To see the other types of publications on this topic, follow the link: Plasma physics- Alfvenic turbulence.

Journal articles on the topic 'Plasma physics- Alfvenic turbulence'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Plasma physics- Alfvenic turbulence.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Valdés-Galicia, J. F., and R. A. Caballero. "Study of the magnetic turbulence in a corotating interaction region in the interplanetary medium." Annales Geophysicae 17, no. 11 (November 30, 1999): 1361–68. http://dx.doi.org/10.1007/s00585-999-1361-1.

Full text
Abstract:
Abstract. We study the geometry of magnetic fluctuations in a CIR observed by Pioneer 10 at 5 AU between days 292 and 295 in 1973. We apply the methodology proposed by Bieber et al. to make a comparison of the relative importance of two geometric arrays of vector propagation of the magnetic field fluctuations: slab and two-dimensional (2D). We found that inside the studied CIR this model is not applicable due to the restrictions imposed on it. Our results are consistent with Alfvenic fluctuations propagating close to the radial direction, confirming Mavromichalaki et al.'s findings. A mixture of isotropic and magnetoacoustic waves in the region before the front shock would be consistent with our results, and a mixture of slab/2D and magnetoacoustic waves in a region after the reverse shock. We base the latter conclusions on the theoretical analysis made by Kunstmann. We discuss the reasons why the composite model can not be applied in the CIR studied although the fluctuations inside it are two dimensional.Key words. Solar physics · astrophysics and astronomy (magnetic fields) · Space plasma physics (turbulence; waves and instabilities)
APA, Harvard, Vancouver, ISO, and other styles
2

SCHLICKEISER, R., and F. JENKO. "Cosmic ray transport in non-uniform magnetic fields: consequences of gradient and curvature drifts." Journal of Plasma Physics 76, no. 3-4 (January 8, 2010): 317–27. http://dx.doi.org/10.1017/s0022377809990444.

Full text
Abstract:
AbstractLarge-scale spatial variations of the guide magnetic field of interplanetary and interstellar plasmas give rise to the mirror force −(p⊥2/2mγB)∇B). The parallel component of this mirror force causes adiabatic focusing of the cosmic ray guiding center whereas the perpendicular component of the mirror force gives rise to the gradient and curvature drifts of the cosmic ray guiding center. Adiabatic focusing and the gradient and curvature drift terms additionally enter the Fokker–Planck transport equation for the gyrotropic cosmic ray particle phase space density in partially turbulent non-uniform magnetic fields. For magnetohydrodynamic turbulence with dominating magnetic fluctuations, the diffusion approximation is justified, which results in a modification of the diffusion–convection transport equation for the isotropic part of the gyrotropic phase space density from the additional focusing and drift terms. For axisymmetric undamped slab Alfvenic turbulence we show that all perpendicular spatial diffusion coefficients are caused by the non-vanishing gradient and curvature drift terms. For a specific (symmetric in μ) choice of the pitch-angle Fokker–Planck coefficients we show that the ratio of the perpendicular to parallel spatial diffusion coefficients apart from a constant is determined by the spatial first derivatives of the non-constant cosmic ray Larmor radius in the non-uniform magnetic field.
APA, Harvard, Vancouver, ISO, and other styles
3

SCHLICKEISER, R. "FIRST-ORDER DISTRIBUTED FERMI ACCELERATION OF COSMIC RAY HADRONS IN NON-UNIFORM MAGNETIC FIELDS." Modern Physics Letters A 24, no. 19 (June 21, 2009): 1461–72. http://dx.doi.org/10.1142/s0217732309031338.

Full text
Abstract:
Large-scale spatial variations of the guide magnetic field of interplanetary and interstellar plasmas give rise to the adiabatic focusing term in the Fokker–Planck transport equation of cosmic rays. As a consequence of the adiabatic focusing term, the diffusion approximation to cosmic ray transport in the weak focusing limit gives rise to first-order Fermi acceleration of energetic particles if the product HL of the cross helicity state of Alfvenic turbulence H and the focusing length L is negative. The basic physical mechanisms for this new acceleration process are clarified and the astrophysical conditions for efficient acceleration are investigated. It is shown that in the interstellar medium this mechanism preferentially accelerates cosmic ray hadrons over 10 orders of magnitude in momentum. Due to heavy Coulomb and ionization losses at low momenta, injection or preacceleration of particles above the threshold momentum pc≃0.17Z2/3 GeV /c is required.
APA, Harvard, Vancouver, ISO, and other styles
4

Lysak, Robert L., and Mary K. Hudson. "Effect of double layers on magnetosphere–ionosphere coupling." Laser and Particle Beams 5, no. 2 (May 1987): 351–66. http://dx.doi.org/10.1017/s0263034600002822.

Full text
Abstract:
The earth's auroral zone contains dynamic processes occurring on scales from the length of an auroral zone field line (about 10RE) which characterizes Alfven wave propagation to the scale of microscopic processes which occur over a few Debye lengths (less than 1 km). These processes interact in a time-dependent fashion since the current carried by the Alfven waves can excite microscopic turbulence which can in turn provide dissipation of the Alfven wave energy. This review will first describe the dynamic aspects of auroral current structures with emphasis on consequences for models of microscopic turbulence. In the second part of the paper a number of models of microscopic turbulence will be introduced into a large scale model of Alfven wave propagation to determine the effect of various models on the overall structure of auroral currents. In particular, we will compare the effect of a double layer electric field which scales with the plasma temperature and Debye length with the effect of anomalous resistivity due to electrostatic ion cyclotron turbulence in which the electric field scales with the magnetic field strength. It is found that the double layer model is less diffusive than the resistive model leading to the possibility of narrow, intense current structures.
APA, Harvard, Vancouver, ISO, and other styles
5

Venkatakrishnan, P. "Observable Signals of Coronal Heating Processes." Highlights of Astronomy 10 (1995): 305–6. http://dx.doi.org/10.1017/s1539299600011291.

Full text
Abstract:
AbstractThe solar corona is thought to be sustained by waves, currents, turbulence or by velocity filtration. For efficient wave heating of the corona, only the Alfven waves seem to survive the effects of steepening and shock dissipation in the chromosphere (Zirker, 1993, Solar Phys. 148,43) and these can be dissipated in the corona by mode conversion or phase mixing (Priest, 1991 in XIV Consultation on Solar Physics, Karpacz). Enhanced line width of 530.3 nm coronal line seen within closed structures (Singh et al., 1982, J. Astrophys. Astron. 3,248), association of enhanced line width of HeI 1083 nm line with enhanced equivalent width (Venkatakrishnan et al., 1992, Solar Phys. 138,107), and gradients seen in the MgX 60.9 and 62.5 nm coronal line width (Hassler, et al., 1990, Astrophys. J. 348, L77), are possibly some examples of the observed signals of wave heating. Current sheets, produced in a variety of ways (Priest and Forbes, 1989, Solar Phys. 43,177; Parker, 1979, Cosmical Magnetic Fields, Ox. Univ. Press), can dissipate and provide heat. The properties of current sheets can be inferred from fill factors, emission measures (Cargill, 1994, in J.L. Burch and J.H. Waite, Jr. (eds.) Solar System Plasma Physics: Resolution of Processes in Space and Time, AGU Monograph), hard xrays (Lin et al., 1984, Astrophys. J. 283,421), and radio bursts (Benz, 1986, Solar Phys. 104,99). The association of large scale currents with enhanced transition region (deLoach et al., 1984, Solar Phys. 91,235.) and regions of enhanced magnetic shear with brighter corona (Moore et al., 1994, Proc. Kofu Symp) are of some possible interest in this context. Self consistent calculations of the turbulent cascade of energy from the scales of photospheric motions down into dissipative scales (Heyvaerts and Priest, 1992, Astrophys. J. 390,297) predict the width of coronal lines as a function of the properties of the forcing flows. Velocity filtration caused by free streaming effects off a non maxwellian boundary distribution of particles may well result in a plasma having coronal properties (Scudder, 1992a, Astrophys. J. 398,299; 1992b, Astrophys.J.11 398,319). The observable signals are the variation of line shapes with altitude.
APA, Harvard, Vancouver, ISO, and other styles
6

Leonovich, A. S., and D. A. Kozlov. "Alfvenic and magnetosonic resonances in a nonisothermal plasma." Plasma Physics and Controlled Fusion 51, no. 8 (July 21, 2009): 085007. http://dx.doi.org/10.1088/0741-3335/51/8/085007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

SHAIKH, DASTGEER. "Dynamics of Alfvén waves in partially ionized astrophysical plasmas." Journal of Plasma Physics 76, no. 3-4 (December 18, 2009): 305–15. http://dx.doi.org/10.1017/s0022377809990493.

Full text
Abstract:
AbstractWe develop a two dimensional, self-consistent, compressible fluid model to study evolution of Alfvenic modes in partially ionized astrophysical and space plasmas. The partially ionized plasma consists mainly of electrons, ions and significant neutral atoms. The nonlinear interactions amongst these species take place predominantly through direct collision or charge exchange processes. Our model uniquely describe the interaction processes between two distinctly evolving fluids. In our model, the electrons and ions are described by a single-fluid compressible magnetohydrodynamic (MHD) model and are coupled self-consistently to the neutral fluid via compressible hydrodynamic equations. Both plasma and neutral fluids are treated with different energy equations that adequately enable us to monitor non-adiabatic and thermal energy exchange processes between these two distinct fluids. Based on our self-consistent model, we find that the propagation speed of Alfvenic modes in space and astrophysical plasma is slowed down because these waves are damped predominantly due to direct collisions with the neutral atoms. Consequently, energy transfer takes place between plasma and neutral fluids. We describe the mode coupling processes that lead to the energy transfer between the plasma and neutral and corresponding spectral features.
APA, Harvard, Vancouver, ISO, and other styles
8

Similon, P. L., and R. N. Sudan. "Plasma Turbulence." Annual Review of Fluid Mechanics 22, no. 1 (January 1990): 317–47. http://dx.doi.org/10.1146/annurev.fl.22.010190.001533.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Melatos, A., F. A. Jenet, and P. A. Robinson. "Electromagnetic strong plasma turbulence." Physics of Plasmas 14, no. 2 (February 2007): 020703. http://dx.doi.org/10.1063/1.2472293.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Li, J. H., and Z. W. Ma. "Roles of super-Alfvenic shear flows on Kelvin–Helmholtz and tearing instability in compressible plasma." Physica Scripta 86, no. 4 (October 1, 2012): 045503. http://dx.doi.org/10.1088/0031-8949/86/04/045503.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Yamada, Takuma, Sanae-I. Itoh, Takashi Maruta, Naohiro Kasuya, Yoshihiko Nagashima, Shunjiro Shinohara, Kenichiro Terasaka, et al. "Anatomy of plasma turbulence." Nature Physics 4, no. 9 (July 27, 2008): 721–25. http://dx.doi.org/10.1038/nphys1029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Berezutsky, A. G., A. A. Chibranov, M. A. Efimov, V. G. Posukh, M. S. Rumenskikh, P. A. Trushin, I. B. Miroshnichenko, Yu P. Zakharov, V. A. Terekhin, and I. F. Shaikhislamov. "Sub-Alfvenic Expansion of Spherical Laser-Produced Plasma: Flutes, Cavity Collapse and Field-Aligned Jets." Plasma Physics Reports 49, no. 3 (March 2023): 351–61. http://dx.doi.org/10.1134/s1063780x22601195.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Gurevich, A. V., H. C. Carlson, Yu V. Medvedev, and K. P. Zybin. "Langmuir turbulence in ionospheric plasma." Plasma Physics Reports 30, no. 12 (December 2004): 995–1005. http://dx.doi.org/10.1134/1.1839953.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

ITOH, K., A. FUJISAWA, Y. NAGASHIMA, S. I. ITOH, M. YAGI, P. H. DIAMOND, A. FUKUYAMA, and K. HALLATSCHEK. "On Imaging of Plasma Turbulence." Plasma and Fusion Research 2 (2007): S1003. http://dx.doi.org/10.1585/pfr.2.s1003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Baptista, M. S., I. L. Caldas, M. V. A. P. Heller, and A. A. Ferreira. "Periodic driving of plasma turbulence." Physics of Plasmas 10, no. 5 (May 2003): 1283–90. http://dx.doi.org/10.1063/1.1561612.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Itoh, Kimitaka, Sanae -I. Itoh, Masatoshi Yagi, and Atsushi Fukuyama. "Subcritical Excitation of Plasma Turbulence." Journal of the Physical Society of Japan 65, no. 9 (September 15, 1996): 2749–52. http://dx.doi.org/10.1143/jpsj.65.2749.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Nambu, Mitsuhiro, Tohru Hada, S. N. Sarma, and S. Bujarbarua. "Dissipative Structure in Plasma Turbulence." Journal of the Physical Society of Japan 60, no. 9 (September 15, 1991): 3004–14. http://dx.doi.org/10.1143/jpsj.60.3004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Gwynne, Peter. "Plasma Physics: Turbulence upsets US fusion community." Physics World 10, no. 1 (January 1997): 8. http://dx.doi.org/10.1088/2058-7058/10/1/7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Pedersen, Thomas Sunn, Poul K. Michelsen, and Jens Juul Rasmussen. "Analysis of chaos in plasma turbulence." Physica Scripta T67 (January 1, 1996): 30–32. http://dx.doi.org/10.1088/0031-8949/1996/t67/006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Johnsen, H., H. L. Pecseli, and J. Trulsen. "Conditional eddies in plasma turbulence." Plasma Physics and Controlled Fusion 28, no. 9B (September 1, 1986): 1519–23. http://dx.doi.org/10.1088/0741-3335/28/9b/008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Schekochihin, A. A., S. C. Cowley, and W. Dorland. "Interplanetary and interstellar plasma turbulence." Plasma Physics and Controlled Fusion 49, no. 5A (March 29, 2007): A195—A209. http://dx.doi.org/10.1088/0741-3335/49/5a/s16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

MIKHAILENKO, Vladimir S., Vladimir V. MIKHAILENKO, and Konstantin N. STEPANOV. "Turbulence Evolution in Plasma Shear Flows." Plasma and Fusion Research 5 (2010): S2015. http://dx.doi.org/10.1585/pfr.5.s2015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Neto, C. Rodrigues, Z. O. Guimarães-Filho, I. L. Caldas, I. C. Nascimento, and Yu K. Kuznetsov. "Multifractality in plasma edge electrostatic turbulence." Physics of Plasmas 15, no. 8 (August 2008): 082311. http://dx.doi.org/10.1063/1.2973175.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Kosuga, Y., M. Sasaki, and Z. B. Guo. "Flow helicity of wavy plasma turbulence." Physics of Plasmas 27, no. 2 (February 2020): 022303. http://dx.doi.org/10.1063/1.5121351.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Gürcan, Ö. D., L. Vermare, P. Hennequin, V. Berionni, P. H. Diamond, G. Dif-Pradalier, X. Garbet, et al. "Structure of nonlocality of plasma turbulence." Nuclear Fusion 53, no. 7 (June 12, 2013): 073029. http://dx.doi.org/10.1088/0029-5515/53/7/073029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Rukhadze, A. A., K. A. Sarksyan, and N. N. Skvortsova. "Stimulated Cherenkov Radiation of Plasma Waves and Plasma Turbulence." Le Journal de Physique IV 05, no. C6 (October 1995): C6–53—C6–59. http://dx.doi.org/10.1051/jp4:1995610.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Salar Elahi, A., and M. Ghoranneviss. "Effects of Alfvenic Poloidal Flow and External Vertical Field on Plasma Position in IR-T1 Tokamak." Journal of Fusion Energy 29, no. 1 (August 19, 2009): 83–87. http://dx.doi.org/10.1007/s10894-009-9235-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Ryzhkov, Sergei V. "Plasma and Thermal Physics." Symmetry 15, no. 6 (June 1, 2023): 1180. http://dx.doi.org/10.3390/sym15061180.

Full text
Abstract:
Symmetrically designed fusion and heat concepts, space propulsion, and energy conversion issues with a particular interest in kinetic analysis, plasma power balance, advanced fuels, and alternative systems as new trends in experiments and theory, in physics, power engineering, and in very specific related areas such as space processes, cosmology, and turbulence are very important in fundamental and applied science from an engineering physics perspective [...]
APA, Harvard, Vancouver, ISO, and other styles
29

Itoh, Sanae-I., and Kimitaka Itoh. "Kinetic Description of Nonlinear Plasma Turbulence." Journal of the Physical Society of Japan 78, no. 12 (December 15, 2009): 124502. http://dx.doi.org/10.1143/jpsj.78.124502.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Caldas, I. L., R. L. Viana, Z. O. Guimarães-Filho, A. M. Batista, S. R. Lopes, F. A. Marcus, M. Roberto, et al. "Dynamical Effects in Confined Plasma Turbulence." Brazilian Journal of Physics 44, no. 6 (September 5, 2014): 903–13. http://dx.doi.org/10.1007/s13538-014-0259-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Hirose, A., and O. Ishihara. "On plasma diffusion in strong turbulence." Canadian Journal of Physics 77, no. 10 (February 15, 2000): 829–33. http://dx.doi.org/10.1139/p99-069.

Full text
Abstract:
It is shown that the velocity diffusivity of electrons in strong Langmuir turbulence is linearly proportional to the root-mean-square (rms) value of the electric field. The time-dependent diffusivity previously identified is a transient phenomenon. In 2-D spatial diffusion due to ExB velocity turbulence, time-dependent intermediate diffusivity emerges also followed by a well-behaved diffusivity proportional to the rms amplitude of the turbulent field.PACS Nos.: 52.25Fi, 52.35Ra, 52.65Cc
APA, Harvard, Vancouver, ISO, and other styles
32

FUJISAWA, Akihide. "Review of plasma turbulence experiments." Proceedings of the Japan Academy, Series B 97, no. 3 (March 11, 2021): 103–19. http://dx.doi.org/10.2183/pjab.97.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Yoshizawa,, A., S.-I. Itoh ,, K. Itoh,, and Toshi Tajima,. "Plasma and Fluid Turbulence: Theory and Modelling. Series in Plasma Physics." Applied Mechanics Reviews 57, no. 1 (January 1, 2004): B5—B6. http://dx.doi.org/10.1115/1.1641779.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Nambu, M., T. Hada, T. Terasawa, K. S. Goswami, and S. Bujarbarua. "Plasma maser interaction with magnetohydrodynamic wave turbulence." Physica Scripta 47, no. 3 (March 1, 1993): 419–27. http://dx.doi.org/10.1088/0031-8949/47/3/012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Kofoed-Hansen, O., H. L. Pécseli, and J. Trulsen. "Coherent structures in numerically simulated plasma turbulence." Physica Scripta 40, no. 3 (September 1, 1989): 280–94. http://dx.doi.org/10.1088/0031-8949/40/3/004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Benkadda, S., P. Beyer, X. Garbet, and Y. Sarazin. "Anomalous Transport and Complexity in Plasma Turbulence." Physica Scripta T84, no. 1 (2000): 14. http://dx.doi.org/10.1238/physica.topical.084a00014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Chen, Kaiyi, and M. I. Boulos. "Turbulence in induction plasma modelling." Journal of Physics D: Applied Physics 27, no. 5 (May 14, 1994): 946–52. http://dx.doi.org/10.1088/0022-3727/27/5/011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Ferrière, K. "Plasma turbulence in the interstellar medium." Plasma Physics and Controlled Fusion 62, no. 1 (November 5, 2019): 014014. http://dx.doi.org/10.1088/1361-6587/ab49eb.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Terry, P. W. "Theory of critical balance in plasma turbulence." Physics of Plasmas 25, no. 9 (September 2018): 092301. http://dx.doi.org/10.1063/1.5041754.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Yoon, Peter H. "Weak turbulence theory for beam-plasma interaction." Physics of Plasmas 25, no. 1 (January 2018): 011603. http://dx.doi.org/10.1063/1.5017518.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Makwana, K. D., P. W. Terry, J. H. Kim, and D. R. Hatch. "Damped eigenmode saturation in plasma fluid turbulence." Physics of Plasmas 18, no. 1 (January 2011): 012302. http://dx.doi.org/10.1063/1.3530186.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Bian, N. H. "On-off intermittent regulation of plasma turbulence." Physics of Plasmas 17, no. 4 (April 2010): 044501. http://dx.doi.org/10.1063/1.3368799.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

KENDL, ALEXANDER. "Plasma turbulence in complex magnetic field structures." Journal of Plasma Physics 72, no. 06 (December 2006): 1145. http://dx.doi.org/10.1017/s0022377806005812.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Itoh, K., Y. Nagashima, S. I. Itoh, P. H. Diamond, A. Fujisawa, M. Yagi, and A. Fukuyama. "On the bicoherence analysis of plasma turbulence." Physics of Plasmas 12, no. 10 (October 2005): 102301. http://dx.doi.org/10.1063/1.2062627.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Xu, G. S., B. N. Wan, W. Zhang, Q. W. Yang, L. Wang, and Y. Z. Wen. "Multiscale coherent structures in tokamak plasma turbulence." Physics of Plasmas 13, no. 10 (October 2006): 102509. http://dx.doi.org/10.1063/1.2357045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Takeda, K., S. Benkadda, S. Hamaguchi, and M. Wakatani. "Nusselt number scaling in tokamak plasma turbulence." Physics of Plasmas 12, no. 5 (May 2005): 052309. http://dx.doi.org/10.1063/1.1895165.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Xu, X. Q., W. M. Nevins, T. D. Rognlien, R. H. Bulmer, M. Greenwald, A. Mahdavi, L. D. Pearlstein, and P. Snyder. "Transitions of turbulence in plasma density limits." Physics of Plasmas 10, no. 5 (May 2003): 1773–81. http://dx.doi.org/10.1063/1.1566032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Pueschel, M. J., M. Kammerer, and F. Jenko. "Gyrokinetic turbulence simulations at high plasma beta." Physics of Plasmas 15, no. 10 (October 2008): 102310. http://dx.doi.org/10.1063/1.3005380.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Hidalgo, C., R. Balbín, M. A. Pedrosa, I. García-Cortés, E. Anabitarte, J. M. Sentíes, M. A. G. San Jose, E. G. Bustamante, L. Giannone, and H. Niedermeyer. "Edge Plasma Turbulence Diagnosis by Langmuir Probes." Contributions to Plasma Physics 36, S1 (1996): 139–43. http://dx.doi.org/10.1002/ctpp.19960360121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Škorić, M., and M. Rajković. "Characterization of Intermittency in Plasma Edge Turbulence." Contributions to Plasma Physics 48, no. 1-3 (March 2008): 37–41. http://dx.doi.org/10.1002/ctpp.200810006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography