Journal articles on the topic 'Plasmonic nanoantennas'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Plasmonic nanoantennas.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Sanders, Stephen, and Alejandro Manjavacas. "Nanoantennas with balanced gain and loss." Nanophotonics 9, no. 2 (2020): 473–80. http://dx.doi.org/10.1515/nanoph-2019-0392.
Full textBarho, Franziska B., Fernando Gonzalez-Posada, Maria-Jose Milla, et al. "Highly doped semiconductor plasmonic nanoantenna arrays for polarization selective broadband surface-enhanced infrared absorption spectroscopy of vanillin." Nanophotonics 7, no. 2 (2017): 507–16. http://dx.doi.org/10.1515/nanoph-2017-0052.
Full textKlemm, Maciej. "Novel Directional Nanoantennas for Single-Emitter Sources and Wireless Nano-Links." International Journal of Optics 2012 (2012): 1–7. http://dx.doi.org/10.1155/2012/348306.
Full textLereu, Aude L., Jacob P. Hoogenboom, and Niek F. van Hulst. "Gap Nanoantennas toward Molecular Plasmonic Devices." International Journal of Optics 2012 (2012): 1–19. http://dx.doi.org/10.1155/2012/502930.
Full textPacheco-Peña, Victor, Rúben A. Alves, and Miguel Navarro-Cía. "From symmetric to asymmetric bowtie nanoantennas: electrostatic conformal mapping perspective." Nanophotonics 9, no. 5 (2020): 1177–87. http://dx.doi.org/10.1515/nanoph-2019-0488.
Full textBabicheva, Viktoriia E. "Resonant Metasurfaces with Van Der Waals Hyperbolic Nanoantennas and Extreme Light Confinement." Nanomaterials 14, no. 18 (2024): 1539. http://dx.doi.org/10.3390/nano14181539.
Full textda Silva, Marcelino L. C., Victor Dmitriev, and Karlo Q. da Costa. "Application of Plasmonic Nanoantennas in Enhancing the Efficiency of Organic Solar Cells." International Journal of Antennas and Propagation 2020 (March 10, 2020): 1–9. http://dx.doi.org/10.1155/2020/2719656.
Full textChen, Pai-Yen, Christos Argyropoulos, and Andrea Alù. "Enhanced nonlinearities using plasmonic nanoantennas." Nanophotonics 1, no. 3-4 (2012): 221–33. http://dx.doi.org/10.1515/nanoph-2012-0016.
Full textDamasceno, Gabriel H. B., William O. F. Carvalho, and Jorge Ricardo Mejía-Salazar. "Design of Plasmonic Yagi–Uda Nanoantennas for Chip-Scale Optical Wireless Communications." Sensors 22, no. 19 (2022): 7336. http://dx.doi.org/10.3390/s22197336.
Full textBerini, Pierre. "(Invited) Plasmonic Metasurfaces Based on Epsilon-Near-Zero Materials." ECS Meeting Abstracts MA2024-02, no. 35 (2024): 2495. https://doi.org/10.1149/ma2024-02352495mtgabs.
Full textMilekhin, Ilya A., Sergei A. Kuznetsov, Ekaterina E. Rodyakina, Alexander G. Milekhin, Alexander V. Latyshev, and Dietrich R. T. Zahn. "Localized surface plasmons in structures with linear Au nanoantennas on a SiO2/Si surface." Beilstein Journal of Nanotechnology 7 (October 26, 2016): 1519–26. http://dx.doi.org/10.3762/bjnano.7.145.
Full textBabicheva, Viktoriia E. "Optical Processes behind Plasmonic Applications." Nanomaterials 13, no. 7 (2023): 1270. http://dx.doi.org/10.3390/nano13071270.
Full textGili, Valerio F., Lavinia Ghirardini, Davide Rocco, et al. "Metal–dielectric hybrid nanoantennas for efficient frequency conversion at the anapole mode." Beilstein Journal of Nanotechnology 9 (August 27, 2018): 2306–14. http://dx.doi.org/10.3762/bjnano.9.215.
Full textRosenkranzová, Jana, Elena Miliutina, Vasilii Burtsev, Oleksiy Lyutakov, and Václav Švorčík. "Plasmonic Nanoantennas and Their Utilization for Green Energy." Chemické listy 119, no. 1 (2025): 4–11. https://doi.org/10.54779/chl20250004.
Full textWang, Jiyong, Emre Gürdal, Anke Horneber, et al. "Carrier recombination and plasmonic emission channels in metallic photoluminescence." Nanoscale 10, no. 17 (2018): 8240–45. http://dx.doi.org/10.1039/c7nr07821h.
Full textNagaty, Ahmed, Arafa H. Aly, and Walied Sabra. "Designing plasmonic metasurface absorbers with desirable absorption values for different thermal applications." Physica Scripta 97, no. 5 (2022): 055504. http://dx.doi.org/10.1088/1402-4896/ac5f27.
Full textKnight, Mark W., Lifei Liu, Yumin Wang, et al. "Aluminum Plasmonic Nanoantennas." Nano Letters 12, no. 11 (2012): 6000–6004. http://dx.doi.org/10.1021/nl303517v.
Full textChen, Jianing, Pablo Albella, Zhaleh Pirzadeh, et al. "Plasmonic Nickel Nanoantennas." Small 7, no. 16 (2011): 2341–47. http://dx.doi.org/10.1002/smll.201100640.
Full textZhang, Tianyue, Jian Xu, Zi-Lan Deng, Dejiao Hu, Fei Qin, and Xiangping Li. "Unidirectional Enhanced Dipolar Emission with an Individual Dielectric Nanoantenna." Nanomaterials 9, no. 4 (2019): 629. http://dx.doi.org/10.3390/nano9040629.
Full textBedingfield, Kalun, Eoin Elliott, Nuttawut Kongsuwan, Jeremy J. Baumberg, and Angela Demetriadou. "Morphology dependence of nanoparticle-on-mirror geometries: A quasinormal mode analysis." EPJ Applied Metamaterials 9 (2022): 3. http://dx.doi.org/10.1051/epjam/2022002.
Full textYousif, Bedir B., and Ahmed S. Samra. "Modeling of Optical Nanoantennas." Physics Research International 2012 (November 8, 2012): 1–10. http://dx.doi.org/10.1155/2012/321075.
Full textZhang, Xiaoxin, Rulin Guan, Qingxiu Ding, et al. "Exciting High-Order Plasmon Mode Using Metal-Insulator-Metal Bowtie Nanoantenna." Nanomaterials 15, no. 12 (2025): 882. https://doi.org/10.3390/nano15120882.
Full textDi Meo, Valentina, Alessio Crescitelli, Massimo Moccia, et al. "Pixeled metasurface for multiwavelength detection of vitamin D." Nanophotonics 9, no. 12 (2020): 3921–30. http://dx.doi.org/10.1515/nanoph-2020-0103.
Full textPaschaloudis, Konstantinos D., Constantinos L. Zekios, Georgios C. Trichopoulos, Filippos Farmakis, and George A. Kyriacou. "An Eigenmode Study of Nanoantennas from Terahertz to Optical Frequencies." Electronics 10, no. 22 (2021): 2782. http://dx.doi.org/10.3390/electronics10222782.
Full textYang, Yuanqing, Ding Zhao, Hanmo Gong, Qiang Li, and Min Qiu. "Plasmonic sectoral horn nanoantennas." Optics Letters 39, no. 11 (2014): 3204. http://dx.doi.org/10.1364/ol.39.003204.
Full textBoriskina, Svetlana V., and Luca Dal Negro. "Multiple-wavelength plasmonic nanoantennas." Optics Letters 35, no. 4 (2010): 538. http://dx.doi.org/10.1364/ol.35.000538.
Full textMaksymov, Ivan S., Arthur R. Davoyan, Andrey E. Miroshnichenko, Constantin Simovski, Pavel Belov, and Yuri S. Kivshar. "Multifrequency tapered plasmonic nanoantennas." Optics Communications 285, no. 5 (2012): 821–24. http://dx.doi.org/10.1016/j.optcom.2011.11.050.
Full textYue, Weisheng, Zhihong Wang, John Whittaker, Francisco Lopez-royo, Yang Yang, and Anatoly V. Zayats. "Amplification of surface-enhanced Raman scattering due to substrate-mediated localized surface plasmons in gold nanodimers." Journal of Materials Chemistry C 5, no. 16 (2017): 4075–84. http://dx.doi.org/10.1039/c7tc00667e.
Full textErgul, O., G. Isiklar, I. C. Cetin, and M. Algun. "Design and Analysis of Nanoantenna Arrays for Imaging and Sensing Applications at Optical Frequencies." Advanced Electromagnetics 8, no. 2 (2019): 18–27. http://dx.doi.org/10.7716/aem.v8i2.1010.
Full textToussaint Jr., Kimani C., Brian J. Roxworthy, Sarah Michaud, Hao Chen, Abdul M. Bhuiya, and Qing Ding. "Plasmonic Nanoantennas: From Nanotweezers to Plasmonic Photography." Optics and Photonics News 26, no. 6 (2015): 24. http://dx.doi.org/10.1364/opn.26.6.000024.
Full textVenugopalan, Priyamvada, and Sunil Kumar. "Highly Sensitive Plasmonic Sensor with Au Bow Tie Nanoantennas on SiO2 Nanopillar Arrays." Chemosensors 11, no. 2 (2023): 121. http://dx.doi.org/10.3390/chemosensors11020121.
Full textGhamsari, Behnood G., Anthony Olivieri, Fabio Variola, and Pierre Berini. "Enhanced Raman scattering in graphene by plasmonic resonant Stokes emission." Nanophotonics 3, no. 6 (2014): 363–71. http://dx.doi.org/10.1515/nanoph-2014-0014.
Full textJaksic, Zoran, Marko Obradov, Slobodan Vukovic, and Milivoj Belic. "Plasmonic enhancement of light trapping in photodetectors." Facta universitatis - series: Electronics and Energetics 27, no. 2 (2014): 183–203. http://dx.doi.org/10.2298/fuee1402183j.
Full textKarst, Julian, Moritz Floess, Monika Ubl, et al. "Electrically switchable metallic polymer nanoantennas." Science 374, no. 6567 (2021): 612–16. http://dx.doi.org/10.1126/science.abj3433.
Full textFujii, Minoru, and Hiroshi Sugimoto. "(Invited, Digital Presentation) Enhancement of Magnetic Dipole Transition of Molecules By Silicon Nanoparticle Nanoantenna." ECS Meeting Abstracts MA2022-01, no. 20 (2022): 1081. http://dx.doi.org/10.1149/ma2022-01201081mtgabs.
Full textUllah, Zaka, Gunawan Witjaksono, Illani Nawi, Nelson Tansu, Muhammad Irfan Khattak, and Muhammad Junaid. "A Review on the Development of Tunable Graphene Nanoantennas for Terahertz Optoelectronic and Plasmonic Applications." Sensors 20, no. 5 (2020): 1401. http://dx.doi.org/10.3390/s20051401.
Full textShalin, A. S., and S. V. Sukhov. "Optical forces in plasmonic nanoantennas." Quantum Electronics 42, no. 4 (2012): 355–60. http://dx.doi.org/10.1070/qe2012v042n04abeh014740.
Full textHewageegana, Prabath, and Mark I. Stockman. "Plasmonic enhancing nanoantennas for photodetection." Infrared Physics & Technology 50, no. 2-3 (2007): 177–81. http://dx.doi.org/10.1016/j.infrared.2006.10.032.
Full textRosa, Lorenzo, Kai Sun, and Saulius Juodkazis. "Sierpin´ski fractal plasmonic nanoantennas." physica status solidi (RRL) - Rapid Research Letters 5, no. 5-6 (2011): 175–77. http://dx.doi.org/10.1002/pssr.201105136.
Full textMohammad, Tariq Yaseen, and A. Rasheed Abdalem. "Aluminum based nanostructures for energy applications." TELKOMNIKA Telecommunication, Computing, Electronics and Control 19, no. 2 (2021): pp. 683~689. https://doi.org/10.12928/TELKOMNIKA.v19i2.18146.
Full textErturan, Ahmet Murat, Seyfettin Sinan Gultekin, and Habibe Durmaz. "Detection of 2,4-Dinitrotoluene by Metal-Graphene Hybrid Plasmonic Nanoantennas with a Golden Ratio Rectangular Resonator." Elektronika ir Elektrotechnika 29, no. 3 (2023): 33–38. http://dx.doi.org/10.5755/j02.eie.33869.
Full textGiordano, Maria Caterina, Matteo Barelli, Giuseppe Della Valle, and Francesco Buatier de Mongeot. "Self-Organized Conductive Gratings of Au Nanostripe Dimers Enable Tunable Plasmonic Activity." Applied Sciences 10, no. 4 (2020): 1301. http://dx.doi.org/10.3390/app10041301.
Full textLv, Jingwei, Debao Wang, Chao Liu, et al. "Theoretical Analysis of Hybrid Metal–Dielectric Nanoantennas with Plasmonic Fano Resonance for Optical Sensing." Coatings 12, no. 9 (2022): 1248. http://dx.doi.org/10.3390/coatings12091248.
Full textMohammad Alavirad, Mohammad Alavirad, Anthony Olivieri Anthony Olivieri, Langis Roy Langis Roy, and Pierre Berini Pierre Berini. "Fabrication of electrically contacted plasmonic Schottky nanoantennas on silicon." Chinese Optics Letters 16, no. 5 (2018): 050007. http://dx.doi.org/10.3788/col201816.050007.
Full textKUMAR, V. DINESH, ABHINAV BHARDWAJ, DEEPAK MISHRA, and KIYOSHI ASAKAWA. "DIRECTIONAL AND POLARIZATION PROPERTIES OF A PLASMONIC CROSS NANOANTENNA." Journal of Nonlinear Optical Physics & Materials 19, no. 04 (2010): 517–25. http://dx.doi.org/10.1142/s0218863510005418.
Full textPineider, Francesco, Esteban Pedrueza-Villalmanzo, Michele Serri, et al. "Plasmon-enhanced magneto-optical detection of single-molecule magnets." Materials Horizons 6, no. 6 (2019): 1148–55. http://dx.doi.org/10.1039/c8mh01548a.
Full textNiu, Caixia, Manshu Peng, Ying You, et al. "A comparative study of plasmonic-enhanced single-molecule fluorescence induced by gold nanoantennas and its application for illuminating telomerase." Chemical Communications 53, no. 41 (2017): 5633–36. http://dx.doi.org/10.1039/c7cc01330b.
Full textAccanto, Nicolò, Pablo M. de Roque, Marcial Galvan-Sosa, Ion M. Hancu, and Niek F. van Hulst. "Selective excitation of individual nanoantennas by pure spectral phase control in the ultrafast coherent regime." Nanophotonics 10, no. 1 (2020): 597–606. http://dx.doi.org/10.1515/nanoph-2020-0406.
Full textDipalo, Michele, Gabriele C. Messina, Hayder Amin, et al. "3D plasmonic nanoantennas integrated with MEA biosensors." Nanoscale 7, no. 8 (2015): 3703–11. http://dx.doi.org/10.1039/c4nr05578k.
Full textHernandez Cedillo, Alondra, Fernando Sebastián Chiwo González, Rosa Angélica Lara-Ojeda, María Selene Ordaz Rodriguez, and Javier Mendez Lozoya. "Biosensing at the Nanoscale: Gold Fractal Nanoantennas for Non-Invasive Plasmonic Resonance Frequency Analysis." Ciencia Latina Revista Científica Multidisciplinar 9, no. 1 (2025): 12932–43. https://doi.org/10.37811/cl_rcm.v9i1.16906.
Full text