Academic literature on the topic 'Plasmoidi'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Plasmoidi.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Plasmoidi"
Honkonen, I., M. Palmroth, T. I. Pulkkinen, P. Janhunen, and A. Aikio. "On large plasmoid formation in a global magnetohydrodynamic simulation." Annales Geophysicae 29, no. 1 (January 14, 2011): 167–79. http://dx.doi.org/10.5194/angeo-29-167-2011.
Full textSuzuki, Y., T. H. Watanabe, A. Kageyama, T. Sato, and T. Hayashi. "Three-Dimensional Simulation Study of Plasmoid Injection into Magnetized Plasma." Symposium - International Astronomical Union 188 (1998): 209–10. http://dx.doi.org/10.1017/s0074180900114780.
Full textChristie, I. M., M. Petropoulou, L. Sironi, and D. Giannios. "Interplasmoid Compton scattering and the Compton dominance of BL Lacs." Monthly Notices of the Royal Astronomical Society 492, no. 1 (December 9, 2019): 549–55. http://dx.doi.org/10.1093/mnras/stz3265.
Full textLemaire, J. "Plasmoid motion across a tangential discontinuity (with application to the magnetopause)." Journal of Plasma Physics 33, no. 3 (June 1985): 425–36. http://dx.doi.org/10.1017/s0022377800002592.
Full textMarkidis, S., P. Henri, G. Lapenta, A. Divin, M. V. Goldman, D. Newman, and S. Eriksson. "Collisionless magnetic reconnection in a plasmoid chain." Nonlinear Processes in Geophysics 19, no. 1 (February 27, 2012): 145–53. http://dx.doi.org/10.5194/npg-19-145-2012.
Full textAHMAD, Nisar, Ping ZHU, Ahmad ALI, and Shiyong ZENG. "Viscous effects on plasmoid formation from nonlinear resistive tearing growth in a Harris sheet." Plasma Science and Technology 24, no. 1 (November 23, 2021): 015103. http://dx.doi.org/10.1088/2058-6272/ac3563.
Full textDubowsky, Scott E., Amber N. Rose, Nick G. Glumac, and Benjamin J. McCall. "Electrical Properties of Reversed-Polarity Ball Plasmoid Discharges." Plasma 3, no. 3 (June 29, 2020): 92–102. http://dx.doi.org/10.3390/plasma3030008.
Full textBelehaki, A., R. W. McEntire, S. Kokubun, and T. Yamamoto. "Magnetotail response during a strong substorm as observed by GEOTAIL in the distant tail." Annales Geophysicae 16, no. 5 (May 31, 1998): 528–41. http://dx.doi.org/10.1007/s00585-998-0528-5.
Full textCerutti, Benoît, and Gwenael Giacinti. "Formation of giant plasmoids at the pulsar wind termination shock: A possible origin of the inner-ring knots in the Crab Nebula." Astronomy & Astrophysics 656 (December 2021): A91. http://dx.doi.org/10.1051/0004-6361/202142178.
Full textUgai, M. "Virtual satellite observations of plasmoids generated by fast reconnection in the geomagnetic tail." Annales Geophysicae 29, no. 8 (August 23, 2011): 1411–22. http://dx.doi.org/10.5194/angeo-29-1411-2011.
Full textDissertations / Theses on the topic "Plasmoidi"
Granier, Camille. "Nouveaux développements sur la théorie des instabilités des feuilles de courant dans les plasmas non-collisionels." Electronic Thesis or Diss., Université Côte d'Azur, 2022. http://www.theses.fr/2022COAZ4109.
Full textMagnetic reconnection is a change of topology of the magnetic field, responsible for explosive release of magnetic energy in astrophysical plasmas, as in the case of magnetospheric substorms and coronal mass ejections, as well as in laboratory plasmas, which is the case of sawtooth crashes in tokamaks. In collisionless plasmas as, for instance, the magnetosphere and the solar wind, electron inertia becomes particularly relevant to drive reconnection at regions of intense localized current, denoted as current sheets. In these non-collisional environments, the temperature can often be anisotropic and effects at the electron scale on the reconnection process can become non-negligible.In this thesis, the stability of two-dimensional current sheets, with respect to reconnecting perturbations, in collisionless plasmas with a strong guide field is analysed on the basis of gyrofluid models assuming cold ions. These models can take into account an equilibrium temperature anisotropy,and a finite βe, a parameter corresponding to the ratio between equilibrium electron kinetic pressure and magnetic pressure.We derive and analyze a dispersion relation for the growth rate of collisionless tearing modes accounting for equilibrium electron temperature anisotropy. The analytical predictions are tested against numerical simulations, showing a very good quantitative agreement.In the isotropic case, accounting for finite βe effects, we observe a stabilization of the tearing growth rate when electron finite Larmor radius effects become relevant. In the nonlinear phase, stall phases and faster than exponential phases are observed, similarly to what occurs in the presence of ion finite Larmor radius effects.We also investigate the marginal stability conditions of secondary current sheets, for the development of plasmoids, in collisionless plasmas. In the isotropic βe → 0 regime, we analyze the geometry that characterizes the reconnecting current sheet, and identify the conditions for which it is plasmoid unstable. Our study shows that plasmoids can be obtained, in this context, from current sheets with an aspect ratio much smaller than in the collisional regime. Furthermore, we investigate the plasmoid formation comparing gyrofluid and gyrokinetic simulations.This made it possible to show that the effect of finite βe, promotes the plasmoid instability. Finally, we study the impact of the closure applied on the moments, performed during the derivation of the gyrofluid model, on the distribution and conversion of energy during reconnection
La riconnessione magnetica è un cambiamento nella topologia delcampo magnetico, responsabile del rilascio esplosivo di energia magnetica nei plasmiastrofisici, come nelle tempeste magnetosferiche e nelle espulsioni di massa coronale,nonché nei plasmi di laboratorio, come nel caso delle oscillazioni a dente di sega neitokamak. Nei plasmi non-collisionali come, ad esempio, la magnetosfera e il vento solare,l’inerzia elettronica diventa particolarmente efficace nel causare la riconnessionein regioni di corrente intensa e localizzata, detti strati di corrente. In tali plasmi noncollisionali,la temperatura può essere spesso anisotropa e gli effetti su scala elettronicasul processo di riconnessione possono diventare non trascurabili.In questa tesi, viene analizzata la stabilità di strati di corrente bidimensionali inplasmi non-collisionali con un forte campo guida, sulla base di modelli girofluidi cheassumono ioni freddi. Questi modelli possono tenere conto di un’anisotropia di temperaturadi equilibrio e di un βe finito. Quest’ultimo è un parametro corrispondente alrapporto tra la pressione cinetica elettronica di equilibrio e la pressione magnetica.Deriviamo e analizziamo una relazione di dispersione per il tasso di crescita dei moditearing non-collisionali tenendo conto dell’anisotropia della temperatura di equilibriodegli elettroni. Le previsioni analitiche sono verificate mediante simulazioni numeriche,che mostrano un ottimo accordo quantitativo. Nel caso isotropico, tenendoconto degli effetti di βe finito, si osserva una stabilizzazione del tasso di crescita delmodo tearing quando diventano rilevanti gli effetti del raggio finito di Larmor deglielettroni. Nella fase non lineare si osservano fasi di decelerazione e fasi di accelerazione,simili a quanto avviene in presenza di effetti del raggio di Larmor finito ionico.Studiamo anche le condizioni di stabilità marginale degli strati di corrente secondaria,per lo sviluppo di plasmoidi, in plasmi senza collisioni. Nel regime isotropicocon βe → 0, analizziamo la geometria che caratterizza lo strato di corrente e identifichiamole condizioni in cui esso diventa instabile a causa di un’instabilità che generaplasmoidi. Il nostro studio mostra che i plasmoidi possono essere ottenuti, in questocontesto, da strati di corrente aventi un rapporto d’aspetto molto più piccolo rispettoal regime collisionale. Inoltre, studiamo la formazione di plasmoidi confrontando simulazionigirofluidi e girocinetiche. Ciò ha permesso di dimostrare che l’effetto di βe promuove l’instabilità che genera plasmoidi. Infine, si studia l’impatto della chiusuraapplicata ai momenti, eseguita durante la derivazione del modello girofluido, sulla distribuzionee conversione dell’energia durante la riconnessione
Berger, T., J. Konheiser, A. V. Anikeev, V. V. Prikhodko, P. A. Bagryansky, E. Yu Kolesnikov, E. I. Soldatkina, Yu A. Tsidulko, K. Noack, and A. A. Lizunov. "Study of high temperature and high density plasmoids in axially symmetrical magnetic fields." Forschungszentrum Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-27870.
Full textBerger, T., J. Konheiser, A. V. Anikeev, V. V. Prikhodko, P. A. Bagryansky, E. Yu Kolesnikov, E. I. Soldatkina, Yu A. Tsidulko, K. Noack, and A. A. Lizunov. "Study of high temperature and high density plasmoids in axially symmetrical magnetic fields." Forschungszentrum Dresden-Rossendorf, 2009. https://hzdr.qucosa.de/id/qucosa%3A21614.
Full textDELANNEE, CECILE. "Contribution a l'etude des plasmoides de la couronne solaire." Paris 6, 1997. http://www.theses.fr/1997PA066296.
Full textTakasaki, Hiroyuki. "Energetic phenomena of the solar flares : plasmoid ejections and particle transport and acceleration." 京都大学 (Kyoto University), 2006. http://hdl.handle.net/2433/144187.
Full text0048
新制・課程博士
博士(理学)
甲第12104号
理博第2998号
新制||理||1447(附属図書館)
23940
UT51-2006-J99
京都大学大学院理学研究科物理学・宇宙物理学専攻
(主査)教授 柴田 一成, 助教授 岩室 史英, 教授 長田 哲也
学位規則第4条第1項該当
Nishida, Keisuke. "Magnetohydrodynamic Simulations of Solar Flares with Plasmoid Ejection: What Determines Reconnection Rate and Reconnection Duration?" 京都大学 (Kyoto University), 2009. http://hdl.handle.net/2433/124421.
Full textGazzola, Enrico. "Anisotropic propagation of Surface Plasmon Polaritons: study and exploitations." Doctoral thesis, Università degli studi di Padova, 2014. http://hdl.handle.net/11577/3423724.
Full textSuperfici metalliche con modulazione sinusoidale, note come grating plasmonici, costituiscono una delle principali strutture che permettono di ottenere l’accoppiamento tra un fascio di luce incidente e un Plasmone Polaritone di Superficie. Una varietà di fenomeni sono accessibili quando il grating viene ruotato di un angolo azimutale rispetto al piano di incidenza. Scopo di questo lavoro è uno studio approfondito delle proprietà di propagazione del modo di superficie in questa configurazione, correlando il ruolo dell’anisotropia introdotta dal grating con la posizione e forma del dip di risonanza plasmonica negli spettri in riflettanza. Vengono presentati modelli analitici e interpretazioni fisiche; metodi sia sperimentali che computazionali vengono impiegati per validare i modelli, includendo l’osservazione di nuovi effetti. I modi accoppiati di film sottile, ovvero i Plasmoni Long Range e Short Range, vengono studiati e osservati sperimentalmente nella configurazione ad azimuth ruotato. Una particolare attenzione è dedicata al ruolo delle perdite radiative del plasmone, dovute allo scattering da parte del grating. La loro dipendenza dall’ampiezza del grating e dalla direzione di propagazione del plasmone è spiegata, e correlata con la larghezza delle risonanze plasmoniche osservabili. I risultati di queste analisi conducono alla valutazione delle sensibilità e Figura di Merito che si possono ottenere quando le configurazioni considerate sono sfruttate nell’ambito della sensoristica a Risonanza Plasmonica di Superficie. I concetti e metodi sviluppati si dimostrano strumenti di valore per predire e interpretare la risposta di strutture plasmoniche reali, applicate come dispositivi di sensing verso analiti allo stato gassoso. Le piattaforme plasmoniche vengono testate come sensori per TNT, idrogeno e composti aromatici, con risultati promettenti. Un esperimento particolarmente interessante è l’uso combinato dei modi Long Range e della configurazione ad azimuth ruotato per incrementare notevolmente le performance di un sensore di xylene
Watts, David Ian. "A comparison of gene structure in amoebae and plasmodia of Physarum polycephalum." Thesis, University of Leicester, 1987. http://hdl.handle.net/2381/35177.
Full textWadaan, Mohammad A. M. "Genetic and cellular studies of apogamic plasmodium development in Physarum polycephalum." Thesis, University of Sheffield, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.391038.
Full textPicard, Isabelle. "Nouvelle approche therapeutique antipaludique : peptides inhibant la reinvasion des erythrocytes par les merozoites de plasmodia." Orléans, 1988. http://www.theses.fr/1988ORLE2034.
Full textBooks on the topic "Plasmoidi"
Kreier, Julius P. Parasitic Protozoa: Babesia and Plasmodia. Elsevier Science & Technology Books, 2012.
Find full textBychkov, Vladimir, Gennady Golubkov, and Anatoly Nikitin. Atmosphere and Ionosphere: Elementary Processes, Discharges and Plasmoids. Springer London, Limited, 2012.
Find full textThe Atmosphere And Ionosphere Elementary Processes Discharges And Plasmoids. Springer, 2012.
Find full textBychkov, Vladimir, Gennady Golubkov, and Anatoly Nikitin. The Atmosphere and Ionosphere: Elementary Processes, Discharges and Plasmoids. Springer, 2015.
Find full textMomoh, Rekiyatu, Helen Ileigo Inabo, and Muhammad Sani Aliyu. Prevalenza di infezioni da PLASMODIO e Geoelminto. Edizioni Sapienza, 2020.
Find full textAso, Michitake. Rubber and the Making of Vietnam. University of North Carolina Press, 2018. http://dx.doi.org/10.5149/northcarolina/9781469637150.001.0001.
Full textBook chapters on the topic "Plasmoidi"
Moynihan, Matthew, and Alfred B. Bortz. "Plasmoids." In Fusion's Promise, 153–74. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-22906-0_7.
Full textScholer, M., and R. F. Lottermoser. "Hybrid Simulations of Magnetotail Reconnection: Plasmoids, the Post-Plasmoid Plasma Sheet, and Slow Mode Shocks." In Substorms-4, 467–72. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-4798-9_97.
Full textMagara, T., K. Shibata, and T. Yokoyama. "Plasmoid Formation in Eruptive Flares." In Astrophysics and Space Science Library, 173–74. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5220-4_28.
Full textZong, Q. G., B. Wilken, J. Woch, T. Doke, and S. Kokubun. "Plasmoid Boundary Layer: Geotail Observations." In Substorms-4, 715–18. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-4798-9_149.
Full textKlimov, A. I. "Vortex Plasmoids Created by High-Frequency Discharges." In The Atmosphere and Ionosphere, 251–73. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-2914-8_6.
Full textRubtsov, Vladimir. "From Comet to Plasmoid to Mirror Matter." In Astronomers' Universe, 239–70. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-76574-7_10.
Full textWhetzel, Patricia L., Shailesh V. Date, Kobby Essien, Martin J. Fraunholz, Bindu Gajria, Gregory R. Grant, John Iodice, et al. "PlasmoDB: The Plasmodium Genome Resource." In Molecular Approaches to Malaria, 12–23. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555817558.ch2.
Full textMoldwin, Mark B., and W. J. Hughes. "A 2½-dimensional magnetic field model of plasmoids." In Physics of Magnetic Flux Ropes, 663–68. Washington, D. C.: American Geophysical Union, 1990. http://dx.doi.org/10.1029/gm058p0663.
Full textHesse, Michael, and Joachim Birn. "Progress in the Study of Three-Dimensional Plasmoids." In Geophysical Monograph Series, 55–70. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm062p0055.
Full textSuzuki, Y., T. H. Watanabe, A. Kageyama, T. Sato, and T. Hayashi. "Three-Dimensional Simulation Study of Plasmoid Injection into Magnetized Plasma." In The Hot Universe, 209–10. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-4970-9_49.
Full textConference papers on the topic "Plasmoidi"
Kadish, A., R. A. Nebel, W. R. Shanahan, and P. Rosenau. "Plasmoids For Exoatmospheric Propagation." In 1988 Los Angeles Symposium--O-E/LASE '88, edited by Norman Rostoker. SPIE, 1988. http://dx.doi.org/10.1117/12.965106.
Full textBourque, Robert F., Paul B. Parks, and Dan R. Baker. "Pulsed plasmoid electric thruster." In Proceedings of the eighth symposium on space nuclear power systems. American Institute of Physics, 1991. http://dx.doi.org/10.1063/1.40152.
Full textBychkov, Vladimir, Nadezhda Savenkova, and Sergey Ampilov. "Gatchina Discharge Plasmoid Modeling." In 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2013. http://dx.doi.org/10.2514/6.2013-929.
Full textKiuttu, G. F., and R. J. Adler. "Nonneutral Plasmoid Generation And Propagation." In 1988 Los Angeles Symposium--O-E/LASE '88, edited by Norman Rostoker. SPIE, 1988. http://dx.doi.org/10.1117/12.965103.
Full textSlough, John, and George Votroubek. "Magnetically Accelerated Plasmoid (MAP) Propulsion." In 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-4654.
Full textPopov, G., M. Orlov, N. Antropov, L. Gomilka, G. Diakonov, I. Krivonosov, G. Popov, et al. "Parameters of plasmoids injected by PPT." In 33rd Joint Propulsion Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1997. http://dx.doi.org/10.2514/6.1997-2921.
Full textNardi, V., C. Powell, J. Wang, and L. Schneider. "Plasmoid structure from MeV ion imaging." In International Conference on Plasma Sciences (ICOPS). IEEE, 1993. http://dx.doi.org/10.1109/plasma.1993.593520.
Full textSloan, M. L. "Examination Of Aspects Of Plasmoid Propagation." In 1988 Los Angeles Symposium--O-E/LASE '88, edited by Norman Rostoker. SPIE, 1988. http://dx.doi.org/10.1117/12.965107.
Full textKoelfgen, Syri, Clark Hawk, Richard Eskridge, Michael Lee, Adam Martin, and James Smith. "A Plasmoid Thruster for Space Propulsion." In 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2003. http://dx.doi.org/10.2514/6.2003-4992.
Full textChristie, Ian, Maria Petropoulou, Lorenzo Sironi, and Dimitrios Giannios. "Blazar Variability from Plasmoids in Relativistic Reconnection." In 7th International Fermi Symposium. Trieste, Italy: Sissa Medialab, 2017. http://dx.doi.org/10.22323/1.312.0040.
Full textReports on the topic "Plasmoidi"
Samtaney, R., N. F. Loureiro, D. A. Uzdensky, A. A. Schekochihin, and S. C. Cowley. Formation of Plasmoid Chains in Magnetic Reconnection. Office of Scientific and Technical Information (OSTI), September 2009. http://dx.doi.org/10.2172/965277.
Full textIntrator, Thomas P. Magnetized shock studies for astrophysics using a plasmoid accelerator. Office of Scientific and Technical Information (OSTI), August 2013. http://dx.doi.org/10.2172/1090687.
Full textCampbell, M. M., R. M. Clark, and M. A. Mostrom. Simulation and theory of radial equilibrium of plasmoid propagation. Office of Scientific and Technical Information (OSTI), September 1989. http://dx.doi.org/10.2172/6607601.
Full textBrandenburg, John, Gary Warren, and Richard Worl. The Theory and Simulation of Plasmoid Formation and Propagation. Fort Belvoir, VA: Defense Technical Information Center, January 1990. http://dx.doi.org/10.21236/ada222048.
Full textLoureiro, Nuno. Magnetic Reconnection in Strongly-Magnetized, Weakly-Collisional Plasmas: Onset, Turbulence, and Energy-Partition in 3D, Plasmoid-Dominated Regimes. Office of Scientific and Technical Information (OSTI), January 2022. http://dx.doi.org/10.2172/1842655.
Full text