Academic literature on the topic 'Plasmonic nanoantennas'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Plasmonic nanoantennas.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Plasmonic nanoantennas"
Sanders, Stephen, and Alejandro Manjavacas. "Nanoantennas with balanced gain and loss." Nanophotonics 9, no. 2 (February 25, 2020): 473–80. http://dx.doi.org/10.1515/nanoph-2019-0392.
Full textBarho, Franziska B., Fernando Gonzalez-Posada, Maria-Jose Milla, Mario Bomers, Laurent Cerutti, Eric Tournié, and Thierry Taliercio. "Highly doped semiconductor plasmonic nanoantenna arrays for polarization selective broadband surface-enhanced infrared absorption spectroscopy of vanillin." Nanophotonics 7, no. 2 (November 11, 2017): 507–16. http://dx.doi.org/10.1515/nanoph-2017-0052.
Full textKlemm, Maciej. "Novel Directional Nanoantennas for Single-Emitter Sources and Wireless Nano-Links." International Journal of Optics 2012 (2012): 1–7. http://dx.doi.org/10.1155/2012/348306.
Full textLereu, Aude L., Jacob P. Hoogenboom, and Niek F. van Hulst. "Gap Nanoantennas toward Molecular Plasmonic Devices." International Journal of Optics 2012 (2012): 1–19. http://dx.doi.org/10.1155/2012/502930.
Full textPacheco-Peña, Victor, Rúben A. Alves, and Miguel Navarro-Cía. "From symmetric to asymmetric bowtie nanoantennas: electrostatic conformal mapping perspective." Nanophotonics 9, no. 5 (February 4, 2020): 1177–87. http://dx.doi.org/10.1515/nanoph-2019-0488.
Full textda Silva, Marcelino L. C., Victor Dmitriev, and Karlo Q. da Costa. "Application of Plasmonic Nanoantennas in Enhancing the Efficiency of Organic Solar Cells." International Journal of Antennas and Propagation 2020 (March 10, 2020): 1–9. http://dx.doi.org/10.1155/2020/2719656.
Full textChen, Pai-Yen, Christos Argyropoulos, and Andrea Alù. "Enhanced nonlinearities using plasmonic nanoantennas." Nanophotonics 1, no. 3-4 (December 1, 2012): 221–33. http://dx.doi.org/10.1515/nanoph-2012-0016.
Full textDamasceno, Gabriel H. B., William O. F. Carvalho, and Jorge Ricardo Mejía-Salazar. "Design of Plasmonic Yagi–Uda Nanoantennas for Chip-Scale Optical Wireless Communications." Sensors 22, no. 19 (September 27, 2022): 7336. http://dx.doi.org/10.3390/s22197336.
Full textMilekhin, Ilya A., Sergei A. Kuznetsov, Ekaterina E. Rodyakina, Alexander G. Milekhin, Alexander V. Latyshev, and Dietrich R. T. Zahn. "Localized surface plasmons in structures with linear Au nanoantennas on a SiO2/Si surface." Beilstein Journal of Nanotechnology 7 (October 26, 2016): 1519–26. http://dx.doi.org/10.3762/bjnano.7.145.
Full textGili, Valerio F., Lavinia Ghirardini, Davide Rocco, Giuseppe Marino, Ivan Favero, Iännis Roland, Giovanni Pellegrini, et al. "Metal–dielectric hybrid nanoantennas for efficient frequency conversion at the anapole mode." Beilstein Journal of Nanotechnology 9 (August 27, 2018): 2306–14. http://dx.doi.org/10.3762/bjnano.9.215.
Full textDissertations / Theses on the topic "Plasmonic nanoantennas"
Wang, Jiyong. "Plasmonic Nanoantennas." Thesis, Troyes, 2017. http://www.theses.fr/2017TROY0021.
Full textLinear and nonlinear optical responses of lithographically fabricated plasmonic nanoparticles (NPs) are investigated. Elastic scattering offers the fingerprints for localized surface plasmon resonances of NPs, which enhance nonlinear optical signals. Excitation polarization dependent far-field radiation of second-harmonic generation (SHG) shows a flipping effect, which is analysed from the aspects of resonant excitation shifting and SH phase interference as size changes. The radiations of metallic photoluminescence (MPL) in the weak and strong radiation field are studied sequentially. In the weak excitation, besides a process via electron-hole (e-h) pair recombination, particle plasmons (PPs) can be excited via Auger scattering of photo-excited d-band holes and the radiative decay of which gives rise to PPs modulated MPL. A model of total emission quantum efficiency involving both contributions has been used to explain MPL radiation difference between the bulk and the NPs. In the strong excitation, avalanche multiphoton PL (AMPL) is observed from the coupled heterodimers, which is interpreted as the recombination of avalanche ionized hot carriers seeded by multiphoton ionization (MI). MI is greatly assisted by local field of coupled NPs at the excitation stage. The giant photon emission can be evaluated as a function of local field environment and thermal factor of hot carriers. The spectral change from PPs modulated profile to the one indicates spontaneous emission of hot e-h pairs is explained by the diminishment of d-band hole scattering rate as temperature increases
Peter, Manuel [Verfasser]. "Active Plasmonic and Dielectric Nanoantennas / Manuel Peter." Bonn : Universitäts- und Landesbibliothek Bonn, 2017. http://d-nb.info/1149154187/34.
Full textMassa, Enrico. "Plasmonic nanoantennas for absorption and emission manipulation." Thesis, Imperial College London, 2014. http://hdl.handle.net/10044/1/24720.
Full textSiadat, Mousavi Saba. "Periodic Plasmonic Nanoantennas in a Piecewise Homogeneous Background." Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/22814.
Full textKnittel, Vanessa [Verfasser]. "Ultrafast nonlinear response of plasmonic nanoantennas / Vanessa Knittel." Konstanz : Bibliothek der Universität Konstanz, 2018. http://d-nb.info/1161343245/34.
Full textBlack, Leo-Jay. "Near-infrared nano-optical elements using plasmonic nanoantennas." Thesis, University of Southampton, 2017. https://eprints.soton.ac.uk/410269/.
Full textWang, Jiyong [Verfasser], and Pierre-Francois [Akademischer Betreuer] Brevet. "Plasmonic Nanoantennas / Jiyong Wang ; Betreuer: Pierre-Francois Brevet." Tübingen : Universitätsbibliothek Tübingen, 2020. http://d-nb.info/1203623054/34.
Full textMetzger, Bernd [Verfasser], and Harald [Akademischer Betreuer] Giessen. "Ultrafast nonlinear plasmonics : from dipole nanoantennas to hybrid complex plasmonic structures / Bernd Metzger. Betreuer: Harald Giessen." Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2014. http://d-nb.info/1062951379/34.
Full textJeannin, Mathieu Emmanuel. "Control of the emission properties of semiconducting nanowire quantum dots using plasmonic nanoantennas." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAY053/document.
Full textIn this work, we study the coupling between plasmonic nanoantennas and semiconducting nanowire quantum dots (NWQDs). This coupling requires spectral, spatial and polarisation matching of the antenna mode and of the NWQD emission. Hence, a full characterisation of both the antenna system and the NWQDs has to be performed to determine a relevant coupling geometry.Using cathodoluminescence (CL) we investigate the relation between the CL signal of circular patch plasmonic antennas and the electromagnetic local density of states (LDOS). The successive resonances supported by these antennas are complex superimpositions of Bessel modes of different radial and azimuthal order. Applying an analytical LDOS model, we show that we can fabricate and characterise antennas down to single mode resonances. However, the antennas CL spectrum goes beyond the radiative part of the LDOS. By changing the spacing layer thickness and the antennas materials, we propose an explanation for the origin of the additional CL signal we observe that is not related to the radiative LDOS of the patch antennas. We also demonstrate the fabrication of Al patch antennas working in the blue spectral range and apply our method to other geometries.We perform optical characterisation of different quantum dots (QDs) embedded inside semiconducting nanowires (NWs) made of II-VI materials. We use microphotoluminescence (µPL) to study the emission of single NWQDs. Time-resolved measurements and Fourier imaging allows us to extract their exciton lifetime and radiation patterns. The variability in the emission properties of the NWQDs due to inhomogeneity in the growth process are evidenced by studying a statistical set of nanowires. A complete model based on polarisation-resolved Fourier imaging and magneto-optical spectroscopy is detailed, allowing to fully determine the QD electronic and optical properties for an individual system.Finally, we develop a cathodoluminescence-based two-step electron-beam lithography technique to deterministically fabricate plasmonic antennas coupled to NWQDs, enhancing their µPL properties. The coupling results in an enhanced absorption of the pump laser inside the NW and in an increase of the radiative rate of the QD, leading to up to a two-fold intensity enhancement factor for the coupled system
Gmeiner, Benjamin [Verfasser], and Vahid [Gutachter] Sandoghdar. "Coherent Spectroscopy of Single Molecules in the Near-Field of Plasmonic Nanoantennas / Benjamin Gmeiner ; Gutachter: Vahid Sandoghdar." Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2017. http://d-nb.info/1139492551/34.
Full textBooks on the topic "Plasmonic nanoantennas"
Werner, Douglas H., Sawyer D. Campbell, and Lei Kang, eds. Nanoantennas and Plasmonics: Modelling, design and fabrication. Institution of Engineering and Technology, 2020. http://dx.doi.org/10.1049/sbew540e.
Full textNanoantennas and Plasmonics: Modelling, Design and Fabrication. Institution of Engineering & Technology, 2020.
Find full textWerner, Douglas H., Sawyer D. Campbell, and Lei Kang. Nanoantennas and Plasmonics: Modelling, Design and Fabrication. Institution of Engineering & Technology, 2020.
Find full textPucci, Annemarie, and Marc Lamy de la Chapelle. Nanoantenna: Plasmon-Enhanced Spectroscopies for Biotechnological Applications. Pan Stanford Publishing, 2013.
Find full textPucci, Annemarie, and Marc Lamy de la Chapelle. Nanoantenna: Plasmon-Enhanced Spectroscopies for Biotechnological Applications. Jenny Stanford Publishing, 2013.
Find full textNanoantenna: Plasmon-Enhanced Spectroscopies for Biotechnological Applications. Taylor & Francis Group, 2013.
Find full textBook chapters on the topic "Plasmonic nanoantennas"
Sarychev, Andrey K., and Vladimir M. Shalaev. "Plasmonic Nanoantennas." In Continuum Models and Discrete Systems, 135. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2316-3_22.
Full textWang, Hancong. "Coupled Plasmonic Nanoantennas." In Advances in Intelligent Systems and Computing, 257–65. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48499-0_31.
Full textJeannin, Mathieu, Pamela Rueda-Fonseca, Rudeesun Songmuang, Edith Bellet-Amalric, Kuntheak Kheng, and Gilles Nogues. "Coupling Semiconducting Nanowires to Plasmonic Nanoantennas." In NATO Science for Peace and Security Series B: Physics and Biophysics, 517–18. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-024-0850-8_56.
Full textMunárriz Arrieta, Javier. "Optical Nanoantennas with Tunable Radiation Patterns." In Modelling of Plasmonic and Graphene Nanodevices, 71–83. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07088-9_6.
Full textOzel, Tuncay. "Hybrid Semiconductor Core-Shell Nanowires with Tunable Plasmonic Nanoantennas." In Coaxial Lithography, 27–41. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45414-6_3.
Full textSoavi, Giancarlo, Giuseppe Della Valle, Paolo Biagioni, Andrea Cattoni, Stefano Longhi, Giulio Cerullo, and Daniele Brida. "Ultrafast Non-thermal Response of Plasmonic Resonance in Gold Nanoantennas." In Springer Proceedings in Physics, 679–82. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-13242-6_167.
Full textHegde, Ravi Sadananda. "Fractal Plasmonic Nanoantennae." In Reviews in Plasmonics, 55–76. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-48081-7_4.
Full textBiswas, Richard Victor. "A Waveguide-Fed Hybrid Graphene Plasmonic Nanoantenna for On-Chip Wireless Optical Communication." In Proceedings of International Conference on Information and Communication Technology for Development, 107–24. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-7528-8_9.
Full textFoti, Antonino, C. D’Andrea, A. Toma, B. Fazio, E. Messina, O. M. Maragò, Enzo Di Fabrizio, M. Lamy de La Chepelle, and P. G. Gucciardi. "Polarization Properties of the SERS Radiation Scattered by Linear Nanoantennas with Two Distinct Localized Plasmon Resonances." In NATO Science for Peace and Security Series B: Physics and Biophysics, 503–4. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-024-0850-8_51.
Full textGREFFET, JEAN-JACQUES. "Plasmonic Nanoantennas." In World Scientific Handbook of Metamaterials and Plasmonics, 21–66. World Scientific, 2017. http://dx.doi.org/10.1142/9789813228726_0002.
Full textConference papers on the topic "Plasmonic nanoantennas"
Yang, Morris M., Demid Sychev, Xiaohui Xu, Zach Martin, David Mandurus, Hasitha Suriya, Arachchige, Alexei Lagoutchev, Vladimir Shalaev, and Alexandra Boltasseva. "Plasmonically Enhanced Second Harmonic Generation of Weyl Semimetal TaAs through field confinement." In CLEO: Science and Innovations. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_si.2022.sf4k.1.
Full textChen, Kuo-Ping, Vladimir P. Drachev, Joshua D. Borneman, Alexander V. Kildishev, and Vladimir M. Shalaev. "Improving Plasmonic Nanoantennas." In Quantum Electronics and Laser Science Conference. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/qels.2010.qtuf3.
Full textDayal, Govind, Ikki Morichika, and Satoshi Ashihara. "Vibrational strong coupling between molecular vibration and subwavelength plasmonic cavity supporting gap plasmon mode." In JSAP-OSA Joint Symposia. Washington, D.C.: Optica Publishing Group, 2019. http://dx.doi.org/10.1364/jsap.2019.18a_e208_2.
Full textMekawey, Hosameldin I., Yehea Ismail, and Mohamed A. Swillam. "silicon-based plasmonic nanoantennas." In Silicon Photonics XIV, edited by Graham T. Reed and Andrew P. Knights. SPIE, 2019. http://dx.doi.org/10.1117/12.2509341.
Full textPodolskiy, V. A., A. K. Sarychev, E. E. Narimanov, and V. M. Shalaev. "Light manipulation with plasmonic nanoantennas." In IEEE Antennas and Propagation Society Symposium, 2004. IEEE, 2004. http://dx.doi.org/10.1109/aps.2004.1330577.
Full textHardy, Neil, Ahsan Habib, Tanya Ivanov, and Ahmet A. Yanik. "Electro-plasmonic Nanoantennas for In Vivo Neural Sensing." In CLEO: Applications and Technology. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_at.2022.atu4k.2.
Full textMaccaferri, Nicolò, Paolo Ponzellini, Giorgia Giovannini, and Xavier Zambrana-Puyalto. "FRET characterization of hollow plasmonic nanoantennas." In Plasmonics in Biology and Medicine XVI, edited by Tuan Vo-Dinh, Ho-Pui A. Ho, and Krishanu Ray. SPIE, 2019. http://dx.doi.org/10.1117/12.2515296.
Full textChoudhary, Saumya, Sylvia D. Swiecicki, Israel De Leon, Sebastian A. Schulz, Jeremy Upham, J. E. Sipe, and Robert W. Boyd. "Superradiance in arrays of plasmonic nanoantennas." In Frontiers in Optics. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/fio.2016.ftu3d.4.
Full textRoxworthy, Brian J., Kaspar D. Ko, Anil Kumar, Kin Hung Fung, Gang Logan Liu, Nicholas X. Fang, and Kimani C. Toussaint. "Bowtie Nanoantennas for Plasmonic Optical Trapping." In Optical Trapping Applications. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/ota.2011.otma2.
Full textHildebrandt, Andre, Matthias Reichelt, Torsten Meier, and Jens Förstner. "Engineering plasmonic and dielectric directional nanoantennas." In SPIE OPTO, edited by Markus Betz, Abdulhakem Y. Elezzabi, Jin-Joo Song, and Kong-Thon Tsen. SPIE, 2014. http://dx.doi.org/10.1117/12.2036588.
Full text