Academic literature on the topic 'Plasmonic Nanoparticles(Au, Ag)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Plasmonic Nanoparticles(Au, Ag).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Plasmonic Nanoparticles(Au, Ag)"

1

Yeshchenko, O. A., A. O. Bartenev, A. P. Naumenko, N. V. Kutsevol, Iu I. Harahuts, and A. I. Marinin. "Laser-Driven Aggregation in Dextran–Graft–PNIPAM/Silver Nanoparticles Hybrid Nanosystem: Plasmonic Effects." Ukrainian Journal of Physics 65, no. 3 (March 26, 2020): 254. http://dx.doi.org/10.15407/ujpe65.3.254.

Full text
Abstract:
The laser-induced aggregation in the thermosensitive dextran grafted-poly(N-isopropylacrylamide) copolymer/Ag nanoparticles (D–g–PNIPAM/AgNPs) hybrid nanosystem in water has been observed. The laser-induced plasmonic heating of Ag NPs causes the Lower Critical Solution Temperature (LCST) conformation transition in D–g–PNIPAM/AgNPs macromolecules which shrink during the transition. The shrinking decreases sharply the distance between the silver nanoparticles that launches the aggregation of Ag NPs and the appearance of plasmonic attractive optical forces acting between the nanoparticles. It has been shown that the approach of the laser wavelength to the surface plasmon resonance in Ag nanoparticles leads to a significant strengthening of the observed aggregation, which proves its plasmon nature. The laser-induced transformations in the D–g–PNIPAM/AgNPs nanosystem have been found to be essentially irreversible that differs principally them from the temperature-induced transformations. Such fundamental difference proves the crucial role of the optical forces arising due to the excitation of surface plasmons in Ag NPs.
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, Jing, Kai-Xuan Fei, Xin Yang, Shuai-Shuai Zhang, and Yin-Xian Peng. "Synthesis and Plasmonic Chiroptical Studies of Sodium Deoxycholate Modified Silver Nanoparticles." Materials 11, no. 8 (July 26, 2018): 1291. http://dx.doi.org/10.3390/ma11081291.

Full text
Abstract:
Sodium deoxycholate modified silver nanoparticles prepared in the presence of sodium deoxycholate as a chiral inducer exhibit plasmonic circular dichroism (CD) signals. The plasmon-induced chirality arises from the presence of chiral molecules (sodium deoxycholate) on the surface of Ag nanoparticles, which transfer their chiral properties to the visible wavelength range due to the Coulomb interactions between the chiral molecules and plasmonic nanoparticles. The prepared Ag nanoparticles (NPs) exhibit distinct line shapes of plasmonic CD, which can be tailored by varying the pH values of the solutions. A mechanism was proposed to explain the generation of the distinct plasmonic CD shapes, which indicated that the arrangements of chiral molecules in the plasmonic hot spots between Ag NPs are crucial for the induced plasmonic CD.
APA, Harvard, Vancouver, ISO, and other styles
3

Sotiriou, Georgios A., Gion Diego Etterlin, Anastasia Spyrogianni, Frank Krumeich, Jean-Christophe Leroux, and Sotiris E. Pratsinis. "Plasmonic biocompatible silver–gold alloyed nanoparticles." Chem. Commun. 50, no. 88 (2014): 13559–62. http://dx.doi.org/10.1039/c4cc05297h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sun, Chunlei, Caiyan Qin, Han Zhai, Bin Zhang, and Xiaohu Wu. "Optical Properties of Plasma Dimer Nanoparticles for Solar Energy Absorption." Nanomaterials 11, no. 10 (October 15, 2021): 2722. http://dx.doi.org/10.3390/nano11102722.

Full text
Abstract:
Plasmonic nanofluids have excellent optical properties in solar energy absorption and have been widely studied in solar thermal conversion technology. The absorption of the visible region of solar energy by ordinary metal nanoparticles is usually limited to a narrow resonance band, so it is necessary to enhance the coupling effect of nanoparticles in the visible spectrum region to improve absorption efficiency. However, it is still a difficult task to improve solar energy absorption by adjusting the structure and performance of nanoparticles. In this paper, a plasma dimer Ag nanoparticle is proposed to excite localized surface plasmon resonance (LSPR). Compared with an ordinary Ag nanoparticle in the visible region, the plasmonic Ag dimer nanoparticle produces more absorption peaks and broader absorption bands, which can broaden solar energy absorption. By analyzing the electromagnetic field of the nanoparticle, the resonance mode of the plasma dimer is discussed. The effects of the geometric dimensions of the nanoparticle and the embedding of two spheres on the optical properties are studied. In addition, the effects of a trimer and its special structure on the optical properties are also analyzed. The results show that the proposed plasma dimer Ag nanoparticle has broad prospects for application in solar thermal conversion technology.
APA, Harvard, Vancouver, ISO, and other styles
5

Loiseau, Alexis, Victoire Asila, Gabriel Boitel-Aullen, Mylan Lam, Michèle Salmain, and Souhir Boujday. "Silver-Based Plasmonic Nanoparticles for and Their Use in Biosensing." Biosensors 9, no. 2 (June 10, 2019): 78. http://dx.doi.org/10.3390/bios9020078.

Full text
Abstract:
The localized surface plasmon resonance (LSPR) property of metallic nanoparticles is widely exploited for chemical and biological sensing. Selective biosensing of molecules using functionalized nanoparticles has become a major research interdisciplinary area between chemistry, biology and material science. Noble metals, especially gold (Au) and silver (Ag) nanoparticles, exhibit unique and tunable plasmonic properties; the control over these metal nanostructures size and shape allows manipulating their LSPR and their response to the local environment. In this review, we will focus on Ag-based nanoparticles, a metal that has probably played the most important role in the development of the latest plasmonic applications, owing to its unique properties. We will first browse the methods for AgNPs synthesis allowing for controlled size, uniformity and shape. Ag-based biosensing is often performed with coated particles; therefore, in a second part, we will explore various coating strategies (organics, polymers, and inorganics) and their influence on coated-AgNPs properties. The third part will be devoted to the combination of gold and silver for plasmonic biosensing, in particular the use of mixed Ag and AuNPs, i.e., AgAu alloys or Ag-Au core@shell nanoparticles will be outlined. In the last part, selected examples of Ag and AgAu-based plasmonic biosensors will be presented.
APA, Harvard, Vancouver, ISO, and other styles
6

Kodanek, Torben, Axel Freytag, Anja Schlosser, Suraj Naskar, Thomas Härtling, Dirk Dorfs, and Nadja Carola Bigall. "Macroscopic Aerogels with Retained Nanoscopic Plasmonic Properties." Zeitschrift für Physikalische Chemie 232, no. 9-11 (August 28, 2018): 1675–89. http://dx.doi.org/10.1515/zpch-2017-1045.

Full text
Abstract:
Abstract Aerogels can bridge the nanoscopic to the macroscopic world. One physical phenomenon typically limited to the nanoscopic world is the occurrence of localized surface plasmon resonances (LSPRs), which are observed in conductive nanoparticles. Once brought into close contact, assemblies or superstructures of these nanoparticles often lose their plasmonic properties in the transition stage towards the bulk material. Therefore, LSPRs are typically not observed in macroscopic objects. The present work aims at voluminous nanoparticle-based aerogels with optical properties close to that of the initial colloidal solution and the possibility to manipulate the final plasmonic properties by bringing the particles into defined distances. In detail, Ag nanocrystals with silica shells ranging from 0 to 12 nm are employed as building blocks, which are assembled from their solution into macroscopic three-dimensional superstructures by freezing and subsequent lyophilization. These cryogelated aerogels are synthesized as monoliths and thin films in which the Ag nanocrystals are arranged in defined distances according to their silica shell. The resulting aerogels exhibit plasmonic properties ranging from a behavior similar to that of the building blocks for the thickest shell to a heavily distorted behavior for bare Ag nanocrystals.
APA, Harvard, Vancouver, ISO, and other styles
7

Hu, Yang, Chao Pan, Cai Xia Gao, Jun Fan, and En Zhou Liu. "Photocatalytic Water Splitting over Ag/TiO2 Nano-Wire Films." Applied Mechanics and Materials 665 (October 2014): 288–91. http://dx.doi.org/10.4028/www.scientific.net/amm.665.288.

Full text
Abstract:
Plasmonic Ag decorated TiO2 nano-wire film was firstly prepared by the combination of a hydrothermal method and a microwave-assisted chemical reduction process. The results show that Ag deposited TiO2 film exhibits obvious visible light absorption due to surface plasmon resonance absorption of Ag nanoparticles. Besides, fluorescence quenching is observed in the composite film under the excitation of 250 nm. Photocatalytic tests show that Ag deposited TiO2 exhibits enhanced photocatalytic activity for H2 production by water splitting due to the synergistic effect between charge transfer and surface plasmon resonance absorption properties of Ag nanoparticles.
APA, Harvard, Vancouver, ISO, and other styles
8

Kuriakose, Sini, Vandana Choudhary, Biswarup Satpati, and Satyabrata Mohapatra. "Enhanced photocatalytic activity of Ag–ZnO hybrid plasmonic nanostructures prepared by a facile wet chemical method." Beilstein Journal of Nanotechnology 5 (May 15, 2014): 639–50. http://dx.doi.org/10.3762/bjnano.5.75.

Full text
Abstract:
We report the synthesis of Ag–ZnO hybrid plasmonic nanostructures with enhanced photocatalytic activity by a facile wet-chemical method. The structural, optical, plasmonic and photocatalytic properties of the Ag–ZnO hybrid nanostructures were studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), photoluminescence (PL) and UV–visible absorption spectroscopy. The effects of citrate concentration and Ag nanoparticle loading on the photocatalytic activity of Ag–ZnO hybrid nanostructures towards sun-light driven degradation of methylene blue (MB) have been investigated. Increase in citrate concentration has been found to result in the formation of nanodisk-like structures, due to citrate-assisted oriented attachment of ZnO nanoparticles. The decoration of ZnO nanostructures with Ag nanoparticles resulted in a significant enhancement of the photocatalytic degradation efficiency, which has been found to increase with the extent of Ag nanoparticle loading.
APA, Harvard, Vancouver, ISO, and other styles
9

Yazdani, Ahmad, Mahdi Ghazanfari, and Fatemeh Johar. "Light trapping effect in plasmonic blockade at the interface of Fe3O4@Ag core/shell." RSC Advances 5, no. 51 (2015): 40989–96. http://dx.doi.org/10.1039/c5ra06412k.

Full text
Abstract:
Spherical isotropic Fe3O4nanoparticles were coated with Ag-shell in order to investigate the possibility of trapping photons through plasmon or plasmonic energy transfer at the magnetic–plasmonic interface coupling structure of core/shell.
APA, Harvard, Vancouver, ISO, and other styles
10

Kanapina, A. E. "FEATURES OF THE DECAY OF EXCITED STATES OF IONIC DYES IN THE NEAR FIELD OF METAL NANOPARTICLES." Eurasian Physical Technical Journal 20, no. 2 (44) (June 21, 2023): 106–11. http://dx.doi.org/10.31489/2023no2/106-111.

Full text
Abstract:
The influence factor of silver nanoparticles on the intramolecular processes of deactivation of the electronically excited state of polymethine dyes (PD) of different ionicity has been studied. It has been demonstrated that the optical density forcationic 1 and anionic 2 dyes does not change under the action of the plasmon field of Ag nanoparticles. Whereas an increase in absorbance by almost 18% was observed for neutral dye 3. A decrease in the enhancement in fluorescence intensity in the series of anionic–cationic–neutral dyes was registered upon addition of Ag nanoparticles to their solutions. The fluorescence lifetime practically does not change for all PDs under study.Data processing within the framework of the model of the influence of a plasmonic nanoparticle on radiative transitions in a dye molecule showed that the values of plasmon-enhanced rates of radiative decay of molecules decreases from neutral to cationic and, finally, to anionic dye. The rates of energy transfer from PD to plasmonic nanoparticles decrease in the reverse sequence of dyes, i.e. anionic-cationic-neutral PD. This is expressed in a decrease in the proportion of neutral dye molecules that were deactivated by fluorescence.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Plasmonic Nanoparticles(Au, Ag)"

1

Adamiv, V. T., P. Yu Demchenko, R. M. Dutka, R. V. Gamernyk, Yu O. Kulyk, and I. M. Teslyuk. "Determination of Sizes of Ag Nanoparticles in Glass Li2B4O7:Ag,Gd." Thesis, Sumy State University, 2015. http://essuir.sumdu.edu.ua/handle/123456789/42610.

Full text
Abstract:
Annealing in air and vacuum were obtained glass samples Li2B4O7:Ag,Gd with Ag NPs. Three methods: the half-width strip plasmon resonance, X-ray diffraction and Small-angle X-ray scattering, in these samples by size NPs Ag. Revealed that the size of NPs Ag, defined by half-widths plasmon resonance band much smaller than obtained by other methods. It is concluded that the methods of X-ray diffraction and small-angle X-ray scattering give results closer to reality than the method plasmon resonance.
APA, Harvard, Vancouver, ISO, and other styles
2

Pugliara, Alessandro. "Elaboration of nanocomposites based on Ag nanoparticles embedded in dielectrics for controlled bactericide properties." Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30324/document.

Full text
Abstract:
Les nanoparticules (NPs) d'Ag sont très utilisées dans le secteur de la santé, dans l'industrie alimentaire et dans les produits de consommation pour leurs propriétés antimicrobiennes. Le grand rapport surface sur volume des NPs d'Ag permet une augmentation importante du relargage d'Ag comparé au matériau massif et donc une toxicité accrue vis à vis des micro-organismes sensibles à cet élément. Ce travail de thèse présente une évaluation des propriétés antimicrobiennes de petites NPs d'Ag (<20 nm) enrobées dans des matrices de silice sur la photosynthèse d'algues vertes. Deux techniques d'élaboration par voie physique ont été utilisées pour fabriquer ces nanocomposites: (i) l'implantation ionique à basse énergie et (ii) la pulvérisation d'Ag couplée avec la polymérisation plasma. Les propriétés structurales et optiques de ces nanostructures ont été étudiées par microscopie électronique à transmission, réflectivité et ellipsométrie. Cette dernière technique, couplée à un modèle basé sur l'approximation quasi-statique de type Maxwell-Garnett, a permis la détection de petites variations dans la taille et la densité des NPs d'Ag. Le relargage d'argent de ces NPs d'Ag enrobées dans des diélectriques a été mesuré par spectrométrie de masse après immersion dans de l'eau tamponnée. La toxicité à court terme de l'Ag sur la photosynthèse d'algues vertes, Chlamydomonas reinhardtii, a été évaluée par fluorométrie. L'enrobage des nanoparticules dans un diélectrique réduit leur interaction avec l'environnement, et les protège d'une oxydation rapide. La libération d'Ag bio-disponible (impactant sur la photosynthèse des algues) est contrôlée par la profondeur à laquelle se trouvent les NPs d'Ag dans la matrice hôte de silice. Cette étude permet d'envisager le design de revêtements à effet biocide contrôlé. En couplant les propriétés antimicrobiennes de ces NPs d'Ag enrobées à leur qualité d'antenne plasmonique, ces nanocomposites peuvent être utilisés pour détecter et prévenir les premières étapes de la formation de biofilms sur des surfaces. Ainsi, une dernière partie de ce travail est dédiée à l'étude de la stabilité et de l'adsorption de protéines fluorescentes Discosoma rouges recombinantes (DsRed) sur ces surfaces diélectriques avec la perspective du développement de dispositifs SERS
Silver nanoparticles (AgNPs) because of their strong biocide activity are widely used in health-care sector, food industry and various consumer products. Their huge surface-volume ratio enhances the silver release compared to the bulk material, leading to an increased toxicity for microorganisms sensitive to this element. This work presents an assessment of the biocide properties on algal photosynthesis of small (<20 nm) AgNPs embedded in silica layers. Two physical approaches were used to elaborate these nanocomposites: (i) low energy ion beam synthesis and (ii) combined silver sputtering and plasma polymerization. These techniques allow elaboration of a single layer of AgNPs embedded in silica films at defined nanometer distances (from 0 to 7 nm) beneath the free surface. The structural and optical properties of the nanocomposites were studied by transmission electron microscopy, reflectance spectroscopy and ellipsometry. This last technique, coupled to modelling based on the quasi-static approximation of the classical Maxwell-Garnett formalism, allowed detection of small variations over the size and density of the embedded AgNPs. The silver release from the nanostructures after immersion in buffered water was measured by inductively coupled plasma mass spectrometry. The short-term toxicity of Ag to the photosynthesis of green algae, Chlamydomonas reinhardtii, was assessed by fluorometry. Embedding AgNPs reduces their interactions with the buffered water, protecting the AgNPs from fast oxidation. The release of bio-available silver (impacting on the algal photosynthesis) is controlled by the depth at which AgNPs are located for the given host silica matrix. This provides a procedure to tailor the biocide effect of nanocomposites containing AgNPs. By coupling the controlled antimicrobial properties of the embedded AgNPs and their quality as plasmonic antenna, these coatings can be used to detect and prevent the first stages of biofilm formation. Hence, the last part of this work is dedicated to a study of the structural stability and adsorption properties of Discosoma recombinant red (DsRed) fluorescent proteins deposited on these dielectric surfaces with perspectives of development of SERS devices
APA, Harvard, Vancouver, ISO, and other styles
3

CALEFFI, MATTEO. "Deposizione di nanoparticelle core-shell di Ag@MgO e Au@MgO su TiO2 meso-poroso mediante sorgente di aggregazione di nanoparticelle: una strategia per migliorare l'efficienza di Celle Solari di Perovskite." Doctoral thesis, Università degli studi di Modena e Reggio Emilia, 2022. http://hdl.handle.net/11380/1271921.

Full text
Abstract:
Attualmente, l'accoppiamento fra nanoparticelle metalliche (NP) e materiali foto-attivi rappresenta una via promettente per migliorare le efficienze di dispositivi in applicazioni di fotocatalisi ed energia solare. Nella maggior parte dei casi, il miglioramento dell'efficienza dei dispositivi solari mediante funzionalizzazione con NP core-shell è stato ottenuto attraverso metodi chimici sia per la sintesi che per la deposizione delle NP. Questi metodi sono limitati nella combinazione di materiali di core e shell, così come alcuni inconvenienti legati all'uso di solventi. D'altra parte, le sorgenti di aggregazione di NP basate su magnetron-sputtering, rappresentano un approccio versatile per depositare NP su superfici, con controllo preciso sulle quantità e sulle dimensioni medie, consentendo di ottenere strutture core-shell e/o NP metalliche incorporate in una matrice ultrasottile. Durante il mio progetto di dottorato, esploro le potenzialità nell'applicazione di questa tecnica alle celle solari di perovskite (PSC), con l'obiettivo di studiare le proprietà dei substrati funzionalizzati e di migliorarne l’assorbimento della luce e l'efficienza (PCE). In particolare, le NP core-shell Ag@MgO e Au@MgO vengono depositate sullo strato mesoporoso di TiO2, in PSC a triplo catione. Sono stati considerati ricoprimenti diversi di NP che variano tra l'1 e il 25% e le proprietà strutturali e morfologiche dei substrati funzionalizzati sono state caratterizzate combinando informazioni ottenute da HRTEM, EDX, SEM, AFM e XPS. La struttura delle NP di Ag@MgO è studiata mediante HRTEM ed EDXS, mostrando che il core di Ag presenta una struttura icosaedrica multi-dominio e dimostrando che la crescita di MgO è localizzata attorno ai nuclei di Ag, confermando l’ottenimento di una struttura core-shell. Le proprietà morfologiche delle NP, ad es. le dimensioni laterali e l'altezza, sono determinate rispettivamente tramite SEM e AFM. L'altezza media delle NP H è stimata intorno a 4 nm per le NP di Ag@MgO, e intorno a 6 nm per quelle di Au@MgO, mentre per entrambi i sistemi la dimensione laterale media D è di circa 8 nm. Quest'ultima aumenta in funzione del ricoprimento, cosicché le NP sono caratterizzate da un rapporto D/H variabile tra 1 e 2. Sia per le NP di Ag che per quelle di Au, gli esperimenti di stabilità termica fino a 150°C sono stati monitorati mediante XPS e dimostrano il ruolo benefico svolto da MgO nel preservare la stabilità termica delle NP ed evitarne l'ossidazione. Le trasmissività UV-Vis (T) e le riflettività (R) dei substrati e di quelli arricchiti con NP sono misurate con uno spettrofotometro, determinandone la Optical Loss differenziale (ΔL) per diversi ricoprimenti di NP. Gli spettri ottici dei campioni contenenti Ag@MgO rivelano un picco a 430 nm. Le simulazioni di polarizzabilità delle NP basate su Maxwell-Garnett confermano che il picco è correlato all'assorbimento del LSPR di Ag, mentre la sua posizione dipende dal rapporto D/H. Gli spettri ottici di campioni contenenti Au@MgO rivelano un picco più largo, a 520 nm, mostrando - in accordo con la letteratura e con i risultati delle simulazioni - che la banda di LSPR è più grande che nel caso di NP di Ag. Come ultima fase, viene esaminato l’effetto delle NP di Ag@MgO e Au@MgO nelle PSC. Vengono testati dispositivi con diverso ricoprimento superficiale tra 0 e 25% e per diversi spessori nominali della shell tra 2,5 e 0,6 nm. Per le PSC arricchite con NP di Ag@MgO, il ricoprimento ottimale è di 1,5%, che porta ad un aumento dell’efficienza dei dispositivi del 5%, fino al 17,8%, correlato con l’aumento di JSC e di VOC. D'altro canto, le misure preliminari relative all'incorporazione di NP Au@MgO nelle PSC non hanno determinato un aumento dell'efficienza e meritano ulteriori indagini.
Nowadays, coupling of Metal nanoparticles (NPs) with photo-active materials represents a promising route to enhance device performances in photocatalysis and solar energy applications. In most cases, efficiency improvement in photovoltaic devices by core-shell NP functionalization was obtained via chemical wet methods for both core and shell synthesis and deposition. These methods – though readily suitable for scalability – presents some limitations in combining NP and shell materials, as well as some drawbacks related to the use of solvents. On the other hand, nanocluster aggregation sources based on magnetron-sputtering represent a versatile route to deposit NPs on any selected surface, with precise control of both their quantity and average dimension. Moreover, co-deposition techniques allow to obtain core-shell structures and/or metal NPs embedded in ultra-thin host matrix. During my PhD project, I explore the potentialities of applying this methodology to Perovskite Solar Cells (PSCs), aiming to investigate the properties of these functionalized substrates and, ultimately, to improve their light harvesting and power conversion efficiency (PCE). In particular, Ag@MgO and Au@MgO core-shell NPs are deposited on the mesoporous TiO2 surface Electron-Transport Layer of triple-cation PSCs. Different NP coverage varying between 1-25% has been considered, and the structural and morphological properties of the functionalized substrate has been fully characterized by combining complementary information obtained by HRTEM, EDX, SEM, AFM and XPS. The Ag@MgO NP core-shell structure is investigated with HRTEM and EDXS, showing that the Ag core presents a multi-twinned icosahedral structure and proving that the MgO growth is preferentially localized around the metal cores, i.e. that a core-shell structure is obtained. Furthermore, NP morphological properties, i.e. their lateral size and height, are determined via SEM and AFM, respectively. The average NP height H is estimated around 4 nm and 6nm for Ag@MgO NPs and Au@MgO NPs, respectively, while for both systems the average lateral size D is found around 8 nm. The latter slightly increases as a function of coverage, so that the NP spheroidal shape is characterized by an aspect ratio D/H varying between 1 and 2. For both Ag and Au NPs, XPS annealing experiments performed in UHV up to 150°C demonstrate the beneficial role played by the MgO shell in preserving their thermal stability and avoiding oxidation. The UV-Vis Transmittivity (T) and Reflectivity (R) of pristine and NP-enriched substrates are measured with a spectrophotometer, thus determining the Differential Optical Loss (ΔL) spectra for different NP coverages. For Ag@MgO NP-enriched samples, spectra reveal an intense and broad band, peaked at 430 nm. NP polarizability simulations based on Maxwell-Garnett approach confirm that the band maximum is related to Ag LSPR absorption, while its position depends on the NP aspect ratio. Au@MgO NP spectra reveal a broader optical loss band, peaked at 520 nm, showing - in agreement with literature and with the results of simulations - that the plasmonic loss band is larger than the case with Ag NPs. As last step, the incorporation of core–shell Ag@MgO and Au@MgO NPs into PSCs is investigated. Devices with different NP surface coverage between 0 and 25% and for different nominal shell thickness between 2.5 and 0.6 nm are tested. For Ag@MgO NP-enriched PSCs, the optimum coverage is 1.5%, which leads to a relative increase of 5% in terms of device efficiencies up to 17.8%, related to an increase in both JSC and VOC. On the other hand, preliminary measures of the incorporation of Au@MgO core-shell NPs in PSCs did not result in an efficiency increase and deserve further investigation.
APA, Harvard, Vancouver, ISO, and other styles
4

Fan, Yinan. "Rational synthesis of plasmonic/catalytic bimetallic nanocrystals for catalysis." Thesis, Sorbonne université, 2022. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2022SORUS189.pdf.

Full text
Abstract:
Parmi les différents nanocatalyseurs, ceux constitués de nanoparticules de métaux nobles méritent une attention particulière en raison de leurs propriétés électroniques, chimiques et même optiques (dans le cas de transformations renforcées par les plasmons). Le platine ou le palladium sont bien connus pour leurs remarquables propriétés catalytiques, mais ils sont chers et leurs ressources sont limitées. En outre, les nanocatalyseurs monométallique ne peuvent conduire qu'à une gamme limitée de réactions chimiques. Ainsi, notre stratégie a été de développer des nanocatalyseurs bimétalliques composés de deux éléments métalliques qui peuvent présenter des effets synergiques entre leurs propriétés physicochimiques et une activité catalytique accrue. Nous avons ainsi conçu des nanocatalyseurs bimétalliques de type cœur-coquille composés d'un cœur en argent et d'une coquille en platine. L'intérêt est de combiner les activités catalytiques élevées et efficaces de la coquille de platine avec le cœur d'argent hautement énergétique, capable de renforcer les activités de la coquille grâce à ses propriétés plasmoniques. En outre, ces nanoparticules bimétalliques présentent souvent une activité catalytique supérieure en raison de la modification de la distance inter-atomique Pt-Pt (c'est-à-dire l'effet de contrainte). Dans ce travail de thèse, les nanoparticules Ag@Pt ont été synthétisées via un processus en deux étapes utilisant d'une part des nanoparticules d'Ag synthétisées chimiquement comme germes et d'autre part des complexes platine-oleylamine qui sont ensuite réduits à la surface des germes à une température contrôlée. Différentes tailles de germes d'Ag de 8 à 14 nm avec une très faible distribution de taille (<10%) ont été obtenues en ajustant le temps de réaction, la rampe de température, la concentration en précurseur d'Ag et la température finale pendant la synthèse. Différentes épaisseurs de coquille (de 1 à 6 couches atomiques) ont été obtenues en ajustant le rapport entre les concentrations de précurseur de platine et de germe d'argent. L'activité catalytique des nanoparticules Ag@Pt a été testée en considérant une réaction modèle de réduction du 4-nitrophénol en 4-aminophénol par NaBH4 en phase aqueuse. Nous avons observé que l'épaisseur de la coquille de Pt et la taille du noyau d'Ag influençaient les propriétés catalytiques et conduisaient à une activité catalytique accrue par rapport à l'argent ou au platine pur. Ceci a été attribué à des effets synergiques. De plus, nous avons observé une augmentation de l'activité catalytique des nanoparticules Ag et Ag@Pt sous irradiation lumineuse. Ce phénomène a été corrélé à la génération d'électrons chauds dans les noyaux d'Ag. Afin de développer une plateforme de nanocatalyse supportée, nous avons fabriqué des auto-assemblages 3D appelés aussi supercristaux composés de nanoparticules d'Ag@Pt obtenus spontanément après dépôt sur un substrat solide en raison de leur distribution de taille étroite et de leur forme homogène. L'activité catalytique de ces supercristaux pour la réaction d'évolution de l’hydrogène (HER) a été étudiée en suivant in situ par microscopie optique la production de nanobulles de gaz H2. Trois comportements distincts dans l'activité photo-catalytique (activité, activité intermittente et non-activité) ont été observés sur les supercristaux dans la même région d'intérêt. En outre, 50 % des assemblages ont été déterminés comme étant actifs pour l'HER qui a été démontrée comme étant accompagnée par une corrosion oxydative de l’argent
Among several nanocatalysts, those based on noble metal NPs deserve particular attention because of their electronic, chemical and even optical properties (in the case of plasmonic-enhanced transformations). Platinum or palladium are well known for their remarkable catalytic properties, but they are expensive and their resources are limited. In addition, single component nanocatalysts can only lead to a limited range of chemical reactions. Thus, our strategy was to develop bimetallic nanocatalysts composed of two metal elements that can exhibit synergistic effects between their physicochemical properties and enhanced catalytic activity. We have thus designed bimetallic nanocatalysts of the core-shell type composed of a silver core and a platinum shell. The interest is to combine the high and efficient catalytic activities of the platinum shell surface with the highly energetic silver core capable of enhancing the activities of the shell through its plasmonic properties. In addition, these bimetallic NPs often exhibit superior catalytic activity due to the modification of the Pt-Pt atomic bonding distance (i.e. the strain effect). In this thesis work, Ag@Pt NPs have been synthesized via a two-step process using chemically synthesized spherical Ag NPs as seeds on the one hand and platinum complexes with oleylamine on the other hand which are then reduced on the surface of the seeds at a controlled temperature. Different Ag seed sizes from 8 to 14 nm with a very low size distribution (<10%) have been obtained by adjusting the reaction time, temperature ramp, Ag precursor concentration and final temperature during the synthesis. The control of the shell thicknesses (from 1 to 6 atomic layers) has been possible by adjusting the ratio of platinum precursor to silver seed concentrations. The catalytic activity of the core-shell Ag@Pt NPs was tested by a model reaction of reduction of 4-nitrophenol to 4-aminophenol by NaBH4 in aqueous phase. We have observed that the thickness of the Pt shell and the size of the Ag core influence the catalytic properties and led increased catalytic activity compared to pure silver or platinum. This was attributed to synergistic effects. Furthermore, we have observed an enhancement of the catalytic activity of Ag and Ag@Pt NPs under light irradiation. This is correlated to the generation of hot electrons in the Ag core. Finally, in order to develop a supported nanocatalysis platform, 3D self-assemblies also called supercrystals composed of Ag@Pt nanoparticles have been spontaneously obtained after deposition on a solid substrate due to their narrow size distribution and homogeneous shape. The catalytic activity of these supercrystals for the hydrogen evolution reaction (HER) has been studied by following in situ by optical microscopy the production of H2 gas nanobubbles. Three distinct behaviors in photo-catalytic activity (activity, intermittent activity and non-activity) have been observed on the supercrystals in the same region of interest. In addition, 50% of the assemblies were determined to be active for HER which was shown to be accompanied by oxidative corrosion of silver
APA, Harvard, Vancouver, ISO, and other styles
5

Jouanin, Anthony. "Extraction de la lumière par des nanoparticules métalliques enterrées dans des films minces." Phd thesis, Palaiseau, Institut d'optique théorique et appliquée, 2014. http://pastel.archives-ouvertes.fr/pastel-01061272.

Full text
Abstract:
L'essor des procédés de micro et nano-fabrications rend aujourd'hui accessible la synthèse contrôlée de nanoparticules métalliques (typiquement de 3 à 200nm) offrant de larges résonances d'absorption et de diffusion dont les fréquences peuvent être contrôlées finement en variant judicieusement leur géométrie et leur composition. Dans ce travail de thèse relevant de l'électrodynamique classique établit par Maxwell, nous étudions numériquement l'intérêt de ces particules pour la problématique du (dé)couplage de la lumière piégée dans un film mince diélectrique - une géométrie de référence permettant de rendre compte du phénomène de piégeage qui limite considérablement l'efficacité de dispositifs électroluminescents et de certaines cellules solaires. Pour ce faire, nous proposons quelques règles de conception de nanoparticules capables d'extraire efficacement la lumière piégée. Pour un émetteur seul, environ 20% de la lumière émise est rayonnée hors du guide (rad~0.2). L'ajout d'une monocouche (~50nm d'épaisseur) composée d'un ensemble de particules " optimisées " et aléatoirement positionnées autour de l'émetteur permet d'accroître cette efficacité jusqu'à 70% en moyenne statistique sur le désordre. D'intéressants effets de cohérences liés à la nature du désordre au sein de ladite couche sont également mis en évidence.
APA, Harvard, Vancouver, ISO, and other styles
6

Wood, Christopher. "Non-spherical plasmonic nanoparticles." Thesis, Imperial College London, 2016. http://hdl.handle.net/10044/1/48485.

Full text
Abstract:
The field of nanotechnology has grown exponentially in recent years. As advancements are made in synthetic technology, this allows for their implementation into new research areas, industries, and potential applications. Nanoparticles are an extensively studied area in nanotechnology, with a plethora of constituent materials providing a vast array of potential properties. Plasmonic nanoparticles in particular have the ability to absorb light, leading to enhancements in many applications, for example surface enhanced Raman spectroscopy. Many plasmonic nanoparticle studies are focused on spherical nanoparticles, but significantly less is known of their non-spherical counterparts. Non-spherical plasmonic nanoparticles possess unique optical and behavioural properties that are of significant technological interest. However, their relatively unknown formation mechanisms typically result in polydisperse samples and little being known of their specific behaviour. The work in this thesis is centred on three areas of non-spherical plasmonic nanoparticles. The first is based on silver nanoprisms, synthesised from the photo-conversion of silver seeds. A blue-shift of their dipole excitation after illumination was noted and investigated using UV-Vis and TEM. Nanoprism analogues were synthesised and investigated, including gold-coated, and hollowed prisms. The second area is based on the size-selection of silver nanoprism solutions using ultraconcentration through a liquid-liquid interface. These investigations were to determine whether such methods and which conditions could be used to increase monodispersity of such nanoparticle samples. An increase in mean size indicated a more monodispersed sample was achieved, and if progressed further could significantly improve the results of other sections or future research. The final section studies magnetic nanoparticles, and using magnetism to direct nanoparticles to points of interest on large multifunctional plasmonic substrates. Through these investigations, magnetic trapping was observed of single nanoparticles on pyramidal substrates.
APA, Harvard, Vancouver, ISO, and other styles
7

Gross, Pierre-Alexandre. "Modification de nanotubes de TiO2 pour la production d’hydrogène par photodissociation de l’eau sous lumière solaire." Thesis, Strasbourg, 2014. http://www.theses.fr/2014STRAF053.

Full text
Abstract:
Ce travail de thèse traite de la production d’hydrogène par le procédé de photoélectrocatalyse en utilisant une photoanode à base de nanotubes de TiO2 verticalement alignés. L’utilisation du TiO2 étant limité pour des applications solaires en raison de son large gap, il est nécessaire de le modifier. Deux approches sont proposées pour modifier les nanotubes de TiO2 et leur permettre d’absorber la lumière visible. La première est une modification chimique du TiO2 par co-dopage cationique-anionique (Ta-N) ou (Nb-N). Les cations sont insérés durant la croissance des nanotubes grâce à une approche inédite, et l’azote est inséré durant le traitement thermique. Ceci a pour effet la formation d’orbitales hybrides qui entraîne une réduction du gap et une activité sous lumière visible, tout en permettant une stabilité de la structure. La seconde approche consiste à déposer des nanoparticules d’Ag sur la surface des nanotubes de TiO2. Grâce au contrôle de la morphologie des nanoparticules d’Ag, leur résonnance plasmonique permet de stimuler l’absorption du TiO2 et ainsi d’augmenter son rendement à la fois sous lumière UV et sous lumière visible
This work is about the production of hydrogen by photoelectrocatalysis using a vertically aligned TiO2 nanotubes based photoanode. Utilization of TiO2 for solar applications is limited due to its large band gap, it has to be modified. Two approaches are proposed for the modification of the TiO2 nanotubes to make them absorb visible light. The first one is the chemical modification of the TiO2 by (Ta-N) or (Nb-N) cationic-anionic co-doping. Cations are inserted during the growth of the nanotubes by a novel approach, and nitrogen is inserted during heat treatment. This leads to the formation of hybrid orbitals resulting in a band gap reduction and of activity under visible light. The second approach consists of the deposition of Ag nanoparticles on the surface of the TiO2 nanotubes. Thanks to the control of the morphology of the Ag nanoparticles, their plasmonic resonance can enhance the absorption of TiO2 and thus increase its activity both under UV and visible light
APA, Harvard, Vancouver, ISO, and other styles
8

Adleman, James R. Psaltis Demetri Psaltis Demetri. "Plasmonic nanoparticles for optofluidic applications /." Diss., Pasadena, Calif. : California Institute of Technology, 2009. http://resolver.caltech.edu/CaltechETD:etd-05102009-103332.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Li, Zhaozhu. "Plasmonic Approaches and Photoemission: Ag-Based Photocathodes." W&M ScholarWorks, 2017. https://scholarworks.wm.edu/etd/1516639865.

Full text
Abstract:
Photocathodes play an important role in present large accelerator facilities by providing polarized or un-polarized electron beams. Current state-of-art high polarization photocathodes consist of strained super-lattice GaAs based photocathodes, e.g. GaAs/GaAsP has a quantum efficiency ~1% and polarization ~90% at near-infrared wavelength for the incident light. Despite the advantages offered by metallic photocathodes regarding longer life time, fast response time and low requirements of ultra-high vacuum environment, they have not been put to use due to their low quantum efficiency, even though one can envision several approaches to achieve spin-polarization from them. A possible solution is to apply the Fano resonance, that involves coupling the surface plasmon resonance and the 1st diffraction order of incident light on a corrugated silver surface. This thesis demonstrates that this approach yields an enhancement of the QE performance of a cesiated silver grating cathode for light incident at the resonance angle, compared to that of a cesiated flat silver cathode measured in the same system. By altering the grating profile through oblique angle deposition (OAD) of a silver thin film onto a grating surface using magnetron sputtering deposition, one can further enhance the Fano resonance and consequently improve the electric field intensity near the silver cathode surface. QE measurements confirm an enhancement of QE (26%) on the cesiated OAD sample compared to a cesiated one obtained under normal deposition(ND) for light incident at resonance, respectively, showcasing a possible road for metallic photocathodes for this application.
APA, Harvard, Vancouver, ISO, and other styles
10

Steven, Christopher R. "Plasmonic metal nanoparticles : synthesis and applications." Thesis, University of Strathclyde, 2017. http://digitool.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=27939.

Full text
Abstract:
Plasmonic metal nanoparticles are widely exploited in academia and industry for use in various assay types. In collaboration with an industrial partner, BBI Solutions, the work here details investigations into the production and use of the plasmonic nanoparticles. The work was split into two themes. The first of these was flow chemistry of nanoparticles, covering a microfluidic assay platform and continuous colloid production. In chapter one, a novel microfluidic assay platform was developed which facilitated the transfer of multiple, sequential bench-top procedures into a single device. This allowed the rapid detection of a sugar binding protein to be demonstrated. The microfluidic system included all pre-detection steps involved in employing the specific aggregation of functionalised silver nanoparticles. Straightforward detection of the protein was demonstrated at concentrations lower than those achieved using comparable methods in the literature. In the second chapter, a novel bench-top scale continuous reactor for the production of gold nanoparticles was developed. It was found that the continuous stirred tank reactor was generally unsuitable for this synthesis. A laminar tubular reactor was more successful but fouling of the reactor material was a significant obstacle to production of good quality colloid. In both cases, nanoparticles produced in a batch synthesis were of more consistent quality. This suggested that further work was needed to develop a competitive continuous production method. The second research theme was development of a novel nanoparticle assembly assay, based on DNA assembly. In chapter three it was found that current tools for the understanding of dynamic DNA structure were limited. This led to the first use of an existing coarse grain model to determine thermodynamic properties of DNA assembly. Analysis showed that the results were comparable with the best simulation models shown in the literature, while being generated much more quickly and at less computational expense.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Plasmonic Nanoparticles(Au, Ag)"

1

service), SpringerLink (Online, ed. Self-Organized Arrays of Gold Nanoparticles: Morphology and Plasmonic Properties. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Purazumon nano zairyō no kaihatsu to ōyō: Developments and applications of plasmonic nanomaterials. Tōkyō: Shīemushī Shuppan, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Manisekaran, Ravichandran. Design and Evaluation of Plasmonic/Magnetic Au-MFe2O4 (M-Fe/Co/Mn) Core-Shell Nanoparticles Functionalized with Doxorubicin for Cancer Therapeutics. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-67609-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

(Editor), Satoshi Kawata, Vladimir M. Shalaev (Editor), and Din Ping Tsai (Editor), eds. Plasmonic Nano-imaging and Nanofabrication. The International Society for Optical Engineering, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Anghinolfi, Luca. Self-Organized Arrays of Gold Nanoparticles: Morphology and Plasmonic Properties. Springer, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Anghinolfi, Luca. Self-Organized Arrays of Gold Nanoparticles: Morphology and Plasmonic Properties. Springer, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Manisekaran, Ravichandran. Design and Evaluation of Plasmonic/Magnetic Au-MFe2O4 Core-Shell Nanoparticles Functionalized with Doxorubicin for Cancer Therapeutics. Springer, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Manisekaran, Ravichandran. Design and Evaluation of Plasmonic/Magnetic Au-MFe2O4 Core-Shell Nanoparticles Functionalized with Doxorubicin for Cancer Therapeutics. Springer, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Vazhacharickal, Prem Jose, and Sruthi S. Nair. Synthesis of Nanoparticles (Ag, Cu and Zn) from Glycosmis Pentaphylla, Macaranga Peltata, Emilia Sonchifolia, Tabernaemontana Divericata and Clerodendrum Infortunatum Leaves Extract:. Independently Published, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wohlbier, Thomas. Nanohybrids. Materials Research Forum LLC, 2021. http://dx.doi.org/10.21741/9781644901076.

Full text
Abstract:
The book covers preparation, designing and utilization of nanohybrid materials for biomedical applications. These materials can improve the effectiveness of drugs, promote high cell growth in new scaffolds, and lead to biodegradable surgical sutures. The use of hybrid magneto-plasmonic nanoparticles may lead to non-invasive therapies. The most promising materials are based on silica nanostructures, polymers, bioresorbable metals, liposomes, biopolymeric electrospun nanofibers, graphene, and gelatin. Much research focuses on the development of biomaterials for cell regeneration and wound healing applications.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Plasmonic Nanoparticles(Au, Ag)"

1

Pylypchuk, Ie V., Iu P. Mukha, N. V. Vityuk, K. Szczepanowicz, L. P. Storozhuk, A. M. Eremenko, P. Warszyński, and P. P. Gorbyk. "Tryptophan-Stabilized Plasmonic Fe3O4/Ag Nanoparticles." In Springer Proceedings in Physics, 417–30. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17755-3_28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sardana, Sanjay K., Sanjay K. Srivastava, and Vamsi K. Komarala. "Tunable Plasmonic Properties from Ag–Au Alloy Nanoparticle Thin Films." In Springer Proceedings in Physics, 415–18. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-97604-4_63.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dhara, Sandip. "Origin of Shifts in the Surface Plasmon Resonance Frequencies for Au and Ag Nanoparticles." In Reviews in Plasmonics, 275–94. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-24606-2_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Smirnova, T. N., P. V. Yezhov, S. A. Tikhomirov, O. V. Buganov, and A. N. Ponyavina. "Time-Dependent Absorption Spectra of 1D, 2D Plasmonic Structures Obtained by the Ordering of Ag Nanoparticles in Polymer Matrix." In Springer Proceedings in Physics, 131–41. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30737-4_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mohan, Jiya Ann, Bidyut Barman, Abhishek Verma, and Vinoth Kumar Jain. "Theoretical Analysis of Surface Plasmonic Ag Nanoparticles Embedded in C-, Pc-, a-Si Thin-Film Solar Cell, Using Mie Scattering." In Springer Proceedings in Physics, 293–300. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29096-6_39.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Raj, Aparna, and Riju K. Thomas. "Localized Surface Plasmon Resonance (LSPR) Applications of Gold (Au) and Silver (Ag) Nanoparticles." In Optical and Molecular Physics, 43–69. Boca Raton: Apple Academic Press, 2021. http://dx.doi.org/10.1201/9781003150053-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kavetskyy, T. S., M. M. Kravtsiv, G. M. Telbiz, V. I. Nuzhdin, V. F. Valeev, and A. L. Stepanov. "Surface Plasmon Resonance Band of Ion-Synthesized Ag Nanoparticles in High Dose Ag:PMMA Nanocomposite Films." In NATO Science for Peace and Security Series B: Physics and Biophysics, 43–47. Dordrecht: Springer Netherlands, 2018. http://dx.doi.org/10.1007/978-94-024-1298-7_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ghasemi, Forough, Amene Naseri, and Marzieh Sepahvand. "Green Plasmonic Nanoparticles." In Encyclopedia of Green Materials, 1–10. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-4921-9_23-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

de Julián Fernández, César, and Francesco Pineider. "Magneto-Plasmonic Nanoparticles." In New Trends in Nanoparticle Magnetism, 107–36. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-60473-8_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hill, Eric H., Christoph Hanske, Cyrille Hamon, and Yuebing Zheng. "Assembly of Plasmonic Nanoparticles." In 21st Century Nanoscience – A Handbook, 14–1. Boca Raton, Florida : CRC Press, [2020]: CRC Press, 2020. http://dx.doi.org/10.1201/9780429351617-14.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Plasmonic Nanoparticles(Au, Ag)"

1

Chen, Yen-Shin, Bo-Kai Chao, Tadaaki Nagao, and Chun-Hway Hsueh. "Improvement of Photocatalytic Efficiency by Adding Ag Nanoparticles and Reduced Graphene Oxide to TiO2." In JSAP-OSA Joint Symposia. Washington, D.C.: Optica Publishing Group, 2017. http://dx.doi.org/10.1364/jsap.2017.5p_a410_12.

Full text
Abstract:
Titanium dioxide (TiO2) is the commonly used photocatalyst. However, because only a small ultraviolet portion of solar spectrum can excite the electron-hole pairs resulting from the large band gap (3.2 eV) [1] and the recombination rate is high, its efficiency is restrained. To overcome this drawback, we added silver nanoparticles and reduced graphene oxide (RGO) to construct the ternary plasmonic catalyst to improve the catalytic performance of TiO2 nanopowder (P25). We prepared three different geometries of Ag nanostructures including sphere, decahedron and prism because the plasmon resonance properties of Ag could be controlled by the morphology of Ag nanoparticle, which shows characteristic strong localized surface plasmon resonance (LSPR) leading to an increase in light absorption [2]. The incorporated RGO inhibited the charge recombination and enhanced the electron-hole separation. In this study, Ag nanodecahedrons/P25/RGO and Ag nano-prisms/P25/RGO hybrid photocatalysts possessed remarkable photocatalytic activity, which displayed over 8 times higher photocatalytic efficiency than the P25 photocatalyst.
APA, Harvard, Vancouver, ISO, and other styles
2

Bhatia, Pradeep, S. S. Verma, and M. M. Sinha. "Tunable plasmonic properties of Ag-Fe nanoparticles." In 2ND INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2017). Author(s), 2018. http://dx.doi.org/10.1063/1.5032740.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Shcherbovich, A. A., V. А. Lyushkevich, N. A. Savastenko, I. I. Filatova, and S. A. Maskevich. "EFFECT OF COLD ATMOSPHERIC PLASMA TREATMENT ON THE OPTICAL PROPERTIES OF PLASMONIC NANOPARTICLES FROM HYBRYDE PHOTOCATAYSTS FOR DEGRADATION OF AQUEOUS ORGANIC POLLUTANTS." In SAKHAROV READINGS 2022: ENVIRONMENTAL PROBLEMS OF THE XXI CENTURY. International Sakharov Environmental Institute of Belarusian State University, 2022. http://dx.doi.org/10.46646/sakh-2022-2-205-208.

Full text
Abstract:
The use of plasma-assisted synthesis of effective plasmonic photocatalysts for degradation of aqueous organic pollutants is limited by a lack of understanding of the effects of plasma treatment on the properties of plasmonic nanoparticles. In this study, the effect of cold atmospheric plasma on the optical properties of plasmonic silver (Ag) nanoparticles was investigated. Silver nanoparticles were deposited on quartz surfaces and treated by dielectric barrier discharge plasma for various time. The plasma treated Ag nanoparticles were characterized using UV-visible spectroscopy technique.
APA, Harvard, Vancouver, ISO, and other styles
4

Yaremchuk, Iryna, Tetiana Bulavinets, Halyna Panakhyd, Halyna Petrovska, Rostyslav Lesyuk, and Volodymyr Fitio. "Plasmonic Properties of Ag-CuS Core-Shell Nanoparticles." In 2022 IEEE 41st International Conference on Electronics and Nanotechnology (ELNANO). IEEE, 2022. http://dx.doi.org/10.1109/elnano54667.2022.9927113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Shelemin, Artem, Bill Baloukas, Oleg Zabeida, Jolanta-Ewa Klemberg-Sapieha, and Ludvik Martinu. "Fabrication of plasmonic Ag nanoparticles for optical coating applications." In Optical Interference Coatings. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/oic.2022.md.3.

Full text
Abstract:
Using silver as a model material, we demonstrate the capabilities of a gas aggregation cluster source for the fabrication of nanoparticles. Furthermore, the resulting Ag nanoparticles are implemented in an optical filter.
APA, Harvard, Vancouver, ISO, and other styles
6

Ueno, Kosei, Xu Shi, Quan Sun, Tomoya Oshikiri, Keiji Sasaki, and Hiroaki Misawa. "Construction of visible responsive broadband absorber utilizing strong coupling between plasmon and nanocavity modes and its application to light energy conversions." In JSAP-OSA Joint Symposia. Washington, D.C.: Optica Publishing Group, 2018. http://dx.doi.org/10.1364/jsap.2018.19p_211b_9.

Full text
Abstract:
Nanoparticles colloidal solutions of metals such as gold (Au) and silver (Ag) show very intense color due to localized surface plasmon resonances (LSPRs). LSPRs which are collective oscillations of conduction electrons give rise to the enhancement of electromagnetic field in the vicinity of nanoparticles and are expected as a light harvesting optical antenna for light energy conversion devices based on their spectrum tunability. We have successfully developed the plasmon-induced energy conversions such as water splitting and ammonia synthesis systems as well as solid-state plasmonic solar cells based on the principle of plasmon-induced hot electron transfer from gold nanoparticles (Au-NPs) to the semiconductor electrode.1−5
APA, Harvard, Vancouver, ISO, and other styles
7

Petoukhoff, Christopher E., Keshav M. Dani, and Deirdre M. O’Carroll. "Ultrastrong Plasmon-Exciton Coupling between Ag Nanoparticles and Conjugated Polymers." In JSAP-OSA Joint Symposia. Washington, D.C.: Optica Publishing Group, 2019. http://dx.doi.org/10.1364/jsap.2019.18p_e208_13.

Full text
Abstract:
Strong light-matter interactions involving organic semiconductors are important for a number of technical applications, including low-threshold lasing [1] and room-temperature Bose-Einstein condensates [2]. Coupling between excitons in organic semiconductors and surface plasmons results in the formation of plasmon-exciton hybridized modes, which are observed as energetic splitting in the normal modes of the coupled system (i.e., Rabi splitting) [3]. Typically, excitons with narrow resonances, such as those found in. J-aggregates, are used to achieve strong coupling, where the rate of energy exchange between excitons and plasmons in the hybrid system exceeds the decay rates of the plasmons and excitons in the isolated systems. However, for many applications, including plasmon-enhanced photovoltaics, light- emitting diodes, and spasers, coupling between plasmons and excitons within conjugated polymers is of great interest [4-6].
APA, Harvard, Vancouver, ISO, and other styles
8

Ho, Hsin-Chia, Min-Hsin Yeh, Bing-Joe Hwang, and Chun-Hway Hsueh. "TiO2-based nanocomposites with metallic nanostructures on nanobranched substrate for photocatalytic water splitting." In JSAP-OSA Joint Symposia. Washington, D.C.: Optica Publishing Group, 2017. http://dx.doi.org/10.1364/jsap.2017.5p_a410_11.

Full text
Abstract:
Plasmon-induced photocatalyst has found its application in the clean and renewable energy issue due to its combination of the large absorption and resonance in the visible region for plasmonic nanostructures with the ability of producing the electron-hole pairs in the ultraviolet range for semiconductors (e.g., TiO2). The Schottky barrier at the interface between metals and semiconductors could assist in separating electrons and holes, and increase the photocatalytic efficiency because the Fermi levels of plasmonic metals are lower than semiconductors. Several mechanisms have been proposed for different systems, including plasmonic heating, plasmonic-excited charge transfer, resonant energy transfer, and plasmonic-enhanced scattering, but none could perfectly explain all the phenomena to date [1]. In this study, Au and Ag nanotriangles synthesized by reduction of metal precursor were deposited on the surface of nanobranched TiO2 arrays, which were prepared by hydrothermal methods. The photoactivity enhancement was evaluated using three-electrode system illuminated with the solar simulator. Finite-difference time-domain (FDTD) method was performed to investigate the electric field enhancement at the interface between Au (or Ag) nanoparticles and TiO2 arrays upon illumination.
APA, Harvard, Vancouver, ISO, and other styles
9

Cheng, Li-Jing, Akash Kannegulla, Ye Liu, Bo Wu, and Yi-Chieh Wang. "Broadband enhancement of quantum dot emission for microLED using Ag plasmonic nanoparticles." In Plasmonics: Design, Materials, Fabrication, Characterization, and Applications XVI, edited by Takuo Tanaka and Din Ping Tsai. SPIE, 2018. http://dx.doi.org/10.1117/12.2322114.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Shinohara, Takeha, and Keiko Tawa. "Plasmon resonance wavelength controlled by SiO2 layer thickness on a silver surface and nanoantenna effect at a center of Bull's eye pattern." In Conference on Lasers and Electro-Optics/Pacific Rim. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleopr.2022.p_cm16_06.

Full text
Abstract:
The fluorescence enhancement is induced by Grating-coupled surface plasmon resonance (GC-SPR) of a plasmonic chip in which a wavelength-sized periodic structure is coated with a thin metal film. In the fluorescence microscopic images of nanoparticles adsorbed on the plasmonic chip observed with transmitted light, the bright spot based on the nanoantenna effect was observed at the center of a Bull's eye pattern composed of concentric circles in a plasmonic chip. In this study, resonance wavelength was controlled by SiO2 film thickness deposited on a thin Ag film and the excitation and emission enhancement was individually evaluated by an upright-inverted microscope to clarify the cause of the nanoantenna effect. As the observation result, nanoantenna effect was larger in SiO2 80 nm than SiO2 20 nm.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Plasmonic Nanoparticles(Au, Ag)"

1

Ibrayev, Niyazbek, Evgeniya Seliverstova, and Assel Kanapina. Influence of the solvent on the dynamics of excited electrons in plasmonic nanoparticles of silver. Peeref, July 2023. http://dx.doi.org/10.54985/peeref.2307p6916984.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chefetz, Benny, Baoshan Xing, Leor Eshed-Williams, Tamara Polubesova, and Jason Unrine. DOM affected behavior of manufactured nanoparticles in soil-plant system. United States Department of Agriculture, January 2016. http://dx.doi.org/10.32747/2016.7604286.bard.

Full text
Abstract:
The overall goal of this project was to elucidate the role of dissolved organic matter (DOM) in soil retention, bioavailability and plant uptake of silver and cerium oxide NPs. The environmental risks of manufactured nanoparticles (NPs) are attracting increasing attention from both industrial and scientific communities. These NPs have shown to be taken-up, translocated and bio- accumulated in plant edible parts. However, very little is known about the behavior of NPs in soil-plant system as affected by dissolved organic matter (DOM). Thus DOM effect on NPs behavior is critical to assessing the environmental fate and risks related to NP exposure. Carbon-based nanomaterials embedded with metal NPs demonstrate a great potential to serve as catalyst and disinfectors. Hence, synthesis of novel carbon-based nanocomposites and testing them in the environmentally relevant conditions (particularly in the DOM presence) is important for their implementation in water purification. Sorption of DOM on Ag-Ag₂S NPs, CeO₂ NPs and synthesized Ag-Fe₃O₄-carbon nanotubebifunctional composite has been studied. High DOM concentration (50mg/L) decreased the adsorptive and catalytic efficiencies of all synthesized NPs. Recyclable Ag-Fe₃O₄-carbon nanotube composite exhibited excellent catalytic and anti-bacterial action, providing complete reduction of common pollutants and inactivating gram-negative and gram-positive bacteria at environmentally relevant DOM concentrations (5-10 mg/L). Our composite material may be suitable for water purification ranging from natural to the industrial waste effluents. We also examined the role of maize (Zeamays L.)-derived root exudates (a form of DOM) and their components on the aggregation and dissolution of CuONPs in the rhizosphere. Root exudates (RE) significantly inhibited the aggregation of CuONPs regardless of ionic strength and electrolyte type. With RE, the critical coagulation concentration of CuONPs in NaCl shifted from 30 to 125 mM and the value in CaCl₂ shifted from 4 to 20 mM. This inhibition was correlated with molecular weight (MW) of RE fractions. Higher MW fraction (> 10 kDa) reduced the aggregation most. RE also significantly promoted the dissolution of CuONPs and lower MW fraction (< 3 kDa) RE mainly contributed to this process. Also, Cu accumulation in plant root tissues was significantly enhanced by RE. This study provides useful insights into the interactions between RE and CuONPs, which is of significance for the safe use of CuONPs-based antimicrobial products in agricultural production. Wheat root exudates (RE) had high reducing ability to convert Ag+ to nAg under light exposure. Photo-induced reduction of Ag+ to nAg in pristine RE was mainly attributed to the 0-3 kDa fraction. Quantification of the silver species change over time suggested that Cl⁻ played an important role in photoconversion of Ag+ to nAg through the formation and redox cycling of photoreactiveAgCl. Potential electron donors for the photoreduction of Ag+ were identified to be reducing sugars and organic acids of low MW. Meanwhile, the stabilization of the formed particles was controlled by both low (0-3 kDa) and high (>3 kDa) MW molecules. This work provides new information for the formation mechanism of metal nanoparticles mediated by RE, which may further our understanding of the biogeochemical cycling and toxicity of heavy metal ions in agricultural and environmental systems. Copper sulfide nanoparticles (CuSNPs) at 1:1 and 1:4 ratios of Cu and S were synthesized, and their respective antifungal efficacy was evaluated against the pathogenic activity of Gibberellafujikuroi(Bakanae disease) in rice (Oryza sativa). In a 2-d in vitro study, CuS decreased G. fujikuroiColony- Forming Units (CFU) compared to controls. In a greenhouse study, treating with CuSNPs at 50 mg/L at the seed stage significantly decreased disease incidence on rice while the commercial Cu-based pesticide Kocide 3000 had no impact on disease. Foliar-applied CuONPs and CuS (1:1) NPs decreased disease incidence by 30.0 and 32.5%, respectively, which outperformed CuS (1:4) NPs (15%) and Kocide 3000 (12.5%). CuS (1:4) NPs also modulated the shoot salicylic acid (SA) and Jasmonic acid (JA) production to enhance the plant defense mechanisms against G. fujikuroiinfection. These results are useful for improving the delivery efficiency of agrichemicals via nano-enabled strategies while minimizing their environmental impact, and advance our understanding of the defense mechanisms triggered by the NPs presence in plants.
APA, Harvard, Vancouver, ISO, and other styles
3

Stender, Anthony. Rod-like plasmonic nanoparticles as optical building blocks: how differences in particle shape and structural geometry influence optical signal. Office of Scientific and Technical Information (OSTI), January 2013. http://dx.doi.org/10.2172/1116721.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography