Academic literature on the topic 'Plasmonic lattice'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Plasmonic lattice.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Plasmonic lattice"

1

Spektor, Grisha, Eva Prinz, Michael Hartelt, Anna-Katharina Mahro, Martin Aeschlimann, and Meir Orenstein. "Orbital angular momentum multiplication in plasmonic vortex cavities." Science Advances 7, no. 33 (2021): eabg5571. http://dx.doi.org/10.1126/sciadv.abg5571.

Full text
Abstract:
Orbital angular momentum of light is a core feature in photonics. Its confinement to surfaces using plasmonics has unlocked many phenomena and potential applications. Here, we introduce the reflection from structural boundaries as a new degree of freedom to generate and control plasmonic orbital angular momentum. We experimentally demonstrate plasmonic vortex cavities, generating a succession of vortex pulses with increasing topological charge as a function of time. We track the spatiotemporal dynamics of these angularly decelerating plasmon pulse train within the cavities for over 300 femtose
APA, Harvard, Vancouver, ISO, and other styles
2

Liu, Jianxi, Weijia Wang, Danqing Wang, et al. "Spatially defined molecular emitters coupled to plasmonic nanoparticle arrays." Proceedings of the National Academy of Sciences 116, no. 13 (2019): 5925–30. http://dx.doi.org/10.1073/pnas.1818902116.

Full text
Abstract:
This paper describes how metal–organic frameworks (MOFs) conformally coated on plasmonic nanoparticle arrays can support exciton–plasmon modes with features resembling strong coupling but that are better understood by a weak coupling model. Thin films of Zn-porphyrin MOFs were assembled by dip coating on arrays of silver nanoparticles (NP@MOF) that sustain surface lattice resonances (SLRs). Coupling of excitons with these lattice plasmons led to an SLR-like mixed mode in both transmission and transient absorption spectra. The spectral position of the mixed mode could be tailored by detuning th
APA, Harvard, Vancouver, ISO, and other styles
3

Sahai, Aakash A., Mark Golkowski, Stephen Gedney, et al. "PetaVolts per meter Plasmonics: introducing extreme nanoscience as a route towards scientific frontiers." Journal of Instrumentation 18, no. 07 (2023): P07019. http://dx.doi.org/10.1088/1748-0221/18/07/p07019.

Full text
Abstract:
Abstract A new class of plasmons has opened access to unprecedented PetaVolts per meter electromagnetic fields which can transform the paradigm of scientific and technological advances. This includes non-collider searches in fundamental physics in addition to making next generation colliders feasible. PetaVolts per meter plasmonics relies on this new class of plasmons uncovered by our work in the large amplitude limit of collective oscillations of quantum electron gas. This Fermi gas constituted by “free” conduction band electrons is inherent in conductive media endowed with a suitable combina
APA, Harvard, Vancouver, ISO, and other styles
4

Proctor, Matthew, Paloma A. Huidobro, Stefan A. Maier, Richard V. Craster, and Mehul P. Makwana. "Manipulating topological valley modes in plasmonic metasurfaces." Nanophotonics 9, no. 3 (2020): 657–65. http://dx.doi.org/10.1515/nanoph-2019-0408.

Full text
Abstract:
AbstractCoupled light-matter modes supported by plasmonic metasurfaces can be combined with topological principles to yield subwavelength topological valley states of light. This study gives a systematic presentation of the topological valley states available for lattices of metallic nanoparticles (NPs): all possible lattices with hexagonal symmetry are considered as well as valley states emerging on a square lattice. Several unique effects that have yet to be explored in plasmonics are identified, such as robust guiding, filtering, and splitting of modes, as well as dual-band effects. These a
APA, Harvard, Vancouver, ISO, and other styles
5

Anulytė, Justina, Ernesta Bužavaitė-Vertelienė, Evaldas Stankevičius, Kernius Vilkevičius, and Zigmas Balevičius. "High Spectral Sensitivity of Strongly Coupled Hybrid Tamm-Plasmonic Resonances for Biosensing Application." Sensors 22, no. 23 (2022): 9453. http://dx.doi.org/10.3390/s22239453.

Full text
Abstract:
In this study, the sensitivity to the refractive index changes of the ambient was studied on the uniform gold film (~50 nm) with a 1D photonic crystal (PC) from periodic five TiO2 (~110 nm)/SiO2 (~200 nm) bilayers and gold nano-bumps array produced by direct laser writing on the same sample. The optical signal sensitivity of hybrid plasmonic resonances was compared with traditional surface plasmon resonance (SPR) on a single gold layer. The influence of the strong coupling regime between Tamm plasmon polariton (TPP) and propagated plasmon polaritons in the hybrid plasmonic modes on the sensiti
APA, Harvard, Vancouver, ISO, and other styles
6

Zhuo, Liqiang, Huiru He, Ruimin Huang, et al. "Flat band of Kagome lattice in graphene plasmonic crystals." Journal of Physics D: Applied Physics 55, no. 6 (2021): 065106. http://dx.doi.org/10.1088/1361-6463/ac30fe.

Full text
Abstract:
Abstract We propose graphene plasmonic crystals (GPCs) with a Kagome lattice, and investigate the properties of the flat band (FB) in the plasmonic system. By modulating the arrangement of the chemical potentials, a FB is obtained. Furthermore, the authenticity of the FB is confirmed by comparing the band structures and the eigen field distributions obtained from using the tight-binding modeled Hamiltonian with numerical calculations. The proposed Kagome-type GPCs could be of great significance for the study of novel effects in strong interaction systems in the field of plasmonics.
APA, Harvard, Vancouver, ISO, and other styles
7

Fradkin, Ilia M., Andrey A. Demenev, Vladimir D. Kulakovskii, Vladimir N. Antonov, and Nikolay A. Gippius. "Plasmonic grating for circularly polarized outcoupling of waveguide-enhanced spontaneous emission." Applied Physics Letters 120, no. 17 (2022): 171702. http://dx.doi.org/10.1063/5.0085786.

Full text
Abstract:
Plasmonic metasurfaces form a convenient platform for light manipulation at the nanoscale due to their specific localized surface plasmons. Even despite high intrinsic Joule losses, plasmonic nanoparticles are very effective for light manipulation. Here, we show the lattice of plasmonic nanoparticles onto a dielectric waveguide that efficiently couples oppositely propagating guided modes to circularly polarized light beams of different handedness. We demonstrate 80% degree of circular polarization for the out-coupled emission of GaAs-waveguide-embedded quantum dots. The results allow us to con
APA, Harvard, Vancouver, ISO, and other styles
8

Fradkin, Ilia M., Andrey A. Demenev, Vladimir D. Kulakovskii, Vladimir N. Antonov, and Nikolay A. Gippius. "Plasmonic grating for circularly polarized outcoupling of waveguide-enhanced spontaneous emission." Applied Physics Letters 120, no. 17 (2022): 171702. http://dx.doi.org/10.1063/5.0085786.

Full text
Abstract:
Plasmonic metasurfaces form a convenient platform for light manipulation at the nanoscale due to their specific localized surface plasmons. Even despite high intrinsic Joule losses, plasmonic nanoparticles are very effective for light manipulation. Here, we show the lattice of plasmonic nanoparticles onto a dielectric waveguide that efficiently couples oppositely propagating guided modes to circularly polarized light beams of different handedness. We demonstrate 80% degree of circular polarization for the out-coupled emission of GaAs-waveguide-embedded quantum dots. The results allow us to con
APA, Harvard, Vancouver, ISO, and other styles
9

Sadeghi, Seyed M., Rithvik R. Gutha, and Christina Sharp. "Coherent optical coupling of plasmonic dipoles in metallic nanoislands with random sizes and shapes." Journal of Materials Chemistry C 7, no. 31 (2019): 9678–85. http://dx.doi.org/10.1039/c9tc03351c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kou, Yao, Fangwei Ye, and Xianfeng Chen. "Surface plasmonic lattice solitons." Optics Letters 37, no. 18 (2012): 3822. http://dx.doi.org/10.1364/ol.37.003822.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Plasmonic lattice"

1

Saad-Bin-Alam, Md. "Analysis of Plasmonic Metastructures for Engineered Nonlinear Nanophotonics." Thesis, Université d'Ottawa / University of Ottawa, 2019. http://hdl.handle.net/10393/39120.

Full text
Abstract:
This Master’s dissertation focuses on engineering artificial nanostructures, namely, arrays of metamolecules on a substrate (metasurfaces), with the goal to achieve the desired linear and nonlinear optical responses. Specifically, a simple analytical model capable of predicting optical nonlinearity of an individual metamolecule has been developed. The model allows one to estimate the nonlinear optical response (linear polarizability and nonlinear hyperpolarizabilities) of a metamolecule based on the knowledge of its shape, dimensions, and material. In addition, a new experimental approach t
APA, Harvard, Vancouver, ISO, and other styles
2

Humphrey, Alastair Dalziell. "Exploration of how light interacts with arrays of plasmonic, metallic nanoparticles." Thesis, University of Exeter, 2015. http://hdl.handle.net/10871/19365.

Full text
Abstract:
The content of this thesis is based upon the interaction of light with metallic nanoparticles arranged in different array geometries. An incident electric field (light) can force the conduction electrons of a metallic nanoparticle to oscillate. At particular frequencies, in the optical regime for gold and silver particles, absorption and scattering of the light by the particle is enhanced, corresponding to the particle plasmon resonance. The spectral position and width of the particle plasmon resonance of an isolated single particle may be tuned by adjusting its size and shape, thus changing t
APA, Harvard, Vancouver, ISO, and other styles
3

Danilov, Artem. "Design, characterisation and biosensing applications of nanoperiodic plasmonic metamaterials." Thesis, Aix-Marseille, 2018. http://www.theses.fr/2018AIXM0110/document.

Full text
Abstract:
Cette thèse considère de nouvelles architectures prometteuses des métamatériaux plasmoniques pour biosensing, comprenant: (I) des réseaux périodiques 2D de nanoparticules d'Au, qui peuvent supporter des résonances des réseaux de surface couplées de manière diffractive; (II) Reseaux 3D à base de cristaux plasmoniques du type d'assemblage de bois. Une étude systématique des conditions d'excitation plasmonique, des propriétés et de la sensibilité à l'environnement local dans ces géométries métamatérielles est présentée. On montre que de tels réseaux peuvent combiner une très haute sensibilité spe
APA, Harvard, Vancouver, ISO, and other styles
4

Huang, Wenyu. "Fundamental studies of the interaction between femtosecond laser and patterned monolayer plasmonic nanostructures." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/24786.

Full text
Abstract:
Thesis (Ph. D.)--Chemistry and Biochemistry, Georgia Institute of Technology, 2008.<br>Committee Chair: El-Sayed, Mostafa A.; Committee Member: Perry, Joseph W.; Committee Member: Srinivasarao, Mohan; Committee Member: Whetten, Robert L.; Committee Member: Zhang, Z. John.
APA, Harvard, Vancouver, ISO, and other styles
5

Carrega, Matteo. "Coulomb drag and Dirac plasmons in novel 2D electron systems." Doctoral thesis, Scuola Normale Superiore, 2014. http://hdl.handle.net/11384/85870.

Full text
Abstract:
[from the introduction]: This Thesis focusses on the physics of e-e interactions in single-layer graphene and on the role of interlayer e-e interactions in vertical heterostructures comprised of two closely spaced graphene sheets.
APA, Harvard, Vancouver, ISO, and other styles
6

Buller, Jakov. "Structure and Dynamics of Microcavity Exciton-Polaritons in Acoustic Square Lattices." Doctoral thesis, Humboldt-Universität zu Berlin, 2018. http://dx.doi.org/10.18452/19328.

Full text
Abstract:
Exziton-Polaritonen in Mikrokavitäten sind Quasi-Teilchen, die unter bestimmten physikalischen Konditionen kondensieren und damit in einen energetisch gleichen, gemeinsamen makroskopischen Quantenzustand (MQZ) übergehen können. Exziton-Polariton-Kondensate können mithilfe von akustischen Oberflächenwellen moduliert werden, um ihre Eigenschaften zu verändern. Dies ist insbesondere von großer Relevanz für zukünftige Anwendungen. In dieser Arbeit wurden die Struktur sowie die Dynamik der Exziton-Polariton-Kondensate in den durch die akustischen Oberflächenwellen erzeugten quadratischen Gittern
APA, Harvard, Vancouver, ISO, and other styles
7

Hamdad, Sarah. "Synthèse et étude de réseaux de nanoparticules métalliques pour l'exaltation de l'électroluminescence des OLEDs via l'effet plasmonique." Thesis, Paris 13, 2021. http://www.theses.fr/2021PA131056.

Full text
Abstract:
Dans ce travail de thèse, nous nous sommes intéressés à l’étude de l’amélioration des propriétés optiques et électriques des OLED en utilisant des réseaux de nanoparticules d’Ag. En particulier, nous nous sommes focalisés sur l’étude des résonances de réseau de surface (SLR) afin de comprendre l’origine des mécanismes d’interactions dans ces réseaux. Nous avons aussi étudié l’influence de ces modes sur les caractéristiques d’émission d’une couche organique d’abord en pompage optique et ensuite en pompage électrique. Pour cela, nous avons mis en place au sein du laboratoire LPL plusieurs bancs
APA, Harvard, Vancouver, ISO, and other styles
8

Mischok, Andreas, Robert Brückner, Hartmut Fröb, Vadim G. Lyssenko, and Karl Leo. "Photonic lattices in organic microcavities: Bloch states and control of lasing." SPIE, 2015. https://tud.qucosa.de/id/qucosa%3A35053.

Full text
Abstract:
Organic microcavities comprising the host:guest emitter system Alq3:DCM offer an interesting playground to experimentally study the dispersion characteristics of laterally patterned microlasers due to the broad emission spectrum and large oscillator strength of the organic dye. By structuring of metallic or dielectric sublayers directly on top of the bottom mirror, we precisely manipulate the mode structure and in fluence the coherent emission properties of the device. Embedding silver layers into a microcavity leads to an interaction of the optical cavity-state in the organic layer and the ne
APA, Harvard, Vancouver, ISO, and other styles
9

Watt, Morag. "Inelastic light scattering in low dimensional semiconductors." Thesis, University of Glasgow, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.364643.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bellouvet, Maxime. "Condensation de Bose-Einstein et simulation d’une méthode de piégeage d’atomes froids dans des potentiels sublongueur d’onde en champ proche d’une surface nanostructurée." Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0265/document.

Full text
Abstract:
Depuis plusieurs décennies un intérêt est né pour combiner deux systèmes quantiques pour former unsystème hybride quantique (SHQ) aux qualités qu’il serait impossible d’atteindre avec un seul des deuxsous-constituants. Parmi les systèmes quantiques, les atomes froids se distinguent par leur fort découplagede l’environnement, permettant un contrôle précis de leurs propriétés intrinsèques. En outre, les simulateursquantiques réalisés en piégeant des atomes froids dans des réseaux optiques présentent des propriétéscontrôlables (échelle d’énergie, géométrie,...) qui permettent d’étudier de nouveau
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Plasmonic lattice"

1

V, Guryev Igor, ed. Photonic crystals: Physics and practical modeling. Springer, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Controlling Light In Optically Induced Photonic Lattices. Springer, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Terhalle, Bernd. Controlling Light in Optically Induced Photonic Lattices. Springer, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Terhalle, Bernd. Controlling Light in Optically Induced Photonic Lattices. Springer, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Terhalle, Bernd. Controlling Light in Optically Induced Photonic Lattices. Springer, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Horing, Norman J. Morgenstern. Interacting Electron–Hole–Phonon System. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198791942.003.0011.

Full text
Abstract:
Chapter 11 employs variational differential techniques and the Schwinger Action Principle to derive coupled-field Green’s function equations for a multi-component system, modeled as an interacting electron-hole-phonon system. The coupled Fermion Green’s function equations involve five interactions (electron-electron, hole-hole, electron-hole, electron-phonon, and hole-phonon). Starting with quantum Hamilton equations of motion for the various electron/hole creation/annihilation operators and their nonequilibrium average/expectation values, variational differentiation with respect to particle s
APA, Harvard, Vancouver, ISO, and other styles
7

Sukhoivanov, Igor A., and Igor V. Guryev. Photonic Crystals: Physics and Practical Modeling. Springer, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nonlinearities In Periodic Structures And Metamaterials. Springer, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kivshar, Yuri S., Cornelia Denz, and Sergej Flach. Nonlinearities in Periodic Structures and Metamaterials. Springer London, Limited, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kivshar, Yuri S., Cornelia Denz, and Sergej Flach. Nonlinearities in Periodic Structures and Metamaterials. Springer, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Plasmonic lattice"

1

Hase, Muneaki, Kunie Ishioka, Masahiro Kitajima, and Kiminori Ushida. "Effect of lattice defects on LO phonon-plasmon coupled modes in n-GaAs." In Ultrafast Phenomena XII. Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56546-5_113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hase, Muneaki, Kunie Ishioka, Kiminori Ushida, and Masahiro Kitajima. "Annihilation of coherent LO phonon-plasmon coupled modes by lattice defects in n-GaAs." In Springer Proceedings in Physics. Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-59484-7_81.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Shakya, Amit Kumar, and Surinder Singh. "Gold-ZnO Coated Surface Plasmon Resonance Refractive Index Sensor Based on Photonic Crystal Fiber with Tetra Core in Hexagonal Lattice of Elliptical Air Holes." In Lecture Notes in Electrical Engineering. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0236-1_43.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Qian, Wei, Wenyu Huang, Qusai Darugar, and Mostafa A. El-Sayed. "Ultrafast electronic and lattice processes of plasmonic nanoparticles of different shape." In Femtochemistry VII. Elsevier, 2006. http://dx.doi.org/10.1016/b978-044452821-6/50039-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Katti, Aavishkar, and Priya Singh. "Gap Solitons in Photorefractive Optical Lattices." In Photonics, Plasmonics and Information Optics. CRC Press, 2021. http://dx.doi.org/10.1201/9781003047193-10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mills, D. L. "THE COLLECTIVE EXCITATIONS OF SEMICONDUCTING FILMS; OPTICAL PHONONS AND PLASMONS." In Lattice Dynamics and Semiconductor Physics. WORLD SCIENTIFIC, 1989. http://dx.doi.org/10.1142/9789814368346_0033.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Plasmonic lattice"

1

Boddeti, Ashwin K., Jun Guan, Tyler Sentz, et al. "Long-range dipole-dipole interactions in a plasmonic lattice." In CLEO: QELS_Fundamental Science. Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_qels.2022.ff4d.1.

Full text
Abstract:
We observe long-range dipole-dipole interactions in a plasmonic lattice mediated by collective plasmonic lattice modes. Fluorescence lifetime measurements show density-dependent non-exponential decay dynamics that commensurate to over 800 nm mean nearest-neighbor separation between interacting emitters.
APA, Harvard, Vancouver, ISO, and other styles
2

Saad-Bin-Alam, Md, M. Zahirul Alam, Ksenia Dolgaleva, and Robert W. Boyd. "Multi-diffraction-order plasmonic lattice resonances." In 2022 Photonics North (PN). IEEE, 2022. http://dx.doi.org/10.1109/pn56061.2022.9908373.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ming-Wei Tsai, Tzu-Hung Chuang, Yi-Tsung Chang, and Si-Chen Lee. "Two Color Squared-lattice Plasmonic Thermal Emitter." In 2006 Sixth IEEE Conference on Nanotechnology. IEEE, 2006. http://dx.doi.org/10.1109/nano.2006.247763.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Swami, O. P., Vijendra Kumar, and A. K. Nagar. "Plasmonic lattice solitons in metallic nanowire materials." In INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2015): Proceeding of International Conference on Condensed Matter and Applied Physics. Author(s), 2016. http://dx.doi.org/10.1063/1.4946498.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Huang, Zhen-Ting, Chih-Wei Yin, Heng Li, Kuo-Bin Hong, and Tien-Chang Lu. "Hybridized plasmonic surface lattice resonance perovskite laser." In 2021 26th Microoptics Conference (MOC). IEEE, 2021. http://dx.doi.org/10.23919/moc52031.2021.9598111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Saad Bin-Alam, M., M. Zahirul Alam, Ksenia Dolgaleva, and Robert W. Boyd. "Ultra-High-Q Multi-Resonant Metasurface using Plasmonic Lattice in Inhomogeneous Medium." In CLEO: QELS_Fundamental Science. Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_qels.2022.fth2b.1.

Full text
Abstract:
We demonstrate excitation of guided lattice resonances inside a semiconductor thin-film in a inhomogeneous metasurface enabled by a lossy plasmonic lattice reso-nanances with a record Q-factor value over 10,000.
APA, Harvard, Vancouver, ISO, and other styles
7

Saito, Hikaru, and Naoki Yamamoto. "Cathodoluminescence of 2D plasmonic crystals with hexagonal lattice." In JSAP-OSA Joint Symposia. OSA, 2014. http://dx.doi.org/10.1364/jsap.2014.19p_c3_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Stolt, Timo, Jussi Kelavuori, Viatcheslav Vanyukov, et al. "Temperature-tunable Surface Lattice Resonances in Plasmonic Metasurfaces." In 2021 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). IEEE, 2021. http://dx.doi.org/10.1109/cleo/europe-eqec52157.2021.9542591.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Reshef, Orad, Md Saad-Bin-Alam, N. Apurv Chaitanya, et al. "Nonlinear plasmonic metasurfaces using multiresonant surface lattice resonances." In CLEO: Applications and Technology. OSA, 2020. http://dx.doi.org/10.1364/cleo_at.2020.jm1g.5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Michaeli, Lior, Haim Suchowski, and Tal Ellenbogen. "Tunable Transparency and Slow Light in Plasmonic Lattice." In CLEO: Applications and Technology. OSA, 2020. http://dx.doi.org/10.1364/cleo_at.2020.jtu2d.9.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Plasmonic lattice"

1

Pletzer, A., and G. Shvets. Simulating Photons and Plasmons in a Three-dimensional Lattice. Office of Scientific and Technical Information (OSTI), 2002. http://dx.doi.org/10.2172/809824.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!