Dissertations / Theses on the topic 'Plasma non collisionels'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 25 dissertations / theses for your research on the topic 'Plasma non collisionels.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Granier, Camille. "Nouveaux développements sur la théorie des instabilités des feuilles de courant dans les plasmas non-collisionels." Electronic Thesis or Diss., Université Côte d'Azur, 2022. http://www.theses.fr/2022COAZ4109.
Full textMagnetic reconnection is a change of topology of the magnetic field, responsible for explosive release of magnetic energy in astrophysical plasmas, as in the case of magnetospheric substorms and coronal mass ejections, as well as in laboratory plasmas, which is the case of sawtooth crashes in tokamaks. In collisionless plasmas as, for instance, the magnetosphere and the solar wind, electron inertia becomes particularly relevant to drive reconnection at regions of intense localized current, denoted as current sheets. In these non-collisional environments, the temperature can often be anisotropic and effects at the electron scale on the reconnection process can become non-negligible.In this thesis, the stability of two-dimensional current sheets, with respect to reconnecting perturbations, in collisionless plasmas with a strong guide field is analysed on the basis of gyrofluid models assuming cold ions. These models can take into account an equilibrium temperature anisotropy,and a finite βe, a parameter corresponding to the ratio between equilibrium electron kinetic pressure and magnetic pressure.We derive and analyze a dispersion relation for the growth rate of collisionless tearing modes accounting for equilibrium electron temperature anisotropy. The analytical predictions are tested against numerical simulations, showing a very good quantitative agreement.In the isotropic case, accounting for finite βe effects, we observe a stabilization of the tearing growth rate when electron finite Larmor radius effects become relevant. In the nonlinear phase, stall phases and faster than exponential phases are observed, similarly to what occurs in the presence of ion finite Larmor radius effects.We also investigate the marginal stability conditions of secondary current sheets, for the development of plasmoids, in collisionless plasmas. In the isotropic βe → 0 regime, we analyze the geometry that characterizes the reconnecting current sheet, and identify the conditions for which it is plasmoid unstable. Our study shows that plasmoids can be obtained, in this context, from current sheets with an aspect ratio much smaller than in the collisional regime. Furthermore, we investigate the plasmoid formation comparing gyrofluid and gyrokinetic simulations.This made it possible to show that the effect of finite βe, promotes the plasmoid instability. Finally, we study the impact of the closure applied on the moments, performed during the derivation of the gyrofluid model, on the distribution and conversion of energy during reconnection
La riconnessione magnetica è un cambiamento nella topologia delcampo magnetico, responsabile del rilascio esplosivo di energia magnetica nei plasmiastrofisici, come nelle tempeste magnetosferiche e nelle espulsioni di massa coronale,nonché nei plasmi di laboratorio, come nel caso delle oscillazioni a dente di sega neitokamak. Nei plasmi non-collisionali come, ad esempio, la magnetosfera e il vento solare,l’inerzia elettronica diventa particolarmente efficace nel causare la riconnessionein regioni di corrente intensa e localizzata, detti strati di corrente. In tali plasmi noncollisionali,la temperatura può essere spesso anisotropa e gli effetti su scala elettronicasul processo di riconnessione possono diventare non trascurabili.In questa tesi, viene analizzata la stabilità di strati di corrente bidimensionali inplasmi non-collisionali con un forte campo guida, sulla base di modelli girofluidi cheassumono ioni freddi. Questi modelli possono tenere conto di un’anisotropia di temperaturadi equilibrio e di un βe finito. Quest’ultimo è un parametro corrispondente alrapporto tra la pressione cinetica elettronica di equilibrio e la pressione magnetica.Deriviamo e analizziamo una relazione di dispersione per il tasso di crescita dei moditearing non-collisionali tenendo conto dell’anisotropia della temperatura di equilibriodegli elettroni. Le previsioni analitiche sono verificate mediante simulazioni numeriche,che mostrano un ottimo accordo quantitativo. Nel caso isotropico, tenendoconto degli effetti di βe finito, si osserva una stabilizzazione del tasso di crescita delmodo tearing quando diventano rilevanti gli effetti del raggio finito di Larmor deglielettroni. Nella fase non lineare si osservano fasi di decelerazione e fasi di accelerazione,simili a quanto avviene in presenza di effetti del raggio di Larmor finito ionico.Studiamo anche le condizioni di stabilità marginale degli strati di corrente secondaria,per lo sviluppo di plasmoidi, in plasmi senza collisioni. Nel regime isotropicocon βe → 0, analizziamo la geometria che caratterizza lo strato di corrente e identifichiamole condizioni in cui esso diventa instabile a causa di un’instabilità che generaplasmoidi. Il nostro studio mostra che i plasmoidi possono essere ottenuti, in questocontesto, da strati di corrente aventi un rapporto d’aspetto molto più piccolo rispettoal regime collisionale. Inoltre, studiamo la formazione di plasmoidi confrontando simulazionigirofluidi e girocinetiche. Ciò ha permesso di dimostrare che l’effetto di βe promuove l’instabilità che genera plasmoidi. Infine, si studia l’impatto della chiusuraapplicata ai momenti, eseguita durante la derivazione del modello girofluido, sulla distribuzionee conversione dell’energia durante la riconnessione
Capdessus, Rémi. "Dynamique d'un plasma non collisionnel interagissant avec une impulsion laser ultra-intense." Thesis, Bordeaux 1, 2013. http://www.theses.fr/2013BOR15268/document.
Full textRésumé en anglais
Ruyer, Charles. "Kinetic instabilities in plasmas : from electromagnetic fluctuations to collisionless shocks." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112370/document.
Full textCollisionless shocks play a major role in powerful astrophysical objects (e.g., gamma-ray bursts, supernova remnants, pulsar winds, etc.), where they are thought to be responsible for non-thermal particle acceleration and radiation. Numerical simulations have shown that, in the absence of an external magnetic field, these self-organizing structures originate from electromagnetic instabilities triggered by high-velocity colliding flows. These Weibel-like instabilities are indeed capable of producing the magnetic turbulence required for both efficient scattering and Fermi-type acceleration. Along with rapid advances in their theoretical understanding, intense effort is now underway to generate collisionless shocks in the laboratory using energetic lasers. In a first part we study the (w,k)-resolved electromagnetic thermal spectrum sustained by a drifting relativistic plasma. In particular, we obtain analytical formulae for the fluctuation spectra, the latter serving as seeds for growing magnetic modes in counterstreaming plasmas. Distinguishing between subluminal and supraluminal thermal fluctuations, we derived analytical formulae of their respective spectral contributions. Comparisons with particle-in-cell (PIC) simulations are made, showing close agreement in the subluminal regime along with some discrepancy in the supraluminal regime. Our formulae are then used to estimate the saturation time of the Weibel instability of relativistic pair plasmas. Our predictions are shown to match 2-D particle-in-cell (PIC) simulations over a three-decade range in flow energyWe then develop a predictive kinetic model of the nonlinear phase of the Weibel instability induced by two counter-streaming, symmetric and non-relativistic ion beams. This self consistent, fully analytical model allows us to follow the evolution of the beams' properties up to a stage close to complete isotropization and thus to shock formation. Its predictions are supported by 2D and 3D particle-in-cell (PIC) simulations of the ion Weibel instability in uniform geometries, as well as shock-relevant non-uniform configurations. Moreover, they are found in correct agreement with a recent laser-driven plasma collision experiment. Along with this comparison, we pinpoint the important role of electron screening on the ion-Weibel dynamics, which may affect the results of simulations with artificially high electron mass. We subsequently address the shock propagation resulting from the magnetic Weibel turbulence generated in the upstream region. Generalizing the previous symmetric-beam model to the upstream region of the shock, the role of the magnetic turbulence in the shock-front has been analytically and self-consistently characterized. Comparison with simulations validates the model. The interaction of high-energy, ultra-high intensity lasers with dense plasmas is known to produce copious amounts of suprathermal particles. Their acceleration and subsequent transport trigger a variety of Weibel-like electromagnetic instabilities, acting as additional sources of slowing down and scattering. Their understanding is important for the many applications based upon the energy deposition and/or field generation of laser-driven particles. We investigate the ability of relativistic-intensity laser pulses to induce Weibel instability-mediated shocks in overdense plasma targets, as first proposed by Fiuza in 2012. By means of both linear theory and 2D PIC simulations, we demonstrated that in contrast to the standard astrophysical scenario previously addressed, the early-time magnetic fluctuations (Weibel instability) generated by the suprathermal electrons (and not ions) are strong enough to isotropize the target ions and, therefore, induce a collisionless electromagnetic shock
Figua, Habiba. "Contribution des codes euleriens en physique des plasmas non collisionnels." Orléans, 1999. http://www.theses.fr/1999ORLE2037.
Full textGrassi, Anna. "Collisionless shocks in the context of Laboratory Astrophysics." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066483/document.
Full textThe work presented in this thesis belongs to the general framework of Laboratory Astrophysics. We address various aspects of the physics of collisionless shocks developing in the presence of relativistic plasma flows, in configurations of interest for the astrophysical and the laser-plasma interaction (LPI) communities. The approach used throughout this thesis relied on both analytical modeling and high-performance kinetic simulations, a central tool to describe LPI processes as well as the non-linear physics behind shock formation. The PIC code SMILEI has been widely used and developed during this work. Three physical configurations are studied. First we consider the Weibel instability driven by two counter-streaming electron beams aligned with an external magnetic field. The linear and non-linear phases are explained using theoretical models confirmed by simulations.Then the generation of non-collisional shocks during the interaction of two relativistic plasma pairs is studied in the presence of a perpendicular magnetic field. We focus on the comparison of theoretical predictions for macroscopic variables with the simulation results, as well as on the definition and measurement of the shock formation time, all of which are of great importance for future experiments.Finally, we proposed a scheme to produce, in the laboratory, the ion-Weibel-instability with the use of an ultra-high-intensity laser. The produced flows are faster and denser than in current experiments, leading to a larger growth rate and stronger magnetic fields. These results are important for the LPI at very high intensity
Moreno-Gelos, Quentin. "Non-relativistic collisionless shocks in Laboratory Astrophysics." Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0427/document.
Full textCollisionless shocks are ubiquitous in the Universe, especially in the supernova remnants, and are formed via various plasma instabilities mainly depending on the speed and magnetization of plasma flows. The description of such shocks requires a kinetic approach, both analytical and numerical.In this thesis, we have studied, through Particle-In-Cell (PIC) simulations, the underlying processes by which instabilities compete with each other.We have shown that the reduction of the ion-to-electron mass ratio, often used in numerical simulations to accelerate the dynamics of shocks, can have strong consequences on the energy transfer between particles during the non-linear phase of instabilities.These instabilities, like the ionic acoustic instability (IAI) lead under certain conditions to the formation of electrostatic shocks, which can give rise to phase space holes formation, propagating in the downstream shock region, and accelerating the shock.The addition of an external magnetic field leads to different shock mediation, which can vary between the IAI to the slow or fast magneto-sonic waves as a function of the obliquity between the magnetic field and the shock normal.Furthermore, we have shown that the orientation of the magnetic field makes it possible to choose between a convex or concave dispersion of the plasma waves leading to the creation of precursor waves in the upstream or downstream shock regions.These magnetized shocks are correctly represented by the magnetohydrodynamic (MHD) model as long as they remain laminar and their potential in the downstream region is not large enough to reflect the particles of the upstream medium.We have shown that even for sub-critical shocks, a fraction of reflected ions, which cannot be modeled by the MHD, is sufficient for the growth of solitary waves upstream of the shock, leading to the acceleration of the latter, but not to a process of 'self-reformation' as for super-critical shocks.Although spatio-temporal scales are very different, scaling laws make possible the study of such phenomena in the laboratory. Our numerical studies have been done in the context of shock tubes that can be experimentally tested.As such, we propose in this thesis an experiment on the creation of magnetic islands, formed by the interaction of plasmas generated by the irradiation of laser targets bathed in an external magnetic field, leading to the formation of such shocks.Finally, we experimentally and numerically demonstrated the formation of collisionless electromagnetic shocks through the Weibel instability stimulated by theBiermann Battery instability, and leading to particle acceleration by the Fermi mechanism.This new type of experiment could explain the origin of cosmic radiation from supernova remnants
Saussede, Florence. "Simulation numérique d'un choc non collisionnel en physique des plasmas." Bordeaux 1, 1993. http://www.theses.fr/1993BOR10546.
Full textMusatenko, Kateryna. "Analyse des caractéristiques d'ondes au voisinage des chocs dans des plasmas spatiaux : observations des satellites CLUSTER, modélisation et interprétation." Phd thesis, Université d'Orléans, 2009. http://tel.archives-ouvertes.fr/tel-00452683.
Full textPantellini, Filippo. "Etude de la structure des chocs non collisionnels dans les plasmas spatiaux." Paris 7, 1992. http://www.theses.fr/1992PA077148.
Full textMelzani, Mickaël. "Reconnexion magnétique non-collisionelle dans les plasmas relativistes et simulations particle-in-cell." Thesis, Lyon, École normale supérieure, 2014. http://www.theses.fr/2014ENSL0946/document.
Full textThe purpose of this thesis is to study magnetic reconnection in collisionless and relativistic plasmas. Such plasmas can be encountered in various astrophysical objects (microquasars, AGNs, GRBs...), where reconnection could explain high-energy particle and photon production, plasma heating, or transient large-scale outflows. However, a first principle understanding of reconnection is still lacking, especially in relativistic ion-electron plasmas. We first present the basis of reconnection physics. We derive results relevant to relativistic plasma physics, including properties of the Maxwell-Jüttner distribution. Then, we provide a detailed study of our numerical tool, particle-in-cell simulations (PIC). The fact that the real plasma contains far less particles than the PIC plasma has important consequences concerning relaxation times or noise, that we describe. Finally, we study relativistic reconnection in ion-electron plasmas with PIC simulations. We stress outstanding properties: Ohm's law (dominated by bulk inertia), structure of the diffusion zone, energy content of the outflows (thermally dominated), reconnection rate (and its relativistic normalization). Ions and electrons produce power law distributions, with indexes that depend on the inflow Alfvén speed and on the magnetization of the corresponding species. They can be harder than those produced by collisionless shocks. Also, ions can get more or less energy than the electrons, depending on the guide field strength. These results provide a solid ground for astrophysical models that, up to now, assumed with no prior justification the existence of such distributions or of such ion/electron energy repartition
Mohammad, Nopoush. "NON-EQUILIBRIUM HYDRODYNAMICS OF THE QUARK-GLUON PLASMA." Kent State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=kent1554403936171225.
Full textZouganelis, Ioannis. "Physique du vent solaire : modèles cinétiques et distributions non thermiques." Paris 7, 2005. http://www.theses.fr/2005PA077175.
Full textBoujema, Izrar. "Modèles classiques et quantités pour la simulation dans l'espace des phases application aux plasmas non collisionnels." Grenoble 2 : ANRT, 1986. http://catalogue.bnf.fr/ark:/12148/cb37598942d.
Full textDafiri, Brahim. "Taux des processus et populations atomiques dans un plasma laser non-maxwellien : application a un plasma d'hydrogene traite par un modele collisionnel-radiatif." Orléans, 1990. http://www.theses.fr/1990ORLE2005.
Full textMacé, Jean-Sébastien. "Modélisation du fonctionnement d’un gyrolaser He-Ne de très haute précision." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112160/document.
Full textRing laser gyros (RLG) are inertial sensors whose reliability and accuracy have been recognised since the mid-1980s. Their high sensitivity enables them to measure angular velocity with an accuracy of 10⁻³ °/ h in aeronautics. However, because of a complex functioning based on a rich and varied physics, their performances are highly dependent on the working conditions and on any modification in the manufacturing process. In this case, a numerical modelling is pertinent since it allows both a clear understanding of the ring laser physics and parametric studies which are not experimentally feasible. The global modelling of a He-Ne RLG has been the main objective of the collaboration between Sagem (Safran group), which is one of the world leader in the inertial sensors field, and the Gas and Plasma Physics Laboratory (LPGP).This modelling is “multi-physics” since RLG physics involves several disciplines (plasma, atomic and laser physics). Therefore we have developed three models specifically adapted to each field. The first one describes the modelling of the positive column of the glow discharge following a fluid approach. This model allows a quantitative description of the plasma and gives access to fundamental quantities like the electron density or the electron energy distribution function. These quantities are the required inputs for the second model which treats the kinetics of the excited states inside the He-Ne plasma. For this, a collisional-radiative model in a radial geometry (1D-CRM) has been developed. The radial geometry is justified by the importance of the transport processes of atoms and radiations which can influence the radial profile of the population inversion. Notably, the radiative transfer by self-absorption of the resonant radiative transitions has been modelled by solving the Holstein-Biberman equation by a Monte-Carlo method. This aspect is a major component of this PhD work. Diffusion of excited atoms inside the plasma has also been taken into account by solving the diffusion equation with different boundary conditions at the capillary surface. From the populations and the kinetic rates computed by 1D-CRM, the laser amplification inside the cavity has been modelled using a two-level Maxwell-Bloch approach (NADIA) taking into account the inhomogeneous gain saturation, which means to consider the thermal speed of the atoms in the direction of propagation of the laser beams. The kinetics of NADIA has been optimized and transport processes in the phase space have also been implemented. This model has been used to study the performances of the RLG linked to the amplifying medium and to derive the physical parameters needed for the development of a simulator.Concerning this simulator, a simplified physical model from NADIA has been coupled to system modules in order to reproduce the operating signal of a RLG. This allows to conduct parametric studies on the quantities defining the RLG performance in particular the dynamic bias and the so-called “Random Walk”. We showed notably that the results of our simulator are in good agreement with experimental measurements in operating conditions. Moreover, our results show that this simulator is a powerful tool for analysing experimental data
Aunai, Nicolas. "Simulation numérique de la reconnexion magnétique : mécanismes cinétiques sous-jacents à la description fluide des ions." Phd thesis, Université Paris Sud - Paris XI, 2011. http://tel.archives-ouvertes.fr/tel-00593457.
Full textTeles, Tarcisio Nunes. "Relaxação não-colisional em plasmas não-neutros." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2008. http://hdl.handle.net/10183/18794.
Full textIn this work a theoretical framework is presented which allows us to quantitatively predict the final stationary state achieved by a non-neutral plasma during a process of collisionless relaxation. As a specific application, the theory is used to study relaxation of charged-particle beams. It is shown that a fully matched beam relaxes to the Lynden-Bell distribution. However, when a mismatch is present and the beam oscillates, parametric resonances lead to a corehalo phase separation. The approach developed accounts for both the density and the velocity distributions in the final stationary state.
Stverak, Stepan. "Study of the non-thermal character of electron distribution functions in the solar wind." Paris 6, 2009. http://www.theses.fr/2009PA066691.
Full textGaouar, Adil. "Théorie cinétique et données de base des électrons dans les plasmas non thermiques : application aux milieux d'excitation des lasers à excimères." Toulouse 3, 1995. http://www.theses.fr/1995TOU30287.
Full textGROSA, FABRIZIO. "Strange and non-strange D-meson production in pp, p-Pb, and Pb-Pb collisions with ALICE at the LHC." Doctoral thesis, Politecnico di Torino, 2020. http://hdl.handle.net/11583/2796753.
Full textNagels, Virginie. "Validation expérimentale des codes de physique atomique des plasmas hors équilibre thermodynamique local." Palaiseau, Ecole polytechnique, 2004. http://www.theses.fr/2004EPXX0049.
Full textRenault, Gaël. "Etude des correlations de particules etranges mesurees par l'experience STAR dans les collisions ions lourds ultra-relativistes au RHIC." Phd thesis, Université de Nantes, 2004. http://tel.archives-ouvertes.fr/tel-00007489.
Full textPlewa, Jérémie-Marie. "Etude de l'influence des plasmas dans les diodes à électrons pour la radiographie éclair." Thesis, Toulouse 3, 2018. http://www.theses.fr/2018TOU30156/document.
Full textIntense X-ray flash radiography is used to take a stop-action picture of a material under extreme conditions like high densification, high temperature and high movement speed. The success of this kind of radiography is based on the quality of the X-ray source which must necessarily be penetrating (some MeV), intense (several rads), short (a few tens of ns) and small (a few mm). The X-ray pulse is generated from the bremsstrahlung radiation emitted during the interaction with a metal target of a focused electron beam of high energy (MeV) and high intensity (kA). This process strongly links the properties of the electron beam to those of the X-ray beam and thus to the quality of the radiography picture. In this context, the thesis is about the electron beam dynamics in the electron diode (i.e. just before electrons move towards the accelerator) as well as about the characterization of the velvet plasma from which electrons are extracted to form the beam. Firstly, the dynamics of the intense electron beam was studied using the LSP code based on the "Particle-In-Cell" method. The simulations were compared to measurements made on the injector of a linear induction accelerator, at the CEA Valduc center on the Epure facility. Based on the developed simulation model, a new single-pulse electron diode was designed, sized and realized during this thesis to increase the intensity of the electron beam from 2.0 kA to 2.6 kA, thus improving the radiographic performances of the facility. In a second step, a model allowing to study the mechanisms involved in the production of the electron beam from the cathode plasma was developed. This latter is a collisional-radiative model (CRM) 0D describing the evolution of the plasma species density of a plasma whose composition is directly related to the molecules and atoms desorbed by the velvet cathode. [...]
Lindkvist, Jesper. "Plasma Interactions with Icy Bodies in the Solar System." Doctoral thesis, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-117666.
Full textHär studerar jag “plasmaväxelverkan med isiga kroppar i solsystemet”, det vill säga, min strävan är att förstå de grundläggande processerna som styr sådana interaktioner. Genom att använda numerisk modellering i kombination med observationer på plats vid himlakropparna kan man förstå sig på deras interna strukturer och rymdmiljöer. Efter en bred översikt över de fysiska lagar som styr ett rymdplasma följer en mer detaljerad del. Denna innehåller metoder för hur man kan modellera växelverkan mellan rymdplasma och isiga kroppar. Numerisk modellering av rymdplasma appliceras på de isiga himlakropparna Callisto (en måne kring Jupiter), dvärgplaneten Ceres (lokaliserad i asteroidbältet mellan Mars och Jupiter) och kometen 67P/Churyumov-Gerasimenko. Det tidsvarierande magnetiska fältet kring Jupiter inducerar strömmar inuti den elektriskt ledande månen Callisto. Dessa strömmar skapar magnetfältsstörningar som tros vara relaterade till ett elektriskt ledande hav under Callistos yta. Plasmaflödet i närheten av Callisto påverkas i hög grad av dessa magnetfältsstörningar. Genom att använda en hybrid-plasma-lösare har växelverkan modellerats, där effekten av magnetisk induktion har inkluderats. Resultaten stämmer väl överens med magnetfältsdata från förbiflygningarna av Callisto (C3 och C9) som gjordes av den obemannade rymdfarkosten Galileo i dess bana kring Jupiter. Den magnetiska konfigurationen som uppstår möjliggör ett inflöde av laddade joner på Callistos baksida. Plasma som träffar ytan slår bort materia och skapar Callistos tunna atmosfär. En långtidsstudie av solvindsprotoner sett från rymdfarkosten Rosetta utfördes då kometen 67P/Churyumov-Gerasimenko närmade sig solen. Ultraviolett strålning från solen joniserar det neutrala vattnet i kometens koma (kometens atmosfär). Nyligt joniserade vattenmolekyler plockas upp av solvindsflödet och tvingar solvindsprotonernas banor att böjas av, så att rörelsemängden bevaras. Denna effekt ökar stadigt då kometen närmar sig solen. Solvinden böjs av kraftigt, men förlorar inte mycket energi. Hybridmodellering av solvindens växelverkan bekräftar att kraften som verkar på solvinden till störst del får den att böjas av, medan kraften som verkar till att sänka dess fart är mycket lägre. Ceres har enligt observationer av rymdteleskopet Herschel under 2012 och 2013 haft högt utflöde av vattenånga från dess yta. Där har två regioner identifierats som källor för vattenångan. Eftersom Ceres roterar kommer källornas regioner göra det också. Plasmaväxelverkan i närheten av Ceres beror i hög grad på vattenångskällans placeringen, medan det inte gör det långt ifrån Ceres. På global nivå har Ceres en kometliknande växelverkan med solvinden, där störningar i solvinden propagerar långt nedströms från Ceres.
Rindori, Davide. "Entropy current in relativistic quantum statistical mechanics." Doctoral thesis, 2021. http://hdl.handle.net/2158/1236913.
Full text