Academic literature on the topic 'Plasma turbulence theory'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Plasma turbulence theory.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Plasma turbulence theory"

1

Tong, Y., and A. C. L. Chian. "Dynamo Driven by Weak Plasma Turbulence." Symposium - International Astronomical Union 157 (1993): 249–50. http://dx.doi.org/10.1017/s0074180900174212.

Full text
Abstract:
We discuss a dynamo mechanism driven by weak plasma turbulence and show that turbulent plasma waves may generate and maintain cosmic magnetic field. A dynamo equation is derived from the magnetic induction equation based on mean field electrodynamics. In the usual α–ω dynamo theory, the source term in the dynamo equation arises from α–effect associated with the convective motion of the fluid. In contrast, in our theory the source term is determined by “P–effcct” associated with weakly turbulent waves (e.g. Alfvén waves) in the plasma. We suggest that “P–ω” dynamo may be operative either in the presence or absence of convection. The sole requirement for its operation is the existence of weak plasma turbulence in the source region of the cosmic magnetic field.
APA, Harvard, Vancouver, ISO, and other styles
2

Ishihara, Osamu, Huajuan Xia, and Akira Hirose. "Resonance broadening theory of plasma turbulence." Physics of Fluids B: Plasma Physics 4, no. 2 (February 1992): 349–62. http://dx.doi.org/10.1063/1.860283.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Schlickeiser, Reinhard, and Ulrich Achatz. "Cosmic-ray particle transport in weakly turbulent plasmas. Part 1. Theory." Journal of Plasma Physics 49, no. 1 (February 1993): 63–77. http://dx.doi.org/10.1017/s0022377800016822.

Full text
Abstract:
We consider a quasi-linear theory for the acceleration rates and propagation parameters of charged test particles in weakly turbulent electromagnetic plasmas. The similarity between two recent approaches to modelling of therandom electromagnetic field is demonstrated. It is shown that both the concept of dynamical magnetic turbulence and the concept of superposition of individual plasma modes lead to particle Fokker—Planck coefficients in which the sharp delta functions describing the resonant interaction of the particles have to be replaced by Breit—Wigner-type resonance functions, which are controlled by the dynamical turbulence decay time and the wave-damping time respectively. The resulting resonance broadening will significantly change the evaluation of cosmic-ray transport parameters.
APA, Harvard, Vancouver, ISO, and other styles
4

Terry, P. W. "Theory of critical balance in plasma turbulence." Physics of Plasmas 25, no. 9 (September 2018): 092301. http://dx.doi.org/10.1063/1.5041754.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yoshizawa, A., S. I. Itoh, and K. Itoh. "Plasma and Fluid Turbulence: Theory and Modelling." Plasma Physics and Controlled Fusion 45, no. 3 (February 24, 2003): 321–22. http://dx.doi.org/10.1088/0741-3335/45/3/701.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

De Angelis, Elisabetta. "Plasma and Fluid Turbulence: Theory and Modelling." Applied Rheology 13, no. 2 (April 1, 2003): 69. http://dx.doi.org/10.1515/arh-2003-0024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yoon, Peter H. "Weak turbulence theory for beam-plasma interaction." Physics of Plasmas 25, no. 1 (January 2018): 011603. http://dx.doi.org/10.1063/1.5017518.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rönnmark, K., and T. Biro. "Phase-space description of plasma waves. Part 2. Nonlinear theory." Journal of Plasma Physics 47, no. 3 (June 1992): 479–89. http://dx.doi.org/10.1017/s0022377800024363.

Full text
Abstract:
A representation of the physical fields as functions on (k, ω, r, t) phase space can be based on Gaussian windows and Fourier transforms. Within this representation, we obtain a very general formula for the second-order nonlinear current J(k, ω, r, t) in terms of the vector potential A(k, ω, r, t). This formula is a convenient starting point for studies of coherent as well as turbulent nonlinear processes. We derive kinetic equations for weakly inhomogeneous and turbulent plasmas, including the effects of inhomogeneous turbulence, wave convection and refraction.
APA, Harvard, Vancouver, ISO, and other styles
9

Mel’nik, Valentin. "Plasma Theory of Solar Radar Echoes after Thirty Years." Highlights of Astronomy 12 (2002): 389. http://dx.doi.org/10.1017/s1539299600013836.

Full text
Abstract:
In 1967 Gordon made the revolutionary assumption that reflection of radar signal from the Sun can be explained by its scattering on microturbulence (Gordon 1973). In his first model it was ion-sound turbulence. Later he considered radar scattering on Langmuir turbulence. The principal opportunity to explain frequency displacements of radar echoes observed in James’ experiments (James 1966, 1970) was shown. However, it turned out (Gerasimova 1979) that the mechanism needed an impermissible high level of isotropic turbulence for the reflection with cross-sectionsσ= 10πR2ʘ.
APA, Harvard, Vancouver, ISO, and other styles
10

Zhou, Ye. "Renormalization group theory for fluid and plasma turbulence." Physics Reports 488, no. 1 (March 2010): 1–49. http://dx.doi.org/10.1016/j.physrep.2009.04.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Plasma turbulence theory"

1

Cerri, Silvio Sergio [Verfasser]. "Plasma turbulence in the dissipation range - theory and simulations / Silvio Sergio Cerri." Ulm : Universität Ulm. Fakultät für Naturwissenschaften, 2016. http://d-nb.info/108198595X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhou, Ye. "Renormalization group theory technique and subgrid scale closure for fluid and plasma turbulence." W&M ScholarWorks, 1987. https://scholarworks.wm.edu/etd/1539623774.

Full text
Abstract:
Renormalization group theory is applied to incompressible three-dimension Navier-Stokes turbulence so as to eliminate unresolvable small scales. The renormalized Navier-Stokes equation includes a triple nonlinearity with the eddy viscosity exhibiting a mild cusp behavior, in qualitative agreement with the test-field model results of Kraichnan. For the cusp behavior to arise, not only is the triple nonlinearity necessary but the effects of pressure must be incorporated in the triple term.;Renormalization group theory is also applied to a model Alfven wave turbulence equation. In particular, the effect of small unresolvable subgrid scales on the large scales is computed. It is found that the removal of the subgrid scales leads to a renormalized response function. (i) This response function can be calculated analytically via the difference renormalization group technique. Strong absorption can occur around the Alfven frequency for sharply peaked subgrid frequency spectra. (ii) With the {dollar}\epsilon{dollar} - expansion renormalization group approach, the Lorenzian wavenumber spectrum of Chen and Mahajan can be recovered for finite {dollar}\epsilon{dollar}, but the nonlinear coupling constant still remains small, fully justifying the neglect of higher order nonlinearities introduced by the renormalization group procedure.
APA, Harvard, Vancouver, ISO, and other styles
3

Rivas, David Roy. "Theory and simulation of electrostatic wave turbulence in the space shuttle-induced plasma environment." Thesis, Massachusetts Institute of Technology, 1993. http://hdl.handle.net/1721.1/49593.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Meyrand, Romain. "Turbulence à hautes fréquences dans le vent solaire : Modèle magnétohydrodynamique Hall et expériences numériques." Phd thesis, Université Paris Sud - Paris XI, 2013. http://tel.archives-ouvertes.fr/tel-00878745.

Full text
Abstract:
La turbulence tridimensionnelle se caractérise par sa capacité à transférer de l'énergie des grandes vers les petites échelles où elle est finalement dissipée. Lorsqu'elle se produit dans un plasma non-collisionnel comme le vent solaire, une modélisation cinétique semble a priori nécessaire. Toutefois, la complexité d'une telle approche limite les développements théoriques et condamne les expériences numériques à se restreindre à des nombres de Reynolds peu élevés. Dans quelles mesures un modèle mono-fluide comme la MHD Hall permet-il de rendre compte des phénomènes observés dans le vent solaire aux échelles sub-ioniques ? C'est la problématique à laquelle s'est attaquée cette thèse. L'idée directrice de ce travail est de tirer profit de la relative simplicité des modèles fluides et de la puissance algorithmique des méthodes pseudo-spectrales pour aborder la turbulence du vent solaire par des simulations numériques directes tridimensionnelles massivement parallèles à grands nombres de Reynolds. Ces simulations numériques ont permis de mettre en évidence l'existence d'une brisure spontanée de symétrie chirale en turbulence MHD Hall incompressible, ainsi que l'existence d'un nouveau régime appelé ion MHD (IMHD). Un modèle phénoménologique a été proposé pour rendre compte de ces résultats et de nouvelles prédictions ont été faites, puis confirmées numériquement. Enfin, l'étude de l'effet d'un fort champ magnétique uniforme sur la dynamique turbulente a permis de confirmer pour la première fois une ancienne conjecture. L'inertie des électrons a ensuite été prise en compte toujours dans un modèle fluide. Par une approche hydrodynamique classique, une loi universelle a été obtenue pour les fonctions de structure d'ordre trois. L'ensemble de ces résultats est qualitativement en accord avec les mesures in situ du vent solaire et remet en cause le paradigme selon lequel les raidissements successifs du spectre des fluctuations magnétiques sont provoqués nécessairement par des phénomènes d'origine cinétique. De manière plus générale, cette thèse soulève des questions fondamentales sur les processus non-collisionnels de dissipation dans les plasmas turbulents.
APA, Harvard, Vancouver, ISO, and other styles
5

Meunier, Claude. "Quelques problèmes non-linéaires en hydrodynamique et en physique des plasmas : théorèmes de moyennisation et théorèmes adiabatiques." Paris 6, 1986. http://www.theses.fr/1986PA066126.

Full text
Abstract:
Etude de l'intermittence, un type de transition vers la turbulence rencontre en convection et dans la réaction de Belousov-Zhabotinsky. La mesure invariante dépend continument du paramètre de bifurcation. Etude d'un modèle de couplage résonnant d'ondes de dérivé dans une limite de dissipation forte par des méthodes perturbatives et l'utilisation du théorème de la variété stable. Etude de la génération périodique de solitons dans l'équation de Schrödinger cubique avec source. Travail de synthèse sur les méthodes de moyennisation et les théorèmes adiabatiques.
APA, Harvard, Vancouver, ISO, and other styles
6

Lalescu, Cristian. "Test particle transport in turbulent magnetohydrodynamic structures." Doctoral thesis, Universite Libre de Bruxelles, 2011. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209908.

Full text
Abstract:
Turbulent phenomena are found in both natural (e.g. the Earth's oceans, the Sun's corona) and artificial (e.g. flows through pipes, the plasma in a tokamak device) settings; evidence suggests that turbulence is usually the normal behaviour in most cases. Turbulence has been studied extensively for more than a century, but a complete and consistent theoretical description of it has not yet been proposed. It is in this context that the motion of particles under the influence of turbulent fields is studied in this work, with direct numerical simulations. The thesis is structured in three main parts. The first part describes the tools that are used. Methods of integrating particle trajectories are presented, together with a discussion of the properties that these methods should have. The simulation of magnetohydrodynamic (MHD) turbulence is discussed, while also introducing fundamental concepts of fluid turbulence. Particle trajectory integration requires information that is not readily available from simulations of turbulent flows, so the interpolation methods needed to adapt the fluid simulation results are constructed as well. The second part is dedicated to the study of two MHD problems. Simulations of Kolmogorov flow in incompressible MHD are presented and discussed, and also simulations of the dynamo effect in compressible MHD. These two scenarios are chosen because large scale structures are formed spontaneously by the turbulent flow, and there is an interest in studying particle transport in the presence of structures. Studies of particle transport are discussed in the third part. The properties of the overall approach are first analyzed in detail, for stationary predefined fields. Focus is placed on the qualitative properties of the different methods presented. Charged article transport in frozen turbulent fields is then studied. Results concerning transport of particles in fully developed, time-evolving, turbulent fields are presented in the final chapter.

\
Doctorat en Sciences
info:eu-repo/semantics/nonPublished

APA, Harvard, Vancouver, ISO, and other styles
7

Morel, Pierre. "Le modèle « water bag » appliqué aux équations cinétiques des plasmas de Tokamak." Thesis, Nancy 1, 2008. http://www.theses.fr/2008NAN10153/document.

Full text
Abstract:
Ce travail a porté sur l'étude des instabilités de gradient de température ioniques (ITG) en géométrie cylindrique, le champ magnétique étant supposé constant et dirigé selon l'axe du cylindre. Une fonction de distribution discrète en forme de marche d'escalier est utilisée pour décrire la direction de vitesse parallèle au champ magnétique. L'équation de Vlasov se résume à un système de type multi fluides couplés par l'équation de quasi neutralité. Chaque fluide est décrit par un système fermé d'équations (continuité, Euler et fermeture adiabatique), caractéristiques d'un fluide incompressible, d'où la dénomination de sac d'eau ou "water bag". Le recours à cette description water bag est particulièrement intéressant dans le cas de problèmes à une seule dimension en vitesse. Ainsi, dans le cas des plasmas fortement magnétisés, un modèle water bag peut se combiner avantageusement aux modèles dits girocinétiques. Les paramètres associés a la représentation water bag ont pu être identifiés et reliés aux grandeurs macroscopiques par le biais d'une méthode originale d'équivalence au sens des moments. L'analyse water bag des ITG a permis de valider le modèle et les méthodes choisies. Ce travail a également permis de montrer que le concept de water bag peut sans problème prendre en compte des effets variés comme ceux liés a l'introduction d?un rayon de Larmor fini, tout comme à la description d'un plasma composé de plusieurs espèces d'ions
A drift-kinetic model in cylindrical geometry has been used to study Ion Temperature Gradients (ITG). The cylindrical plasma is considered as a limit case of a stretched torus. The magnetic field is assumed uniform and constant; it is directed along the axis of the column. A discrete distribution function f taking the form of a multi-step like function is used in place of the continuous distribution function along the parallel velocity direction. With respect to the properties of the Heaviside?s distribution, the Vlasov equation is reduced to a system of fluids coupled by the electromagnetic fields. This model is well suited mainly for problems involving a phase space with one velocity component. In the case of magnetized plasmas it gives an alternative way to study turbulence thanks to the gyro-average whose allows reducing the 3D velocity space into a 1D space. Parameters introduced by the water bag formalism have been linked to physical quantities by an original method of moment-sense equivalence. In the linear approximation, the water bag study of the ITG instability allows an interesting comparison with some well-known analytical results. The water-bag concept is not affected by taking into account Finite Larmor Radius effects. It well describes the case of multi-species plasma
APA, Harvard, Vancouver, ISO, and other styles
8

Coceal, Omduth. "Conformal field theory and turbulent systems." Thesis, Queen Mary, University of London, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.243367.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhang, Wenda. "Contribution to the theory of drift wave turbulence in magnetically confined plasmas." Doctoral thesis, Universite Libre de Bruxelles, 1988. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/213334.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Vanden, Eijnden Eric. "Contribution to the statistical theory of turbulence application to anomalous transport in plasmas." Doctoral thesis, Universite Libre de Bruxelles, 1997. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/212166.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Plasma turbulence theory"

1

1952-, Itoh S. I., and Itoh K, eds. Plasma and fluid turbulence: Theory and modelling. Bristol: Institute of Physics Pub., 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

1952-, Itoh S. I., and Itoh K, eds. Modern plasma physics. New York: Cambridge University Press, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

1952-, Itoh S. I., and Fukuyama A. 1952-, eds. Transport and structural formation in plasmas. Bristol, England: Institute of Physics Pub., 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Waltz, Ronald E. Lecture series on turbulent transport in Tokamaks. Nagoya, Japan: Institute of Plasma Physics, Nagoya University, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

ITER International Summer School (1st 2007 Aix-en-Provence, France). Turbulent transport in fusion plasmas: First ITER International Summer School, Aix en Provence, France, 16-20 July 2007. Edited by Benkadda S. Meville, N.Y: American Institute of Physics, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

International Workshop on Small Scale Turbulence and Anomalous Transport in Magnetized Plasmas (1986 Institut d'études scientifiques de Cargèse). Turbulence and anomalous transport in magnetized plasmas: Proceedings of the International Workshop on Small Scale Turbulence and Anomalous Transport in Magnetized Plasmas held July 6-12th, 1986 at Institut dʼétudes scientifiques de Cargèse, Corse du Sud, France. [Palaiseau, France: L'Ecole Polytechnique], 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

France) ITER International Summer School (5th 2011 Aix-en-Provence. MHD and energetic particles: 5th ITER International Summer School, Aix-en-Provence, France, 20-24 June 2011. Edited by Benkadda S, Dubuit Nicolas, and Guimarães-Filho Zwinglio. Melville, N.Y: American Institute of Physics, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

S, Hasan S., Gangadhara R. T, and Krishan V, eds. Turbulence, dynamos, accretion disks, pulsars and collective plasmas processes: First Kodai-Trieste Workshop on Plasma Astrophysics held at the Kodaikanal Observatory, Kodaikanal, India, August 27 - September 7, 2007. [Berlin]: Springer, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

International, Workshop on Plasma Theory and Nonlinear and Turbulent Processes in Physics (1987 Kiev Ukraine). Plasma theory and nonlinear and turbulent processes in physics: Kiev, USSR, 13-25 April 1987. Singapore: World Scientific, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Itoh, Kimitaka, Patrick H. Diamond, and Sanae-I. Itoh. Modern Plasma Physics: Volume 1, Physical Kinetics of Turbulent Plasmas. Cambridge University Press, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Plasma turbulence theory"

1

Ballester, José Luis. "Prominence Oscillations: Theory." In Turbulence, Waves and Instabilities in the Solar Plasma, 193–213. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-007-1063-4_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Roberts, B., and V. M. Nakariakov. "Theory of MHD Waves in the Solar Corona." In Turbulence, Waves and Instabilities in the Solar Plasma, 167–91. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-007-1063-4_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ryutova, M., and R. Shine. "Self-Organized Structures in the Solar Atmosphere: Theory and Observations." In Turbulence, Waves and Instabilities in the Solar Plasma, 323–45. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-007-1063-4_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Carbone, V., and A. Pouquet. "An Introduction to Fluid and MHD Turbulence for Astrophysical Flows: Theory, Observational and Numerical Data, and Modeling." In Turbulence in Space Plasmas, 71–128. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00210-6_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Karimabadi, Homa, Vadim Roytershteyn, William Daughton, and Yi-Hsin Liu. "Recent Evolution in the Theory of Magnetic Reconnection and Its Connection with Turbulence." In Microphysics of Cosmic Plasmas, 231–47. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-1-4899-7413-6_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Reames, Donald V. "A Turbulent History." In Solar Energetic Particles, 19–48. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-66402-2_2.

Full text
Abstract:
AbstractLarge solar energetic-particle (SEP) events are clearly associated in time with eruptive phenomena on the Sun, but how? When large SEP events were first observed, flares were the only visible candidate, and diffusion theory was stretched to explain how the particles could spread through space, as widely as observed. The observation of coronal mass ejections (CMEs), and the wide, fast shock waves they can drive, provided better candidates later. Then small events were found with 1000-fold enhancements in 3He/4He that required a different kind of source—should we reconsider flares, or their open-field cousins, solar jets? The 3He-rich events were soon associated with the electron beams that produce type III radio bursts. It seems the radio astronomers knew of both SEP sources all along. Sometimes the distinction between the sources is blurred when shocks reaccelerate residual 3He-rich impulsive suprathermal ions. Eventually, however, we would even begin to measure the source-plasma temperature that helps to better distinguish the SEP sources.
APA, Harvard, Vancouver, ISO, and other styles
7

Keskinen, M. J. "Theory of Strongly Turbulent Two-Dimensional Cross Field Convection of Current Carrying Space Plasmas." In Unstable Current Systems and Plasma Instabilities in Astrophysics, 475. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-6520-1_51.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kaneda, Yukio. "A Statistical Theory of Turbulence Based on a Lagrangian Point of View." In Dusty and Dirty Plasmas, Noise, and Chaos in Space and in the Laboratory, 265–71. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-1829-7_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Swanson, D. G. "Weak Turbulence Theory." In Plasma Waves, 289–320. Elsevier, 1989. http://dx.doi.org/10.1016/b978-0-12-678955-3.50010-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bers, Abraham. "Quasilinear theory and weak turbulence." In Plasma Physics and Fusion Plasma Electrodynamics, 1900–2018. Oxford University Press, 2016. http://dx.doi.org/10.1093/acprof:oso/9780199295784.003.0028.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Plasma turbulence theory"

1

Dendy, R. O., Bengt Eliasson, and Padma K. Shukla. "Information Theory and Plasma Turbulence." In NEW DEVELOPMENTS IN NONLINEAR PLASMA PHYSICS: Proceedings of the 2009 ICTP Summer College on Plasma Physics and International Symposium on Cutting Edge Plasma Physics. AIP, 2009. http://dx.doi.org/10.1063/1.3266803.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

KEEFE, LAURENCE, and DAVID NIXON. "Shock loading predictions from application of indicial theory to shock-turbulence interactions." In 22nd Fluid Dynamics, Plasma Dynamics and Lasers Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1991. http://dx.doi.org/10.2514/6.1991-1777.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Spanier, Felix. "Weak turbulence theory and wave-wave interaction: Three wave coupling in space plasmas." In 2012 IEEE 39th International Conference on Plasma Sciences (ICOPS). IEEE, 2012. http://dx.doi.org/10.1109/plasma.2012.6383517.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Shaikh, Dastgeer, Gary P. Zank, and Nikolai Pogorelov. "Interstellar turbulence model : A self-consistent coupling of plasma and neutral fluids." In PHYSICS OF THE INNER HELIOSHEATH: Voyager Observations, Theory, and Future Prospects; 5th Annual IGPP International Astrophysics Conference. AIP, 2006. http://dx.doi.org/10.1063/1.2359344.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gao, Z., R. V. R. Pandya, B. Shotorban, and F. Mashayek. "Current Issues in Analytical Description of Particle/Droplet-Laden Turbulent Flows." In ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/fedsm2003-45668.

Full text
Abstract:
The particle/droplet-laden turbulent flows occur in many important natural and technological situations, e.g., cloud [1], aerosol transport and deposition [2], spray combustion [3, 4], fluidized bed combustion [5], plasma spray coating and synthesis of nanoparticles [6]. Undoubtedly, turbulence itself remains as a difficult and unsolved problem of classical mechanics despite many persistent efforts by physicists and engineers. The presence of particles/droplets (hereafter simply referred to as particles) further adds to the complexity of the turbulence. The particle behavior in turbulent flows gives rise to many interesting phenomena, such as, turbophoresis [7], turbulent thermal diffusion and barodiffusion [8, 9], preferential distribution, and anomaly and intermittency [9, 10]. It is challenging to come up with a unique predictive theory for the particle phase which is useful for engineering purposes and also capable in quantifying various related phenomena.
APA, Harvard, Vancouver, ISO, and other styles
6

Bolot, R., M. Imbert, and C. Coddet. "Mathematical Modeling of a Free Plasma Jet Discharging into Air and Comparison with Probe Measurements." In ITSC 1997, edited by C. C. Berndt. ASM International, 1997. http://dx.doi.org/10.31399/asm.cp.itsc1997p0549.

Full text
Abstract:
Abstract Plasma spraying process modeling is useful to understand physical phenomena and to decrease the number of experiments. In this paper, a study of the external plasma jet is proposed: the PHOENICS™ CFD code was used with a 2D axisymmetrical geometry and a standard K-ε turbulence model. In a first step, thermodynamic and transport properties were calculated from chemical equilibrium composition, thermodynamic derivatives and kinetic theory of gases. Local Thermodynamic Equilibrium (LTE) was assumed for both plasma and surrounding gases. The proposed numerical results were computed for comparison with temperature measurements realized by Brossa and Pfender in the case of an argon plasma jet discharging into air, using enthalpy probes. The predictions were found reasonably accurate. The influence of the surrounding gas nature was also verified as the validity of the parabolic assumption.
APA, Harvard, Vancouver, ISO, and other styles
7

Albergante, M., J. P. Graves, T. Dannert, A. Fasoli, F. Zonca, S. Briguglio, G. Vlad, et al. "Interaction between fast particles and turbulence." In THEORY OF FUSION PLASMAS. AIP, 2008. http://dx.doi.org/10.1063/1.3033707.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lee, W. W., S. Ethier, R. Ganesh, R. Kolesnokov, W. X. Wang, Olivier Sauter, Xavier Garbet, and Elio Sindoni. "Multiscale Turbulence Simulation and Steady State Transport." In THEORY OF FUSION PLASMAS. AIP, 2008. http://dx.doi.org/10.1063/1.3033697.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sarazin, Y., V. Grandgirard, P. Angelino, A. Casati, G. Dif-Pradalier, X. Garbet, Ph Ghendrih, et al. "Turbulence spectra and transport barriers in gyrokinetic simulations." In THEORY OF FUSION PLASMAS. AIP, 2008. http://dx.doi.org/10.1063/1.3033722.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Saarelma, S., R. Akers, M. Reshko, C. M. Roach, M. Romanelli, A. Thyagaraja, A. Peeters, et al. "Global Turbulence Simulations of CYCLONE Base Case and MAST Plasmas." In THEORY OF FUSION PLASMAS. AIP, 2008. http://dx.doi.org/10.1063/1.3033703.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Plasma turbulence theory"

1

Krommes, J. A. Recent results on analytical plasma turbulence theory: Realizability, intermittency, submarginal turbulence, and self-organized criticality. Office of Scientific and Technical Information (OSTI), January 2000. http://dx.doi.org/10.2172/750257.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhang, Y. Z., and S. M. Mahajan. Correlation theory of a two-dimensional plasma turbulence with shear flow. Office of Scientific and Technical Information (OSTI), September 1992. http://dx.doi.org/10.2172/6946356.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhang, Y. Z., and S. M. Mahajan. Correlation theory of a two-dimensional plasma turbulence with shear flow. Office of Scientific and Technical Information (OSTI), September 1992. http://dx.doi.org/10.2172/10183119.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Krommes, J. A., and Chang-Bae Kim. A new'' approach to the quantitative statistical dynamics of plasma turbulence: The optimum theory of rigorous bounds on steady-state transport. Office of Scientific and Technical Information (OSTI), June 1990. http://dx.doi.org/10.2172/6765264.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Boldyrev, Stanislav. Toward the Theory of Turbulence in Magnetized Plasmas. Office of Scientific and Technical Information (OSTI), July 2013. http://dx.doi.org/10.2172/1088871.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hahm, T. S., and W. M. Tang. Weak turbulence theory of ion temperature gradient modes for inverted density plasmas. Office of Scientific and Technical Information (OSTI), September 1989. http://dx.doi.org/10.2172/5705187.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yoon, Peter H., and Ta-Ming Fang. Kinetic Theory of Turbulence in Magnetized Plasmas, Charged Particle Acceleration, and Cross-Scale Coupling. Fort Belvoir, VA: Defense Technical Information Center, January 2014. http://dx.doi.org/10.21236/ada597096.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Fang, Ta-Ming. Kinetic Theory of Turbulence in Magnetized Plasmas, Charged Particle Acceleration,and Cross-Scale Coupling. Fort Belvoir, VA: Defense Technical Information Center, December 2013. http://dx.doi.org/10.21236/ada593922.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hahm, T. S. Nonlinear theory of trapped electron temperature gradient driven turbulence in flat density H-mode plasmas. Office of Scientific and Technical Information (OSTI), December 1990. http://dx.doi.org/10.2172/6309638.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chang, Thomas T. Multiscale, Intermittent, Turbulent Fluctuations in Space Plasmas and Their Influence on the Interscale Behavior of the Space Environment. Fort Belvoir, VA: Defense Technical Information Center, June 2012. http://dx.doi.org/10.21236/ada564380.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography