temperature-dependent optical properties of composite plasmonic nanomaterials." Doctoral thesis, Università degli studi di Genova, 2019. http://hdl.handle.net/11567/941310.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Plasmonic properties"

1

service), SpringerLink (Online, ed. Self-Organized Arrays of Gold Nanoparticles: Morphology and Plasmonic Properties. Springer Berlin Heidelberg, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sönnichsen, Carsten. Plasmons in metal nanostructures. Cuvillier, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Turunen, Anton E. Plasmons: Structure, properties, and applications. Nova Science Publishers, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

V, Klimov V. Nanoplazmonika. Fizmatlit, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

1957-, Shalaev Vladimir M., ed. Nanoplasmonics. Elsevier, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

1966-, Kawata Satoshi, Shalaev Vladimir M. 1957-, Tsai Din P. 1959-, and Society of Photo-optical Instrumentation Engineers., eds. Plasmonics: Nanoimaging, nanofabrication, and their applications II : 16-17 August, 2006, San Diego, California, USA. SPIE, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

J, Halas Naomi, Huser Thomas R, and Society of Photo-optical Instrumentation Engineers., eds. Plasmonics: Metallic nanostructures and their optical properties II : 2-3 August, 2004, Denver, Colorado, USA. SPIE, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

1975-, Qiu Min, ed. Optical properties of nanostructures. Pan Stanford, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kawata, Satoshi. Plasmonics: Nanoimaging, nanofabrication, and their applications IV : 10-14 August 2008, San Diego, California, USA. Edited by SPIE (Society). SPIE, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

J, Halas Naomi, and Society of Photo-optical Instrumentation Engineers., eds. Plasmonics: Metallic nanostructures and their optical properties : 3-5 August 2003, San Diego, California, USA. SPIE, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Plasmonic properties"

1

Zhang, Zhenglong. "Electromagnetic Properties of Materials." In Plasmonic Photocatalysis. Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-5188-6_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lapotko, Dmitri. "Physical Principles and Properties of Plasmonic Nanobubbles." In Plasmonic Nanobubbles. Jenny Stanford Publishing, 2024. https://doi.org/10.1201/9781003584476-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Song, Chengyi, Chen Zhang, and Peng Tao. "Plasmonic Chiral Materials." In Chiral Nanomaterials: Preparation, Properties and Applications. Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527682782.ch3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Saliminasab, Maryam, Rostam Moradian, and Farzad Shirzaditabar. "Tunable Plasmonic Properties of Nanoshells." In Reviews in Plasmonics. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18834-4_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Trügler, Andreas. "Nonlinear Optical Effects of Plasmonic Nanoparticles." In Optical Properties of Metallic Nanoparticles. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-25074-8_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Berger, C., E. H. Conrad, and W. A. de Heer. "Optical and plasmonic properties of epigraphene." In Physics of Solid Surfaces. Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-53908-8_171.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hachtel, Jordan A. "The Plasmonic Response of Archimedean Spirals." In The Nanoscale Optical Properties of Complex Nanostructures. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70259-9_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Serdega, B. K., S. P. Rudenko, L. S. Maksimenko, and I. E. Matyash. "Plasmonic optical properties and the polarization modulation technique." In Polarimetric Detection, Characterization and Remote Sensing. Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-1636-0_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Masciotti, Valentina, Denys Naumenko, Marco Lazzarino, and Luca Piantanida. "Tuning Gold Nanoparticles Plasmonic Properties by DNA Nanotechnology." In DNA Nanotechnology. Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-8582-1_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kauranen, Martti, Hannu Husu, Jouni Mäkitalo, et al. "Second-Order Nonlinear Optical Properties of Plasmonic Nanostructures." In Challenges and Advances in Computational Chemistry and Physics. Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-7805-4_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Plasmonic properties"

1

Aydemir, Emre, and Ahu Gumrah Dumanli. "Detection of plasmonic circular dichroism on biotemplated gold." In Photonic and Phononic Properties of Engineered Nanostructures XV, edited by Ali Adibi, Shawn-Yu Lin, and Axel Scherer. SPIE, 2025. https://doi.org/10.1117/12.3040691.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dwivedi, Ranjeet, Ashod Aradian, Virginie Ponsinet, Kevin Vynck, and Alexandre Baron. "Effective-medium properties of dense plasmonic balls." In 2024 Eighteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials). IEEE, 2024. http://dx.doi.org/10.1109/metamaterials62190.2024.10703295.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Palermo, Giovanna, Massimo Rippa, Dante M. Aceti, et al. "Planar plasmonic metasurfaces with intrinsic superchiral properties." In Smart Materials for Opto-Electronic Applications 2025, edited by Ivo Rendina, Lucia Petti, Domenico Sagnelli, and Giuseppe Nenna. SPIE, 2025. https://doi.org/10.1117/12.3056667.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bidney, Grant W., Igor Anisimov, Dennis E. Walker, Gamini Ariyawansa, Joshua M. Duran, and Vasily N. Astratov. "Plasmonic Littrow Retroreflectors." In CLEO: Applications and Technology. Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_at.2024.jth2a.59.

Full text
Abstract:
It is shown that Littrow retroreflectors show an interplay of the grating properties (“structure factor”) and plasmonic resonant properties (“form factor”) which leads to highly efficient simultaneous retroreflector performance in both polarizations of visible light.
APA, Harvard, Vancouver, ISO, and other styles
5

Takeuchi, Hiroki, Junfeng Yue, Keisuke Imaeda, and Kosei Ueno. "Near-field spectral properties and ultrafast dynamics of coupled plasmonic nanostructures." In Conference on Lasers and Electro-Optics/Pacific Rim. Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleopr.2022.p_cm16_12.

Full text
Abstract:
We are studying the effects of localization of electromagnetic field and extension of plasmon lifetime on the near-field enhancement. In particular, the plasmon lifetime can be controlled by coupling with long-lived optical modes or excitons. In this study, we elucidated the near-field spectral characteristics and phase relaxation dynamics of coupled plasmonic nanostructures and the effect of plasmon dephasing dynamics on near-field enhancement.
APA, Harvard, Vancouver, ISO, and other styles
6

Karakhanyan, Vage, Clement Eustache, Yannick Lefier, and Thierry Grosjean. "Optomagnetism in plasmonic nanostructures." In Photonic and Phononic Properties of Engineered Nanostructures XII, edited by Ali Adibi, Shawn-Yu Lin, and Axel Scherer. SPIE, 2022. http://dx.doi.org/10.1117/12.2612940.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Abdollahramezani, Sajjad, Omid Hemmatyar, Hossein Taghinejad, Muliang Zhu, Alexander L. Gallmon, and Ali Adibi. "Reconfigurable hybrid plasmonic-dielectric metasurfaces." In Photonic and Phononic Properties of Engineered Nanostructures XI, edited by Ali Adibi, Shawn-Yu Lin, and Axel Scherer. SPIE, 2021. http://dx.doi.org/10.1117/12.2590717.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Swillam, Mohamed A., Diaa Khalil, Qiaoqiang Gan, and Raghi El Shamy. "Mid-infrared plasmonic gas sensor." In Photonic and Phononic Properties of Engineered Nanostructures VIII, edited by Ali Adibi, Shawn-Yu Lin, and Axel Scherer. SPIE, 2018. http://dx.doi.org/10.1117/12.2290875.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Crozier, Kenneth B. "Inverse design of plasmonic nanotweezers." In Photonic and Phononic Properties of Engineered Nanostructures XIV, edited by Ali Adibi, Shawn-Yu Lin, and Axel Scherer. SPIE, 2024. http://dx.doi.org/10.1117/12.3010032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Joshi, Hira. "Optical properties of plasmonic nanostructures." In EMERGING INTERFACES OF PHYSICAL SCIENCES AND TECHNOLOGY 2019: EIPT2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0000524.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Plasmonic properties"

1

Hollingsworth, Jennifer, Victoria Nisoli, Ekaterina Dolgopolova, et al. Near Infrared Plasmonic Properties in Spinel Metal Oxide Nanocrystals. Office of Scientific and Technical Information (OSTI), 2023. http://dx.doi.org/10.2172/1993209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Halas, Naomi, and Surbhi Lal. Plexcitonics: Coupled and Plasmon-Exciton Systems with Tailorable Properties. Defense Technical Information Center, 2013. http://dx.doi.org/10.21236/ada594759.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Howe, James M. Using Plasmon Peaks in Electron Energy-Loss Spectroscopy to Determine the Physical and Mechanical Properties of Nanoscale Materials. Office of Scientific and Technical Information (OSTI), 2013. http://dx.doi.org/10.2172/1078573.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!