Academic literature on the topic 'Plasmonic nanoantennas'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Plasmonic nanoantennas.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Plasmonic nanoantennas"

1

Sanders, Stephen, and Alejandro Manjavacas. "Nanoantennas with balanced gain and loss." Nanophotonics 9, no. 2 (February 25, 2020): 473–80. http://dx.doi.org/10.1515/nanoph-2019-0392.

Full text
Abstract:
AbstractThe large cross sections and strong confinement provided by the plasmon resonances of metallic nanostructures make these systems an ideal platform to implement nanoantennas. Like their macroscopic counterparts, nanoantennas enhance the coupling between deep subwavelength emitters and free radiation, providing, at the same time, an increased directionality. Here, inspired by the recent works in parity-time symmetric plasmonics, we investigate how the combination of conventional plasmonic nanostructures with active materials, which display optical gain when externally pumped, can serve to enhance the performance of metallic nanoantennas. We find that the presence of gain, in addition to mitigating the losses and therefore increasing the power radiated or absorbed by an emitter, introduces a phase difference between the elements of the nanoantenna that makes the optical response of the system directional, even in the absence of geometrical asymmetry. Exploiting these properties, we analyse how a pair of nanoantennas with balanced gain and loss can enhance the far-field interaction between two dipole emitters. The results of this work provide valuable insight into the optical response of nanoantennas made of active and passive plasmonic nanostructures, with potential applications for the design of optical devices capable of actively controlling light at the nanoscale.
APA, Harvard, Vancouver, ISO, and other styles
2

Barho, Franziska B., Fernando Gonzalez-Posada, Maria-Jose Milla, Mario Bomers, Laurent Cerutti, Eric Tournié, and Thierry Taliercio. "Highly doped semiconductor plasmonic nanoantenna arrays for polarization selective broadband surface-enhanced infrared absorption spectroscopy of vanillin." Nanophotonics 7, no. 2 (November 11, 2017): 507–16. http://dx.doi.org/10.1515/nanoph-2017-0052.

Full text
Abstract:
AbstractTailored plasmonic nanoantennas are needed for diverse applications, among those sensing. Surface-enhanced infrared absorption (SEIRA) spectroscopy using adapted nanoantenna substrates is an efficient technique for the selective detection of molecules by their vibrational spectra, even in small quantity. Highly doped semiconductors have been proposed as innovative materials for plasmonics, especially for more flexibility concerning the targeted spectral range. Here, we report on rectangular-shaped, highly Si-doped InAsSb nanoantennas sustaining polarization switchable longitudinal and transverse plasmonic resonances in the mid-infrared. For small array periodicities, the highest reflectance intensity is obtained. Large periodicities can be used to combine localized surface plasmon resonances (SPR) with array resonances, as shown in electromagnetic calculations. The nanoantenna arrays can be efficiently used for broadband SEIRA spectroscopy, exploiting the spectral overlap between the large longitudinal or transverse plasmonic resonances and narrow infrared active absorption features of an analyte molecule. We demonstrate an increase of the vibrational line intensity up to a factor of 5.7 of infrared-active absorption features of vanillin in the fingerprint spectral region, yielding enhancement factors of three to four orders of magnitude. Moreover, an optimized readout for SPR sensing is proposed based on slightly overlapping longitudinal and transverse localized SPR.
APA, Harvard, Vancouver, ISO, and other styles
3

Klemm, Maciej. "Novel Directional Nanoantennas for Single-Emitter Sources and Wireless Nano-Links." International Journal of Optics 2012 (2012): 1–7. http://dx.doi.org/10.1155/2012/348306.

Full text
Abstract:
Optical nanoantennas are emerging as one of the key components in the future nanophotonic and plasmonic circuits. The first optical nanoantennas were in a form of simple spherical nanoparticles. Recently more complex Yagi-Uda nanoantenna structures were demonstrated. These nanoantennas enhance radiation of single emitters and provide well-defined directional radiation. In this contribution, we present the novel design of the directional nanoantenna, which is excited from the propagating mode of the plasmonic waveguide. The nanoantenna design is based on thetravelling waveprinciple, well known at RF/microwave frequencies. By properly designing the propagating parts of the nanoantenna, a very efficient coupling to free space wave impedance can be achieved. Furthermore, the control over the radiation direction and beam width is relatively easy with this nanoantenna. Compared to the previously published Yagi-Uda designs, the new nanoantenna presented in this work has directivity three times higher.
APA, Harvard, Vancouver, ISO, and other styles
4

Lereu, Aude L., Jacob P. Hoogenboom, and Niek F. van Hulst. "Gap Nanoantennas toward Molecular Plasmonic Devices." International Journal of Optics 2012 (2012): 1–19. http://dx.doi.org/10.1155/2012/502930.

Full text
Abstract:
Recently we have demonstrated that single fluorescent molecules can be used as non-perturbative vectorial probes of the local field. Here, we expand on such experiments exploiting fluorescence lifetime of single molecules to probe various types of gap nanoantennas. First, studies of the nanoantennas are carried out to evaluate the electric field. We then investigate hybrid systems composed by nanoantennas and randomly positioned fluorescent molecules. Finally, we present a fabrication scheme for the controlled placement of fluorescent molecules at welldefined positions with respect to the dimer nanoantenna, which is a more direct route to probe the local field in ana prioridetermined way.
APA, Harvard, Vancouver, ISO, and other styles
5

Pacheco-Peña, Victor, Rúben A. Alves, and Miguel Navarro-Cía. "From symmetric to asymmetric bowtie nanoantennas: electrostatic conformal mapping perspective." Nanophotonics 9, no. 5 (February 4, 2020): 1177–87. http://dx.doi.org/10.1515/nanoph-2019-0488.

Full text
Abstract:
AbstractPlasmonic nanoantennas have revolutionized the way we study and modulate light–matter interaction. Due to nanofabrication limitations, dimer-type nanoantennas always exhibit some degree of asymmetry, which is desirable in some cases. For instance, in sensing applications, asymmetry is sometimes induced by design in plasmonic nanoantennas to favor higher order nonradiative modes with sharp Fano line shapes. Regardless of the actual origin of the asymmetry, unintentional or intentional, an analytical frame that can deal with it in a seamless manner would be beneficial. We resort to conformal mapping for this task and we track the influence of the degree of asymmetry of the circular sectors composing gold bowtie nanoantennas on the nonradiative Purcell enhancement of a nearby nanoemitter. This manuscript reviews the contributions of conformal mapping to plasmonic nanoantennas and illustrates the advantages of the elegant analytical solution provided by conformal mapping to grasp physical insights, which can serve as a springboard for new plasmonic asymmetric nanoantenna designs.
APA, Harvard, Vancouver, ISO, and other styles
6

da Silva, Marcelino L. C., Victor Dmitriev, and Karlo Q. da Costa. "Application of Plasmonic Nanoantennas in Enhancing the Efficiency of Organic Solar Cells." International Journal of Antennas and Propagation 2020 (March 10, 2020): 1–9. http://dx.doi.org/10.1155/2020/2719656.

Full text
Abstract:
It is known that the periodic use of silver nanoantennas in organic solar cells increases the efficiency of light absorption. In this study, we performed a geometric parametric analysis of nanoantennas using the finite element method. Based on the study of the convex truncated cone nanoantenna, we have found that a nanoantenna arrangement formed by the convex truncated cone nanoantenna along with a pyramidal nanoantenna provides a better solution for different angles of light incidence compared to a single nanoantenna. We obtained a mean increase in the absorption efficiency of this organic solar cell, both for the TM and TE polarizations, compared to the use of the conventional nanoantenna in the wavelength range of 300–800 nm.
APA, Harvard, Vancouver, ISO, and other styles
7

Chen, Pai-Yen, Christos Argyropoulos, and Andrea Alù. "Enhanced nonlinearities using plasmonic nanoantennas." Nanophotonics 1, no. 3-4 (December 1, 2012): 221–33. http://dx.doi.org/10.1515/nanoph-2012-0016.

Full text
Abstract:
AbstractIn this paper, we review and discuss how nanoantennas may be used to largely enhance the nonlinear response of optical materials. For single nanoantennas, there have been tremendous advancements in understanding how to exploit the local field enhancement to boost the nonlinear susceptibility at the surface or sharp edges of plasmonic metals. After an overview of the work in this area, we discuss the possibility of controlling the optical nonlinear response using nanocircuit concepts and of significantly enhancing various nonlinear optical processes using planar arrays of plasmonic nanoantennas loaded with χ(2) or χ(3) nonlinear optical materials, forming ultrathin, nanometer-scale nonlinear metasurfaces, as optical nanodevices. We describe how this concept may be used to boost the efficiency of nonlinear wave mixing and optical bistability, due to the large local field enhancement at the nonlinear nanoloads associated with the plasmonic features of suitably tailored nanoantenna designs. We finally discuss three exciting applications of the proposed nonlinear metasurface: dramatically-enhanced frequency conversion efficiency, efficient phase-conjugation for super-resolution imaging and large optical bistabilities.
APA, Harvard, Vancouver, ISO, and other styles
8

Damasceno, Gabriel H. B., William O. F. Carvalho, and Jorge Ricardo Mejía-Salazar. "Design of Plasmonic Yagi–Uda Nanoantennas for Chip-Scale Optical Wireless Communications." Sensors 22, no. 19 (September 27, 2022): 7336. http://dx.doi.org/10.3390/s22197336.

Full text
Abstract:
Optical wireless transmission has recently become a major cutting-edge alternative for on-chip/inter-chip communications with higher transmission speeds and improved power efficiency. Plasmonic nanoantennas, the building blocks of this new nanoscale communication paradigm, require precise design to have directional radiation and improved communication ranges. Particular interest has been paid to plasmonic Yagi–Uda, i.e., the optical analog of the conventional Radio Frequency (RF) Yagi–Uda design, which may allow directional radiation of plasmonic fields. However, in contrast to the RF model, an overall design strategy for the directional and optimized front-to-back ratio of the radiated far-field patterns is lacking. In this work, a guide for the optimized design of Yagi–Uda plasmonic nanoantennas is shown. In particular, five different design conditions are used to study the effects of sizes and spacing between the constituent parts (made of Au). Importantly, it is numerically demonstrated (using the scattered fields) that closely spaced nanoantenna elements are not appropriated for directional light-to-plasmon conversion/radiation. In contrast, if the elements of the nanoantenna are widely spaced, the structure behaves like a one-dimensional array of nanodipoles, producing a funnel-like radiation pattern (not suitable for on-chip wireless optical transmission). Therefore, based on the results here, it can be concluded that the constituent metallic rib lengths must be optimized to exhibit the resonance at the working wavelength, whilst their separations should follow the relation λeff/π, where λeff indicates the effective wavelength scaling for plasmonic nanostructures.
APA, Harvard, Vancouver, ISO, and other styles
9

Milekhin, Ilya A., Sergei A. Kuznetsov, Ekaterina E. Rodyakina, Alexander G. Milekhin, Alexander V. Latyshev, and Dietrich R. T. Zahn. "Localized surface plasmons in structures with linear Au nanoantennas on a SiO2/Si surface." Beilstein Journal of Nanotechnology 7 (October 26, 2016): 1519–26. http://dx.doi.org/10.3762/bjnano.7.145.

Full text
Abstract:
The study of infrared absorption by linear gold nanoantennas fabricated on a Si surface with underlying SiO2 layers of various thicknesses allowed the penetration depth of localized surface plasmons into SiO2 to be determined. The value of the penetration depth derived experimentally (20 ± 10 nm) corresponds to that obtained from electromagnetic simulations (12.9–30.0 nm). Coupling between plasmonic excitations of gold nanoantennas and optical phonons in SiO2 leads to the appearance of new plasmon–phonon modes observed in the infrared transmission spectra the frequencies of which are well predicted by the simulations.
APA, Harvard, Vancouver, ISO, and other styles
10

Gili, Valerio F., Lavinia Ghirardini, Davide Rocco, Giuseppe Marino, Ivan Favero, Iännis Roland, Giovanni Pellegrini, et al. "Metal–dielectric hybrid nanoantennas for efficient frequency conversion at the anapole mode." Beilstein Journal of Nanotechnology 9 (August 27, 2018): 2306–14. http://dx.doi.org/10.3762/bjnano.9.215.

Full text
Abstract:
Background: Dielectric nanoantennas have recently emerged as an alternative solution to plasmonics for nonlinear light manipulation at the nanoscale, thanks to the magnetic and electric resonances, the strong nonlinearities, and the low ohmic losses characterizing high refractive-index materials in the visible/near-infrared (NIR) region of the spectrum. In this frame, AlGaAs nanoantennas demonstrated to be extremely efficient sources of second harmonic radiation. In particular, the nonlinear polarization of an optical system pumped at the anapole mode can be potentially boosted, due to both the strong dip in the scattering spectrum and the near-field enhancement, which are characteristic of this mode. Plasmonic nanostructures, on the other hand, remain the most promising solution to achieve strong local field confinement, especially in the NIR, where metals such as gold display relatively low losses. Results: We present a nonlinear hybrid antenna based on an AlGaAs nanopillar surrounded by a gold ring, which merges in a single platform the strong field confinement typically produced by plasmonic antennas with the high nonlinearity and low loss characteristics of dielectric nanoantennas. This platform allows enhancing the coupling of light to the nanopillar at coincidence with the anapole mode, hence boosting both second- and third-harmonic generation conversion efficiencies. More than one order of magnitude enhancement factors are measured for both processes with respect to the isolated structure. Conclusion: The present results reveal the possibility to achieve tuneable metamixers and higher resolution in nonlinear sensing and spectroscopy, by means of improved both pump coupling and emission efficiency due to the excitation of the anapole mode enhanced by the plasmonic nanoantenna.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Plasmonic nanoantennas"

1

Wang, Jiyong. "Plasmonic Nanoantennas." Thesis, Troyes, 2017. http://www.theses.fr/2017TROY0021.

Full text
Abstract:
Les réponses optiques linéaires et non linéaires de nanoparticules (NPs) plasmoniques fabriquées lithographiquement sont étudiées. La diffusion élastique donne une empreinte digitale des plasmons de surface des NPs, ces derniers exaltant les signaux optiques non linéaires. La dépendance en polarisation de la génération de seconde harmonique (SHG) montre un effet de basculement, qui est analysé à partir des décalages spectraux entre l’excitation et les resonances et des effets d'interférence de SHG. En régime de faible excitation, en plus d'un processus de recombinaison de paires électron-trou (e-h), les plasmons de particules (PPs) peuvent être excités par diffusion Auger avec une décroissance radiative donnant lieu à une photoluminescence métallique (MPL). Un modèle de l'efficacité quantique totale des émissions impliquant les deux contributions a été établi. En régime de forte excitation, une avalanche de photoluminescence multiphotonique (AMPL) est observée sur des hétérodimères couplés. Elle est interprétée par une recombinaison des porteurs chauds excités par ionisation multiphotonique (MI). Ce processus est assisté par le champ local des NPs. L'avalanche d’émission peut être évaluée en fonction de l'environnement du champ local et du facteur thermique des porteurs chauds. Le changement spectral du spectre d’émission indique une émission spontanée de paires e-h chaudes s'expliquant par une diminution du taux de diffusion des trous de la bande d lorsque la température augmente
Linear and nonlinear optical responses of lithographically fabricated plasmonic nanoparticles (NPs) are investigated. Elastic scattering offers the fingerprints for localized surface plasmon resonances of NPs, which enhance nonlinear optical signals. Excitation polarization dependent far-field radiation of second-harmonic generation (SHG) shows a flipping effect, which is analysed from the aspects of resonant excitation shifting and SH phase interference as size changes. The radiations of metallic photoluminescence (MPL) in the weak and strong radiation field are studied sequentially. In the weak excitation, besides a process via electron-hole (e-h) pair recombination, particle plasmons (PPs) can be excited via Auger scattering of photo-excited d-band holes and the radiative decay of which gives rise to PPs modulated MPL. A model of total emission quantum efficiency involving both contributions has been used to explain MPL radiation difference between the bulk and the NPs. In the strong excitation, avalanche multiphoton PL (AMPL) is observed from the coupled heterodimers, which is interpreted as the recombination of avalanche ionized hot carriers seeded by multiphoton ionization (MI). MI is greatly assisted by local field of coupled NPs at the excitation stage. The giant photon emission can be evaluated as a function of local field environment and thermal factor of hot carriers. The spectral change from PPs modulated profile to the one indicates spontaneous emission of hot e-h pairs is explained by the diminishment of d-band hole scattering rate as temperature increases
APA, Harvard, Vancouver, ISO, and other styles
2

Peter, Manuel [Verfasser]. "Active Plasmonic and Dielectric Nanoantennas / Manuel Peter." Bonn : Universitäts- und Landesbibliothek Bonn, 2017. http://d-nb.info/1149154187/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Massa, Enrico. "Plasmonic nanoantennas for absorption and emission manipulation." Thesis, Imperial College London, 2014. http://hdl.handle.net/10044/1/24720.

Full text
Abstract:
Light manipulation via nanoantennas, especially plasmonic nanoantennas, is an exciting new field, which aims to provide the same benefits at optical frequencies as those given by standard antennas in the radio and microwave frequency regimes. While at lower frequencies metals behave as perfect conductors, with negligible field penetration and absorption, at optical frequencies the electromagnetic field is able to excite plasmons which combine the electromagnetic wave with electronic excitations, giving raise to new properties such as high scattering and field confinement. This thesis focuses on understanding the physical principles of plasmonic nanoantennas and calculating their properties analytically, by deriving the solution for the scattering from cuboidal nanoantennas, and computationally, by presenting an improved discrete dipole approximation on cuboidal point lattices. A theory of scattering from anisotropic particles is derived, showing multiple plasmon resonance and different peaks shifts changing the background index, enabling the study of the magneto-optical effect on nanoparticles, with potential applications in nanospectroscopy, light manipulation and optical sensors. Plasmonic nanoparticles are studied numerically in order to enhance light absorption in thin film silicon solar cells and to enhance the anti-reflection coating properties of triple junction III-V quantum well high efficiency solar cells to increase scattering. Finally, plasmonic nanoantennas are also used experimentally to enhance the photoluminescence and decrease the lifetime of silicon quantum dots for light emitting device applications.
APA, Harvard, Vancouver, ISO, and other styles
4

Siadat, Mousavi Saba. "Periodic Plasmonic Nanoantennas in a Piecewise Homogeneous Background." Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/22814.

Full text
Abstract:
Optical nanoantennas have raised much interest during the past decade for their vast potential in photonics applications. This thesis investigates the response of periodic arrays of nanomonopoles and nanodipoles on a silicon substrate, covered by water, to variations of antenna dimensions. These arrays are illuminated by a plane wave source located inside the silicon substrate. Modal analysis was performed and the mode in the nanoantennas was identified. By characterizing the properties of this mode certain response behaviours of the system were explained. Expressions are offered to predict approximately the resonant length of nanomonopoles and nanodipoles, by accounting for the fringing fields at the antenna ends and the effects of the gap in dipoles. These expressions enable one to predict the resonant length of nanomonopoles within 20% and nanodipoles within 10% error, which significantly facilitates the design of such antennas for specific applications.
APA, Harvard, Vancouver, ISO, and other styles
5

Knittel, Vanessa [Verfasser]. "Ultrafast nonlinear response of plasmonic nanoantennas / Vanessa Knittel." Konstanz : Bibliothek der Universität Konstanz, 2018. http://d-nb.info/1161343245/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Black, Leo-Jay. "Near-infrared nano-optical elements using plasmonic nanoantennas." Thesis, University of Southampton, 2017. https://eprints.soton.ac.uk/410269/.

Full text
Abstract:
In recent years Nanophotonics, the behaviour of light at the nanometer scale has gathered Significant interest with recent advances in nanotechnology. Specifically, nanoantennas can help us access the near and mid-infrared wavelength range. The drivers are that it is a very attractive spectral region for a wide variety of technology applications, such as communications, environmental sensing, biosensing, security and astronomy. This thesis covers the functionality of single plasmonic nanoantennas for polarisation control and nonlinear frequency conversion, characterised by quantitative single-particle extinction spectroscopy and nonlinear optical microscopy. It then moves on to look at the use of plasmonic resonators as coherent absorbers in a mechanically tunable cavity. Finally, it looks at the performance of antennas in surface enhanced Raman (SERS) and IR spectroscopy (SEIRS) using new experimental setups.
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, Jiyong [Verfasser], and Pierre-Francois [Akademischer Betreuer] Brevet. "Plasmonic Nanoantennas / Jiyong Wang ; Betreuer: Pierre-Francois Brevet." Tübingen : Universitätsbibliothek Tübingen, 2020. http://d-nb.info/1203623054/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Metzger, Bernd [Verfasser], and Harald [Akademischer Betreuer] Giessen. "Ultrafast nonlinear plasmonics : from dipole nanoantennas to hybrid complex plasmonic structures / Bernd Metzger. Betreuer: Harald Giessen." Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2014. http://d-nb.info/1062951379/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jeannin, Mathieu Emmanuel. "Control of the emission properties of semiconducting nanowire quantum dots using plasmonic nanoantennas." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAY053/document.

Full text
Abstract:
Ce travail de thèse porte sur l'étude du couplage entre des boîtes quantiques (BQs) insérées dans des nanofils à semiconducteurs et des antennes plasmoniques. Un couplage efficace requiert une caractérisation complète des leurs propriétés optiques respectives, pour assurer un recouvrement spectral et spatial de l'émission de la boîte et du mode de l'antenne et l'alignement de la polarisation du mode plasmonique avec l'émission de la BQ.Les propriétés optiques d'antennes patchs plasmoniques circulaires ont été étudiées par cathodoluminescence (CL). Nous avons montré avec un modèle analytique de la densité locale d'états électromagnétiques (DLE) au voisinage des antennes que leurs résonances sont des superpositions de modes de Bessel d'ordre radiaux et azimutaux différents. Nous avons fabriqué et caractérisé des antennes mono et multimodes, et trouvé que la partie radiative de la DLE n'est pas la seule contribution au signal de CL. De plus, nous avons caractérisé des antennes de différentes épaisseur du plan diélectrique ou différents matériaux. L'analyse de ces résultats nous pousse à proposer une interprétation des contributions au signal de CL annexes à la partie radiative de la DLE supportée par l'antenne. Nous avons de plus démontré la fabrication d'antennes patchs en aluminium opérant dans la partie bleue du spectre électromagnétique, et appliqué la CL à d'autres géométries d'antennes.Nous avons également étudié différentes boîtes quantiques insérées dans des nanofils à semiconducteurs faits d'alliages de matériaux II-VI. Des émetteurs uniques sont étudiés par microphotoluminescence (µPL). Des mesures résolues en temps ou par microscopie de Fourier permettent une caractérisation spectrale, temporelle et la détermination de leur diagramme de rayonnement. Nous avons de plus mis en évidence les variations de propriétés optiques des émetteurs dues aux inhomogénéité de fabrication en étudiant un large ensemble de BQs. La modélisation complète des propriétés électroniques et optiques d'une boîte unique est proposée en utilisant la microscopie de Fourier résolue en polarisation, et une étape de spectroscopie magnéto-optique.Enfin, nous avons développé une méthode de lithographie électronique en deux étapes basée sur le repérage d'un émetteur unique par CL, permettant la fabrication d'antennes plasmoniques couplées de façon déterministe à des BQs insérées dans des nanofils. L'étude de ce couplage révèle un accroissement de l'absorption du faisceau d'excitation accompagné d'une accélération de l'émission de la boîte par couplage radiatif. Il en résulte une exaltation jusqu'à un facteur 2 de la µPL des boîtes
In this work, we study the coupling between plasmonic nanoantennas and semiconducting nanowire quantum dots (NWQDs). This coupling requires spectral, spatial and polarisation matching of the antenna mode and of the NWQD emission. Hence, a full characterisation of both the antenna system and the NWQDs has to be performed to determine a relevant coupling geometry.Using cathodoluminescence (CL) we investigate the relation between the CL signal of circular patch plasmonic antennas and the electromagnetic local density of states (LDOS). The successive resonances supported by these antennas are complex superimpositions of Bessel modes of different radial and azimuthal order. Applying an analytical LDOS model, we show that we can fabricate and characterise antennas down to single mode resonances. However, the antennas CL spectrum goes beyond the radiative part of the LDOS. By changing the spacing layer thickness and the antennas materials, we propose an explanation for the origin of the additional CL signal we observe that is not related to the radiative LDOS of the patch antennas. We also demonstrate the fabrication of Al patch antennas working in the blue spectral range and apply our method to other geometries.We perform optical characterisation of different quantum dots (QDs) embedded inside semiconducting nanowires (NWs) made of II-VI materials. We use microphotoluminescence (µPL) to study the emission of single NWQDs. Time-resolved measurements and Fourier imaging allows us to extract their exciton lifetime and radiation patterns. The variability in the emission properties of the NWQDs due to inhomogeneity in the growth process are evidenced by studying a statistical set of nanowires. A complete model based on polarisation-resolved Fourier imaging and magneto-optical spectroscopy is detailed, allowing to fully determine the QD electronic and optical properties for an individual system.Finally, we develop a cathodoluminescence-based two-step electron-beam lithography technique to deterministically fabricate plasmonic antennas coupled to NWQDs, enhancing their µPL properties. The coupling results in an enhanced absorption of the pump laser inside the NW and in an increase of the radiative rate of the QD, leading to up to a two-fold intensity enhancement factor for the coupled system
APA, Harvard, Vancouver, ISO, and other styles
10

Gmeiner, Benjamin [Verfasser], and Vahid [Gutachter] Sandoghdar. "Coherent Spectroscopy of Single Molecules in the Near-Field of Plasmonic Nanoantennas / Benjamin Gmeiner ; Gutachter: Vahid Sandoghdar." Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2017. http://d-nb.info/1139492551/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Plasmonic nanoantennas"

1

Werner, Douglas H., Sawyer D. Campbell, and Lei Kang, eds. Nanoantennas and Plasmonics: Modelling, design and fabrication. Institution of Engineering and Technology, 2020. http://dx.doi.org/10.1049/sbew540e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nanoantennas and Plasmonics: Modelling, Design and Fabrication. Institution of Engineering & Technology, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Werner, Douglas H., Sawyer D. Campbell, and Lei Kang. Nanoantennas and Plasmonics: Modelling, Design and Fabrication. Institution of Engineering & Technology, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pucci, Annemarie, and Marc Lamy de la Chapelle. Nanoantenna: Plasmon-Enhanced Spectroscopies for Biotechnological Applications. Pan Stanford Publishing, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pucci, Annemarie, and Marc Lamy de la Chapelle. Nanoantenna: Plasmon-Enhanced Spectroscopies for Biotechnological Applications. Jenny Stanford Publishing, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nanoantenna: Plasmon-Enhanced Spectroscopies for Biotechnological Applications. Taylor & Francis Group, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Plasmonic nanoantennas"

1

Sarychev, Andrey K., and Vladimir M. Shalaev. "Plasmonic Nanoantennas." In Continuum Models and Discrete Systems, 135. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2316-3_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, Hancong. "Coupled Plasmonic Nanoantennas." In Advances in Intelligent Systems and Computing, 257–65. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48499-0_31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jeannin, Mathieu, Pamela Rueda-Fonseca, Rudeesun Songmuang, Edith Bellet-Amalric, Kuntheak Kheng, and Gilles Nogues. "Coupling Semiconducting Nanowires to Plasmonic Nanoantennas." In NATO Science for Peace and Security Series B: Physics and Biophysics, 517–18. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-024-0850-8_56.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Munárriz Arrieta, Javier. "Optical Nanoantennas with Tunable Radiation Patterns." In Modelling of Plasmonic and Graphene Nanodevices, 71–83. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07088-9_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ozel, Tuncay. "Hybrid Semiconductor Core-Shell Nanowires with Tunable Plasmonic Nanoantennas." In Coaxial Lithography, 27–41. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45414-6_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Soavi, Giancarlo, Giuseppe Della Valle, Paolo Biagioni, Andrea Cattoni, Stefano Longhi, Giulio Cerullo, and Daniele Brida. "Ultrafast Non-thermal Response of Plasmonic Resonance in Gold Nanoantennas." In Springer Proceedings in Physics, 679–82. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-13242-6_167.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hegde, Ravi Sadananda. "Fractal Plasmonic Nanoantennae." In Reviews in Plasmonics, 55–76. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-48081-7_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Biswas, Richard Victor. "A Waveguide-Fed Hybrid Graphene Plasmonic Nanoantenna for On-Chip Wireless Optical Communication." In Proceedings of International Conference on Information and Communication Technology for Development, 107–24. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-7528-8_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Foti, Antonino, C. D’Andrea, A. Toma, B. Fazio, E. Messina, O. M. Maragò, Enzo Di Fabrizio, M. Lamy de La Chepelle, and P. G. Gucciardi. "Polarization Properties of the SERS Radiation Scattered by Linear Nanoantennas with Two Distinct Localized Plasmon Resonances." In NATO Science for Peace and Security Series B: Physics and Biophysics, 503–4. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-024-0850-8_51.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

GREFFET, JEAN-JACQUES. "Plasmonic Nanoantennas." In World Scientific Handbook of Metamaterials and Plasmonics, 21–66. World Scientific, 2017. http://dx.doi.org/10.1142/9789813228726_0002.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Plasmonic nanoantennas"

1

Yang, Morris M., Demid Sychev, Xiaohui Xu, Zach Martin, David Mandurus, Hasitha Suriya, Arachchige, Alexei Lagoutchev, Vladimir Shalaev, and Alexandra Boltasseva. "Plasmonically Enhanced Second Harmonic Generation of Weyl Semimetal TaAs through field confinement." In CLEO: Science and Innovations. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_si.2022.sf4k.1.

Full text
Abstract:
We demonstrate 300 percent increase of second-harmonic generation from Weyl semimetal TaAs surface by distributing plasmonic silver nanoantennas on TaAs. Normalizing laser spot size area over silver nanoantenna areas yields actual SHG enhancement is 90-fold.
APA, Harvard, Vancouver, ISO, and other styles
2

Chen, Kuo-Ping, Vladimir P. Drachev, Joshua D. Borneman, Alexander V. Kildishev, and Vladimir M. Shalaev. "Improving Plasmonic Nanoantennas." In Quantum Electronics and Laser Science Conference. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/qels.2010.qtuf3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dayal, Govind, Ikki Morichika, and Satoshi Ashihara. "Vibrational strong coupling between molecular vibration and subwavelength plasmonic cavity supporting gap plasmon mode." In JSAP-OSA Joint Symposia. Washington, D.C.: Optica Publishing Group, 2019. http://dx.doi.org/10.1364/jsap.2019.18a_e208_2.

Full text
Abstract:
We report on strong coupling between molecular vibrational resonances of polymethyl methacrylate (PMMA) molecules and gap plasmon resonance of an ultrathin plasmonic cavity in the midinfrared range. The strong coupling is achieved when the molecular vibrational mode and plasmonic cavity exchange energy faster than their relaxation rates and it is maximum when two relaxation rates are equal [1]. In this work, we designed, fabricated and characterized a composite medium consisting of a thin PMMA layer sandwiched between the nanoantenna array and a continuous metallic thin film to achieve vibration strong coupling. The spectral position and the relaxation rate of gap plasmonic resonance are tuned through the molecular resonance of the PMMA molecules (at 1730 cm−1) to go from weak to strong coupling regime. Strong coupling between vibrational modes and gap plasmon mode leads to the formation of new hybrid light-matter states called polaritonic states (@ 1690 cm−1 & 1810 cm−1), separated by the vacuum Rabi splitting (120 cm−1). Thin film coupled nanoantennas with sub-wavelength gaps have shown great potential in nanophotonic applications because they offer the ultimate electric field confinement in the gap. Our work is complementary to earlier work using microcavities and provides a new approach to achieve strong coupling with a nanoscale plasmonic cavity (λ/25) and the possibility to modulate the strong coupling regime by changing the gap thickness of the cavity and the lattice period of the nanoantenna array.
APA, Harvard, Vancouver, ISO, and other styles
4

Mekawey, Hosameldin I., Yehea Ismail, and Mohamed A. Swillam. "silicon-based plasmonic nanoantennas." In Silicon Photonics XIV, edited by Graham T. Reed and Andrew P. Knights. SPIE, 2019. http://dx.doi.org/10.1117/12.2509341.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Podolskiy, V. A., A. K. Sarychev, E. E. Narimanov, and V. M. Shalaev. "Light manipulation with plasmonic nanoantennas." In IEEE Antennas and Propagation Society Symposium, 2004. IEEE, 2004. http://dx.doi.org/10.1109/aps.2004.1330577.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hardy, Neil, Ahsan Habib, Tanya Ivanov, and Ahmet A. Yanik. "Electro-plasmonic Nanoantennas for In Vivo Neural Sensing." In CLEO: Applications and Technology. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_at.2022.atu4k.2.

Full text
Abstract:
Electro-plasmonic nanoantennas (NeuroSWARM3) translate local electric fields to changes in scattering intensity to wirelessly sense neural activity with high resolution, throughput, and SSNR while operating in the NIR spectrum for deep tissue penetration.
APA, Harvard, Vancouver, ISO, and other styles
7

Maccaferri, Nicolò, Paolo Ponzellini, Giorgia Giovannini, and Xavier Zambrana-Puyalto. "FRET characterization of hollow plasmonic nanoantennas." In Plasmonics in Biology and Medicine XVI, edited by Tuan Vo-Dinh, Ho-Pui A. Ho, and Krishanu Ray. SPIE, 2019. http://dx.doi.org/10.1117/12.2515296.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Choudhary, Saumya, Sylvia D. Swiecicki, Israel De Leon, Sebastian A. Schulz, Jeremy Upham, J. E. Sipe, and Robert W. Boyd. "Superradiance in arrays of plasmonic nanoantennas." In Frontiers in Optics. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/fio.2016.ftu3d.4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Roxworthy, Brian J., Kaspar D. Ko, Anil Kumar, Kin Hung Fung, Gang Logan Liu, Nicholas X. Fang, and Kimani C. Toussaint. "Bowtie Nanoantennas for Plasmonic Optical Trapping." In Optical Trapping Applications. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/ota.2011.otma2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hildebrandt, Andre, Matthias Reichelt, Torsten Meier, and Jens Förstner. "Engineering plasmonic and dielectric directional nanoantennas." In SPIE OPTO, edited by Markus Betz, Abdulhakem Y. Elezzabi, Jin-Joo Song, and Kong-Thon Tsen. SPIE, 2014. http://dx.doi.org/10.1117/12.2036588.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography