Academic literature on the topic 'Plasma membrane signaling'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Plasma membrane signaling.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Plasma membrane signaling"

1

Wang, Nan, Marijke De Bock, Elke Decrock, Mélissa Bol, Ashish Gadicherla, Mathieu Vinken, Vera Rogiers, Feliksas F. Bukauskas, Geert Bultynck, and Luc Leybaert. "Paracrine signaling through plasma membrane hemichannels." Biochimica et Biophysica Acta (BBA) - Biomembranes 1828, no. 1 (January 2013): 35–50. http://dx.doi.org/10.1016/j.bbamem.2012.07.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chavan, Tanmay Sanjeev, Serena Muratcioglu, Richard Marszalek, Hyunbum Jang, Ozlem Keskin, Attila Gursoy, Ruth Nussinov, and Vadim Gaponenko. "Plasma membrane regulates Ras signaling networks." Cellular Logistics 5, no. 4 (October 2, 2015): e1136374. http://dx.doi.org/10.1080/21592799.2015.1136374.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Grecco, Hernán E., Malte Schmick, and Philippe I. H. Bastiaens. "Signaling from the Living Plasma Membrane." Cell 144, no. 6 (March 2011): 897–909. http://dx.doi.org/10.1016/j.cell.2011.01.029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fröhlich, Florian, Karen Moreira, Pablo S. Aguilar, Nina C. Hubner, Matthias Mann, Peter Walter, and Tobias C. Walther. "A genome-wide screen for genes affecting eisosomes reveals Nce102 function in sphingolipid signaling." Journal of Cell Biology 185, no. 7 (June 29, 2009): 1227–42. http://dx.doi.org/10.1083/jcb.200811081.

Full text
Abstract:
The protein and lipid composition of eukaryotic plasma membranes is highly dynamic and regulated according to need. The sphingolipid-responsive Pkh kinases are candidates for mediating parts of this regulation, as they affect a diverse set of plasma membrane functions, such as cortical actin patch organization, efficient endocytosis, and eisosome assembly. Eisosomes are large protein complexes underlying the plasma membrane and help to sort a group of membrane proteins into distinct domains. In this study, we identify Nce102 in a genome-wide screen for genes involved in eisosome organization and Pkh kinase signaling. Nce102 accumulates in membrane domains at eisosomes where Pkh kinases also localize. The relative abundance of Nce102 in these domains compared with the rest of the plasma membrane is dynamically regulated by sphingolipids. Furthermore, Nce102 inhibits Pkh kinase signaling and is required for plasma membrane organization. Therefore, Nce102 might act as a sensor of sphingolipids that regulates plasma membrane function.
APA, Harvard, Vancouver, ISO, and other styles
5

Foley, John F. "Revealing the plasma membrane in GPCR signaling." Science Signaling 13, no. 636 (June 16, 2020): eabd3019. http://dx.doi.org/10.1126/scisignal.abd3019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Corre, Isabelle, Colin Niaudet, and Francois Paris. "Plasma membrane signaling induced by ionizing radiation." Mutation Research/Reviews in Mutation Research 704, no. 1-3 (April 2010): 61–67. http://dx.doi.org/10.1016/j.mrrev.2010.01.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Baird, Barbara. "Plasma Membrane Heterogeneity and Receptor Mediated Signaling." Biophysical Journal 98, no. 3 (January 2010): 2a. http://dx.doi.org/10.1016/j.bpj.2009.12.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Abbas, Wasim, and Georges Herbein. "Plasma membrane signaling in HIV-1 infection." Biochimica et Biophysica Acta (BBA) - Biomembranes 1838, no. 4 (April 2014): 1132–42. http://dx.doi.org/10.1016/j.bbamem.2013.06.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wills, Rachel C., and Gerald R. V. Hammond. "PI(4,5)P2: signaling the plasma membrane." Biochemical Journal 479, no. 21 (November 11, 2022): 2311–25. http://dx.doi.org/10.1042/bcj20220445.

Full text
Abstract:
In the almost 70 years since the first hints of its existence, the phosphoinositide, phosphatidyl-D-myo-inositol 4,5-bisphosphate has been found to be central in the biological regulation of plasma membrane (PM) function. Here, we provide an overview of the signaling, transport and structural roles the lipid plays at the cell surface in animal cells. These include being substrate for second messenger generation, direct modulation of receptors, control of membrane traffic, regulation of ion channels and transporters, and modulation of the cytoskeleton and cell polarity. We conclude by re-evaluating PI(4,5)P2’s designation as a signaling molecule, instead proposing a cofactor role, enabling PM-selective function for many proteins.
APA, Harvard, Vancouver, ISO, and other styles
10

Ande, Sudharsana Rao, and Suresh Mishra. "Palmitoylation of prohibitin at cysteine 69 facilitates its membrane translocation and interaction with Eps 15 homology domain protein 2 (EHD2)." Biochemistry and Cell Biology 88, no. 3 (June 2010): 553–58. http://dx.doi.org/10.1139/o09-177.

Full text
Abstract:
Plasma membrane translocation of specific cytosolic proteins plays an important role in cell signaling pathways. We have recently shown that prohibitin (PHB) , a protein present in the plasma membranes of various cell types, interacts with Eps 15 homology domain protein 2 (EHD2), a lipid raft protein. However, the mechanism involved in membrane translocation of PHB is not known.We report that PHB undergoes palmitoylation at cysteine 69 (Cys69), and that this palmitoylation is required for PHB's membrane translocation. Furthermore, we demonstrate that membrane translocation of PHB facilitates tyrosine phosphorylation and its interaction with EHD2. Thus, the palmitoylation and membrane translocation of PHB and its interaction with EHD2 may play a role in cell signaling.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Plasma membrane signaling"

1

Alenkvist, Ida. "Epac2 signaling at the β-cell plasma membrane." Doctoral thesis, Uppsala universitet, Institutionen för medicinsk cellbiologi, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-284638.

Full text
Abstract:
Secretion of appropriate amounts of insulin from pancreatic β-cells is crucial for glucose homeostasis. The β-cells release insulin in response to glucose and other nutrients, hormones and neurotransmitters, which trigger intracellular signaling cascades, that result in exocytotic fusion of insulin-containing vesicles with the plasma membrane. Increases of the intracellular concentration of calcium ions ([Ca2+]i) trigger exocytosis, whereas the messenger cyclic adenosine monophosphate (cAMP) amplifies various steps of the secretion process. The protein Epac2 mediates some effects of cAMP, but little is known about its regulation in β-cells. In this study, the spatio-temporal dynamics of Epac2 was investigated in insulin-secreting MIN6-cells and primary β-cells using various cell signaling biosensors and live-cell fluorescence microscopy approaches. Increases in the cAMP concentration triggered translocation of Epac2 from the cytoplasm to the plasma membrane. Oscillations of cAMP induced by glucose and the insulin-releasing hormone GLP-1 were associated with cyclic translocation of Epac2. Analyses of Epac2 mutants showed that the high-affinity cyclic nucleotide-binding domain and Ras-association domains were crucial for the translocation, whereas neither the DEP domain, nor the low-affinity cAMP-binding domain were required for membrane binding. However, the latter domain targeted Epac2 to insulin granules at the plasma membrane, which promoted their priming for exocytosis. Depolarization-induced elevations of [Ca2+]i also stimulated Epac2 translocation, but the effects were complex and in the presence of high cAMP concentrations, [Ca2+]i increases often reduced membrane binding. The stimulatory effect of Ca2+ was mediated by increased Ras activity, while the inhibitory effect reflected reduced concentrations of the membrane phospholipid PtdIns(4,5)P2. Anti-diabetic drugs of the sulfonylurea class, suggested to directly activate Epac2, induced translocation indirectly by depolarizing β-cells to increase [Ca2+]i. Epac2 is an activator of Rap GTPases, and its translocation increased Rap activity at the plasma membrane. It is concluded that the subcellular localization of Epac2 is controlled by a complex interplay between cAMP, Ca2+ and PtdIns(4,5)P2 and that the protein controls insulin release by binding to the exocytosis machinery. These results provide new insights into the regulation of β-cell function and may facilitate the development of new anti-diabetic drugs that amplify insulin secretion.
APA, Harvard, Vancouver, ISO, and other styles
2

Mahammad, Saleemulla. "Cholesterol in T cells homeostasis, plasma membrane organization and signaling /." Doctoral thesis, Stockholm : The Wenner-Gren Institute, Stockholm University, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-38357.

Full text
Abstract:
Diss. (sammanfattning) Stockholm : Stockholms universitet, 2010.
At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 2: Manuscript. Paper 3: In press.
APA, Harvard, Vancouver, ISO, and other styles
3

Takahashi, Satoe. "Plasma Membrane Localization of Signaling Proteins in Yeast: a Dissertation." eScholarship@UMMS, 2008. https://escholarship.umassmed.edu/gsbs_diss/364.

Full text
Abstract:
In response to external stimuli, many intracellular signaling proteins undergo dynamic changes in localization to the plasma membrane. Using the Saccharomyces cerevisiaemating pathway as a model, I investigated the molecular interactions that govern plasma membrane localization of signaling proteins, and how the plasma membrane compartmentalization of a signaling complex influences the overall signaling behavior of the pathway. Signaling proteins often consist of multiple interaction domains that collectively dictate their localization and function. Ste20 is a p21-activated kinase (PAK) that functions downstream of the Rho-type GTPase Cdc42 to activate several mitogen-activated protein (MAP) kinase pathways in budding yeast, including the mating pathway. I identified a short domain in Ste20 that directly binds to membrane lipids via electrostatic interaction. A mutation in this domain abolishes both the localization and function of Ste20. Thus, the previously known Cdc42 binding is necessary but not sufficient; instead, direct membrane binding by Ste20 is also critical. By replacing this domain with heterologous membranebinding domains, I demonstrated that phospholipid specificity is not essential in vivo. Functionally important short membrane-binding domains were also found in the Cdc42 effectors Gic1 and Gic2, indicating that generic membrane binding can work in concert with the CRIB domain to regulate activation of Cdc42 targets. These results underscore the importance of cooperation between protein-protein and protein-membrane interaction in achieving proper localization of signaling proteins at the cell cortex. At the system level, MAP kinase cascades can be graded or switch-like. The budding yeast mating pathway exhibits a graded response to increasing levels of pheromone. Previously the scaffold protein Ste5 was hypothesized to contribute to this graded response. To test this idea, I activated the pathway in a variety of ways and measured the response at the single cell level. I found that the graded response is not perturbed by the deletion of negative regulators of the pathway whereas the response became switch-like when the pathway was activated by a crosstalk stimulus that bypasses the upstream components. Interestingly, activation of the pathway in the cytoplasm using the graded expression of MAPKKK resulted in an ultrasensitive response. In contrast, activation of the pathway at the plasma membrane using the graded expression of membranetargeted active pathway components remained graded. In these settings, the scaffold protein Ste5 increased ultrasensitivity when limited to the cytosol; however, if Ste5 was allowed to function at the plasma membrane, signaling was graded. The results suggest that, in the mating pathway, the inherently ultrasensitive MAPK cascade is converted to a graded system by the scaffoldmediated assembly of signaling complexes at the plasma membrane. Therefore, the plasma membrane localization of Ste5 helps shape the input-output properties of the mating MAPK pathway in a manner that is suitable for the biology of mating. Taken together, this thesis underscores the importance of plasma membrane localization during mating pathway signaling in yeast. The examples described here provide further appreciation of how multiple interaction domains can function together to achieve specific targeting of the signaling proteins, as well as advances in understanding the role of scaffold proteins in modulating signaling behavior to promote graded signaling at the plasma membrane.
APA, Harvard, Vancouver, ISO, and other styles
4

Michael, James. "Regulation of Ras signaling and oncogenesis by plasma membrane microdomains." Diss., Temple University Libraries, 2016. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/377230.

Full text
Abstract:
Cell Biology
Ph.D.
In this study, we assessed the contributions of plasma membrane (PM) microdomain targeting to the functions of H-Ras and R-Ras. These paralogues have identical effector-binding regions, but variant C-terminal targeting domains (tDs) which are responsible for lateral microdomain distribution: activated H-Ras targets to lipid ordered/disordered (Lo/Ld) domain borders, and R-Ras to Lo domains (rafts). We hypothesized that PM distribution regulates Ras effector interactions and downstream signaling. We used tD swap mutants, and assessed effects on signal transduction, cell proliferation, transformation, and tumorigenesis. R-Ras harboring the H-Ras tD (R-Ras-tH) interacted with Raf, and induced Raf and ERK phosphorylation similar to H-Ras. R-Ras-tH stimulated proliferation and transformation in vitro, and these effects were blocked by both MEK and PI3K inhibition. Conversely, the R-Ras tD suppressed H-Ras-mediated Raf activation and ERK phosphorylation, proliferation, and transformation. Thus, Ras access to Raf at the PM is sufficient for MAPK activation and is a principal component of Ras mitogenesis and transformation. Fusion of the R-Ras extended N-terminal domain to H-Ras had no effect on proliferation, but inhibited transformation and tumor progression, indicating that the R-Ras N-terminus also contributes negative regulation to these Ras functions. PI3K activation was tD-independent; however, H-Ras was a stronger activator of PI3K than R-Ras, with either tD. PI3K inhibition nearly ablated transformation by R-Ras-tH, H-Ras, and H-Ras-tR, whereas MEK inhibition had a modest effect on Ras-tH-driven transformation but no effect on H-Ras-tR transformation. R-Ras-tH supported tumor initiation, but not tumor progression. Whereas H-Ras-tR-induced transformation was reduced relative to H-Ras, tumor progression was robust and similar to H-Ras. H-Ras tumor growth was moderately suppressed by MEK inhibition, which had no effect on H-Ras-tR tumor growth. In contrast, PI3K inhibition markedly suppressed tumor growth by H-Ras and H-Ras-tR, indicating that sustained PI3K signaling is a critical pathway for H-Ras-driven tumor progression, independent of microdomains. In the second phase of the study, we investigated the combinatorial use of two drugs currently either in active use as anti-cancer agents (Rapamycin) or in clinical trials (OTX008), as a novel strategy to inhibit H-Ras-driven tumor progression. H-Ras anchored to the plasma membrane shuttles from the lipid ordered (Lo) domain to the lipid ordered/lipid disordered border upon activation, and retention of H-Ras at these sites requires Galectin-1 (Gal-1). We have previously found that genetically-mediated Lo sequestration of H-Ras inhibited MAPK signaling but not PI3K activation. Here we show that inhibition of Gal-1 with OTX008 sequestered H-Ras in the Lo domain, blocked H-Ras-mediated MAPK signaling, and attenuated H-Ras-driven tumor progression in mice. H-Ras-driven tumor growth was also attenuated by treatment with mTOR inhibitor Rapamycin, and this effect was further enhanced in tumors driven by Lo-sequestered H-Ras. These drugs also revealed bidirectional cross-talk in H-Ras pathways. Moreover, dual pathway inhibition with OTX008 and Rapamycin resulted in nearly complete ablation of H-Ras-driven tumor growth. These findings indicate that membrane microdomain sequestration of H-Ras with OTX008, coupled with mTOR inhibition, may support a novel therapeutic approach to treat H-Ras mutant cancers.
Temple University--Theses
APA, Harvard, Vancouver, ISO, and other styles
5

Fröhlich, Florian. "Analysis of sphingolipid-signaling at the plasma membrane of Saccharomyces cerevisiae." Diss., lmu, 2010. http://nbn-resolving.de/urn:nbn:de:bvb:19-120516.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, Xing. "The locations and signaling of H-Ras on endosomes and plasma membrane." [Ames, Iowa : Iowa State University], 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dinic, Jelena. "Plasma membrane order; the role of cholesterol and links to actin filaments." Doctoral thesis, Stockholms universitet, Wenner-Grens institut, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-62279.

Full text
Abstract:
The connection between T cell activation, plasma membrane order and actin filament dynamics was the main focus of this study. Laurdan and di-4-ANEPPDHQ, membrane order sensing probes, were shown to report only on lipid packing rather than being influenced by the presence of membrane-inserted peptides justifying their use in membrane order studies. These dyes were used to follow plasma membrane order in live cells at 37°C. Disrupting actin filaments had a disordering effect while stabilizing actin filaments had an ordering effect on the plasma membrane, indicating there is a basal level of ordered domains in resting cells. Lowering PI(4,5)P2 levels decreased the proportion of ordered domains strongly suggesting that the connection of actin filaments to the plasma membrane is responsible for the maintaining the level of ordered membrane domains. Membrane blebs, which are detached from the underlying actin filaments, contained a low fraction of ordered domains. Aggregation of membrane components resulted in a higher proportion of ordered plasma membrane domains and an increase in cell peripheral actin polymerization. This strongly suggests that the attachment of actin filaments to the plasma membrane induces the formation of ordered domains. Limited cholesterol depletion with methyl-beta-cyclodextrin triggered peripheral actin polymerization. Cholesterol depleted cells showed an increase in plasma membrane order as a result of actin filament accumulation underneath the membrane. Moderate cholesterol depletion also induced membrane domain aggregation and activation of T cell signaling events. The T cell receptor (TCR) aggregation caused redistribution of domains resulting in TCR patches of higher order and the bulk membrane correspondingly depleted of ordered domains. This suggests the preexistence of small ordered membrane domains in resting T cells that aggregate upon cell activation. Increased actin polymerization at the TCR aggregation sites showed that actin polymerization is strongly correlated with the changes in the distribution of ordered domains. The distribution of the TCR in resting cells and its colocalization with actin filaments is cell cycle dependent. We conclude that actin filament attachment to the plasma membrane, which is regulated via PI(4,5)P2, plays a crucial role in the formation of ordered domains.
At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Submitted. Paper 4: Manuscript.
APA, Harvard, Vancouver, ISO, and other styles
8

Lam, Jonathan Lam. "Identification of mammalian cell signaling in response to plasma membrane perforation: Endocytosis of Listeria monocytogenes and The Repair Machinery." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1543497502225763.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gouguet, Paul. "Deciphering the proteic partners of REMORIN, a membrane-raft phosphoprotein implicated in plant cell-to-cell communication." Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0418.

Full text
Abstract:
Les REMORINES du groupe 1 sont des protéines spécifiques des plantes, localisées dans la membrane plasmique. Nous avons montré que StREM1.3 (REM) constitue un marqueur des radeaux lipidiques, des domaines membranaires du plasmalemme enrichis en stérols et sphingolipides. De plus, REM se trouve enrichie dans les plasmodesmes (PD), des canaux ancrés dans la paroi qui assurent les communications intercellulaires. Nous avons mis en évidence pour la première fois le rôle physiologique de REM dans la plante, cette protéine est capable de ralentir la propagation virale du Potato Virus X (PVX) et d’autres virus. Par ailleurs, l’activité antivirale de REM est régulée par phosphorylation et conduit à une modification de la taille du pore des PD par dépôt de callose. Des candidats protéiques ont été sélectionnées et leur validation fonctionnelle a été initiée in planta par des approches de transgénèse, en expression transitoire et sur des plantes transgéniques soumises à des infections virales pour étudier la propagation des virus. Des approches de biochimie d’interaction des protéines, et d’imagerie ont également été envisagés. Le sujet de cette thèse vise à appréhender les mécanismes de l’interaction de REM avec ses partenaires dans la membrane lors de l’infection virale, en se focalisant sur les interactions protéines-protéines lors de la réponse au PVX. Nous nous intéresserons plus particulièrement aux protéines des PD et des radeaux membranaires qui sont très probablement ciblées lors de cette interaction avec les virus
Group 1 REMORINs are plant-specific proteins located at the plasma membrane. We have shown that StREM1.3 (REM) is a marker of lipid rafts, plasma membrane domains enriched in sterols and sphingolipids. In addition, REM is enriched in plasmodesmata channels (PD) which are anchored within the cell wall and enable intercellular communication between virtually all plant cells. We have demonstrated for the first time the physiological role of REM in plants, this protein is able to reduce the viral cell-to-cell movement of Potato Virus X (PVX) and other viruses. Moreover, the antiviral activity of REM is regulated by phosphorylation and leads to a modification of the pore size of PD via the accumulation of callose, a sugar polymer, around the neck regions of PD. In order to understand how REM is able to induce the accumulation of callose in these specific regions, a large set of proteins have been selected and the deciphering of their functions have been initiated in planta by transgenic approaches, in transient expression and on transgenic plants, which will be subjected to viral infections to study the spread of viruses. Protein interaction, biochemistry and imaging approaches were also used to study this question. This thesis aims at understanding the mechanisms of the REM interaction with its membrane partners during viral infection, focusing on the protein-protein interactions during the response to PVX. We will focus more particularly on PD proteins and membrane rafts that are most likely targeted during this interaction with viruses
APA, Harvard, Vancouver, ISO, and other styles
10

LUNGHI, GIULIA. "GM1 OLIGOSACCHARIDE MODULATION OF CALCIUM SIGNALLING IN NEURONAL FUNCTIONS." Doctoral thesis, Università degli Studi di Milano, 2020. http://hdl.handle.net/2434/792078.

Full text
Abstract:
It has been already demonstrated that the oligosaccharide chain (OligoGM1) of the ganglioside GM1, β-Gal-(1-3)-β-GalNAc-(1-4)-[α-Neu5Ac-(2-3)]-β-Gal-(1-4)-β-Glc-(1-1)-Ceramide, promotes neurodifferentiation in the Neuro2a murine neuroblastoma cells, used as a model, by directly interacting with the NGF specific receptor TrkA, leading to the activation of ERK1/2 downstream pathway. In this context, my PhD work aimed to investigate which other biochemical pathways, in addition to TrkA-MAPK cascade activation, are prompted by OligoGM1, with an emphasis on Ca2+ modulating factors. A proteomic analysis (nLC-ESi-MS-MS) performed on Neuro2a cells treated with 50 µM OligoGM1 for 24 hours led to the identification and quantification of 324 proteins exclusively expressed by OligoGM1-treated cells. Interestingly, some of these proteins are involved in the regulation of Ca2+ homeostasis and in Ca2+-dependent differentiative pathways. In order to evaluate if OligoGM1 administration was able to modulate Ca2+ flow, we performed calcium-imaging experiments on Neuro2a cells using the Ca2+-sensitive Fluo-4 probe. Starting from 5 minutes upon OligoGM1 administration to undifferentiated Neuro2a, a significant increase in Ca2+ influx occurs. At the same time an increased activation of TrkA membrane receptor was observed and, importantly, the addition of a specific TrkA inhibitor abolished the OligoGM1 mediated increase of the cytosolic Ca2+, suggesting that the opening of the cell Ca2+ channels following OligoGM1 administration depends on the activation of TrkA receptor. To unveil which cellular pathway activated by OligoGM1 could lead to the increase of intracellular Ca2+, time-course immunoblotting analyses were performed. The data revealed that following TrkA activation, OligoGM1 induced the activation of phospholipase PLCγ1 which converts phosphatidylinositol 4,5-bisphosphate (PIP2) to diacyglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3), the second messengers that propagate cellular signalling via Ca2+ mobilization. Moreover, we observed a hyperphosphorylation of the DAG substrate, protein kinase C (PKC), which is a priming event that enables its catalytic activation in response to lipid second messengers, and we found its enrichment in lipid rafts, events that consolidate its activation. When calcium-imaging experiments where performed in the presence of xestospongin C, a potent inhibitor of IP3 receptors on endoplasmic reticulum, a reduction of about 50% of Ca2+ influx was observed, suggesting that the Ca2+ flows moved by the OligoGM1 come not only from intracellular storages, but probably also from the extracellular environment. Accordingly, in the presence of both extracellular (EGTA) and intracellular (BAPTA-AM) Ca2+ chelators the neuritogenic effect induced by OligoGM1 was abolished. The work described in this thesis confirms that the effects of GM1 ganglioside on neuronal differentiation are mediated by its oligosaccharide portion. In particular, here I highlight that the oligosaccharide, initiating a signalling cascade on the cell surface, is responsible alone for the balancing of the intracellular Ca2+ levels that underlie neurite sprouting, which have historically been attributed to the whole GM1 ganglioside and its role as lipid inserted into the plasma membrane. In this way, these data give additional information on the molecular characterization of the mechanisms by which GM1 exerts its neuronal functions.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Plasma membrane signaling"

1

Ozhan, Gunes, Erdinc Sezgin, and Anming Meng. Wnt Signaling at the Plasma Membrane: Activation, Regulation and Disease Connection. Frontier Media SA, 2021. http://dx.doi.org/10.3389/978-2-88971-880-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Plant signalling, plasma membrane, and change of state. [Geneva]: Laboratory of Plant Physiology, University of Geneva, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Plasma membrane signaling"

1

Donato, Dominique M., Steven K. Hanks, Kenneth A. Jacobson, M. P. Suresh Jayasekara, Zhan-Guo Gao, Francesca Deflorian, John Papaconstantinou, et al. "Plasma Membrane Ca2+ ATPase." In Encyclopedia of Signaling Molecules, 1439. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0461-4_101059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Donato, Dominique M., Steven K. Hanks, Kenneth A. Jacobson, M. P. Suresh Jayasekara, Zhan-Guo Gao, Francesca Deflorian, John Papaconstantinou, et al. "Plasma Membrane Ca2+ Pump." In Encyclopedia of Signaling Molecules, 1439. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0461-4_101060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lee, Jung-Youn, Sung Ki Cho, and Ross Sager. "Plasmodesmata and Noncell Autonomous Signaling in Plants." In The Plant Plasma Membrane, 87–107. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13431-9_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Strehler, Emanuel E. "Plasma Membrane Calcium-Transporting ATPase." In Encyclopedia of Signaling Molecules, 4047–54. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-67199-4_133.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Strehler, Emanuel E. "Plasma Membrane Calcium-Transporting ATPase." In Encyclopedia of Signaling Molecules, 1–8. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4614-6438-9_133-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Donato, Dominique M., Steven K. Hanks, Kenneth A. Jacobson, M. P. Suresh Jayasekara, Zhan-Guo Gao, Francesca Deflorian, John Papaconstantinou, et al. "Plasma Membrane Calcium-Transporting ATPase." In Encyclopedia of Signaling Molecules, 1440–46. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0461-4_133.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Im, Yang Ju, Ingo Heilmann, and Imara Y. Perera. "The Hull of Fame: Lipid Signaling in the Plasma Membrane." In The Plant Plasma Membrane, 437–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13431-9_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zamir, Eli, Nachiket Vartak, and Philippe I. H. Bastiaens. "Oncogenic Signaling from the Plasma Membrane." In Vesicle Trafficking in Cancer, 57–74. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-6528-7_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dyachok, Oleg, Yunjian Xu, Olof Idevall-Hagren, and Anders Tengholm. "Fluorescent Translocation Reporters for Sub–plasma Membrane cAMP Imaging." In cAMP Signaling, 319–38. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2245-2_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tengholm, Anders, and Olof Idevall-Hagren. "Imaging Sub-plasma Membrane cAMP Dynamics with Fluorescent Translocation Reporters." In cAMP Signaling, 85–101. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2537-7_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Plasma membrane signaling"

1

Lee, Donghee, Jeonghoon Lee, Choonho Park, and Jung Kyung Kim. "Simultaneous Measurements of Diffusion Coefficient on Cell Membrane by Fluorescence Photobleaching and Single Quantum Dot Tracking Techniques." In ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology. ASMEDC, 2010. http://dx.doi.org/10.1115/nemb2010-13027.

Full text
Abstract:
The diffusion of biomolecules in plasma membranes is the key mechanism of their transportation. Lipid rafts, which are diffused on a plasma membrane, carry receptors and proteins. Receptors become the passages where viruses invade, and proteins play an important role in signaling and controlling functions of cells. If we know the characteristics of biomolecular motility and structural differences between normal cells and diseased cells, we could find out how to treat the disease. So, it is very important to develop the method which analyzes the dynamic biomolecular movement in the cell membrane.
APA, Harvard, Vancouver, ISO, and other styles
2

Baird, Barbara A., Nirmalya Bag, and David A. Holowka. "Dynamically heterogeneous plasma membrane is poised for initiation of receptor-mediated mast cell signaling." In Multiphoton Microscopy in the Biomedical Sciences XXII, edited by Ammasi Periasamy, Peter T. So, and Karsten König. SPIE, 2022. http://dx.doi.org/10.1117/12.2613064.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Barbee, Kenneth A., Gulyeter Serbest, and Joel Horwitz. "Membrane Integrity as a Therapeutic Target in Neural Cell Injury." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-61566.

Full text
Abstract:
The importance of cell membrane integrity for normal cell function and indeed survival is well established, yet the role of membrane disruption in cellular pathology is seldom considered except as a prelude to, or indication of, cell death. However, evidence from diverse fields strongly implicates membrane disruption as a key precipitating event in the pathological responses to various stimuli. Dynamic mechanical loading of neural cells produces an acute disruption of the plasma membrane as indicated by a rapid and transient release of LDH from the cytoplasm of injured cells. In this report, we show that this cellular level injury is not immediately fatal, but rather gives rise to a cascade of signaling events that lead to cell death in the long term. In our model, over 50% of the cells were dead at 24 hours post injury, the majority of which were apoptotic as assessed by the TUNEL assay using flow cytometry. Though many of the signaling pathways involved in this response to injury have been studied, the link between the initial membrane damage and the subsequent signaling is poorly understood. We report for the first time that treating injured neurons with an agent that promotes resealing of membrane pores can rescue the cells from both necrotic cell death and apoptosis at 24 hours post injury. Treatment with the nonionic surfactant, poloxamer 188 (P188), at 15 minutes post injury restored cell viability at 24 hours to control values. The role of the pro-apoptosis MAP kinase, p38, in cell death following injury was investigated using Western blot analysis. Activation of p38 was increased over 2-fold at 15 minutes post injury. P188 treatment at 10 minutes inhibited p38 activation. However, treatment with a specific inhibitor of p38 activation produced only a partial reduction in apoptosis and had no effect on necrotic cell death. These data suggest multiple signaling pathways are involved in the long term response of neurons to mechanical injury. Furthermore, the putative mechanism of action of P188 to promote membrane resealing suggests that the acute membrane damage due to trauma is a critical precipitating event lying upstream of the many signaling cascades that contribute to the subsequent pathology.
APA, Harvard, Vancouver, ISO, and other styles
4

Helfield, Brandon, Xucai Chen, Simon Watkins, and Flordeliza Villanueva. "Notice of Removal: Insight into the plasma membrane resealing and calcium signaling dynamics of sonoporation." In 2017 IEEE International Ultrasonics Symposium (IUS). IEEE, 2017. http://dx.doi.org/10.1109/ultsym.2017.8092598.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nganga, Rose. "Abstract 4298: FTY720 induces necroptosis in lung cancer by modulating ceramide signaling at the plasma membrane." In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-4298.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Abraham, Adam C., Megan L. Killian, Roger C. Haut, and Tammy L. Haut Donahue. "Long Term Effect of P188 on Meniscus Preservation Following Blunt Trauma." In ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80775.

Full text
Abstract:
Acute knee joint injury has been associated with the development and progression of secondary osteoarthritis (OA). Previous work implicates that acute damage to tissue matrix and cells of the meniscus and articular cartilage may play important roles in early-stage OA [1]. Additionally, it has been shown that articular cartilage matrix repair hinges on chondrocyte preservation [2]. Therefore, inhibition of cell death may halt tissue degeneration. Recently, the FDA-approved surfactant Poloxamer 188 (P-188) has been shown to decrease acute cell death by repair of its plasma membrane, as well as mediate p38 signaling and subsequent inflammatory and apoptotic signaling leading to a reduction in degeneration of impacted cartilage [3, 4]. Therefore, it was hypothesized that matrix glycosaminoglycans of the meniscus will be preserved in the long-term following traumatic impaction and subsequent treatment with P-188.
APA, Harvard, Vancouver, ISO, and other styles
7

Michael, James, Jeremy G. T. Wurtzel, and Lawrence E. Goldfinger. "Abstract 4036: Palmitoylated Ras-driven MAPK signaling, transformation and tumorigenesis, but not tumor progression, are spatially regulated by plasma membrane microdomains." In Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-4036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Qian, David, Jinyoung Byun, Xiangjun Xiao, Stephanie Her, Arief Suriawinata, Christopher Amos, and Richard Barth. "Abstract 2233: PI3K/Akt/mTOR signaling and plasma membrane proteins are implicated in responsiveness to adjuvant dendritic cell vaccination for metastatic colorectal cancer." In Proceedings: AACR 107th Annual Meeting 2016; April 16-20, 2016; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-2233.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Moran, Emma C., Pedro M. Baptista, Kenichiro Nishii, David Wasnick, Shay Soker, and Jessica L. Sparks. "Expression of Primary Cilia on Liver Stem and Progenitor Cells: Potential Role for Mechanosensing in Liver Development." In ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14122.

Full text
Abstract:
The primary cilium is a non-motile organelle that projects out from the plasma membrane of many cell types in the body. It consists of an axoneme with microtubules arranged in a 9+0 arrangement that extends from the mother centriole contained within the basal body. Once thought to be a non-essential organelle, it is now known that primary cilia have an important role in embryonic and post-natal development, as well as maintenance of adult tissues. Mutations affecting primary ciliary development result in a class of serious diseases known as ciliopathies [1, 2]. Recent research suggests that the primary cilia/ centrosomes might play a role in embryonic stem cell differentiation through cell cycle regulation and their association with the Hedgehog signaling pathway [3, 4].
APA, Harvard, Vancouver, ISO, and other styles
10

Francke, Eric, Michelle K. Elfervig, Ajay Sood, Thomas D. Brown, Donald K. Bynum, and Albert J. Banes. "Fluid-Induced Shear Stress Stimulates Ca2+ Signaling in Human Tendon Epitenon Cells." In ASME 1999 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/imece1999-0401.

Full text
Abstract:
Abstract Tendon cells reside in an environment rich in mechanical stimuli and respond to these stimuli with a variety of activities. Whole tendon, ex vivo, responds to cyclic stretch by increasing DNA and collagen synthesis (Banes et al., 1999). Cultured epitenon and internal cells from tendon respond synergistically to cyclic tensile strain and a growth factor (Banes et al., 1995). Tendon cells stimulated by plasma membrane indentation with a micropipet propagate intercellular calcium waves to neighboring cells via gap junctions (Kenamond et al., 1997). Tendon cells subjected to equibiaxial cyclic stretching signal with a transient rise in intracellular calcium (Kenamond et al., 1998). Recently, it has been shown that connective tissue cells are responsive to fluid-induced shear stress similar to cells of the vascular system. Moreover, Brown and coworkers have shown that apparati used to apply substrate tension to cultured cells have limitations that include a potentially confounding component of fluid-induced shear stress (Brown et al., 1998). Hence, there is a concern that a given cell response to substrate stretching may actually involve a response to shear stress or some combination of the two stimuli. We have designed a parallel plate, laminar flow apparatus that provides regulated fluid-induced shear stress and subjected tendon cells to shear stresses of 0, 5, 10, 15 and 20 dynes/cm2. This will enable us to make a direct comparison between fluid-induced shear stress and substrate deformation on tendon cell signaling and downstream gene responses.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Plasma membrane signaling"

1

Yalovsky, Shaul, and Julian Schroeder. The function of protein farnesylation in early events of ABA signal transduction in stomatal guard cells of Arabidopsis. United States Department of Agriculture, January 2002. http://dx.doi.org/10.32747/2002.7695873.bard.

Full text
Abstract:
Loss of function mutations in the farnesyltransferase β subunit gene ERA1 (enhanced response to abscisic acid), cause abscisic acid hypersensitivity in seedlings and in guard cells. This results in slowed water loss of plants in response to drought. Farnesyltransferase (PFT) catalyses the attachment of the 15-carbon isoprenoid farnesyl to conserved cysteine residues located in a conserved C-terminal domain designated CaaX box. PFT is a heterodimeric protein comprised of an a and b sununits. The a subunit is shared between PFT and geranylgeranyltransferase-I (PGGTI) which catalyses the attachemt of the 20-carbon isoprenoid geranylgeranyl to CaaX box proteins in which the last amino acid is almost always leucine and in addition have a polybasic domain proximal to the CaaL box. Preliminary data presented in the proposal showed that increased cytoplasmic Ca2+ concentration in stomal guard cells in response to non-inductive ABA treatements. The goals set in the proposal were to characterize better how PFT (ERA1) affects ABA induced Ca2+ concentrations in guard cells and to identify putative CaaX box proteins which function as negative regulators of ABA signaling and which function is compromised in era1 mutant plants. To achieve these goals we proposed to use camelion Ca2+ sensor protein, high throughput genomic to identify the guard cell transcriptome and test prenylation of candidate proteins. We also proposed to focus our efforts of RAC small GTPases which are prenylated proteins which function in signaling. Our results show that farnesyltransferaseprenylates protein/s that act between the points of ABA perception and the activation of plasma membrane calcium influx channels. A RAC protein designated AtRAC8/AtRop10 also acts in negative regulation of ABA signaling. However, we discovered that this protein is palmitoylated and not prenylated although it contains a C-terminal CXXX motif. We further discovered a unique C-terminal sequence motif required for membrane targeting of palmitoylatedRACs and showed that their function is prenylation independent. A GC/MS based method for expression in plants, purification and analysis of prenyl group was developed. This method would allow highly reliable identification of prenylated protein. Mutants in the shared α subunit of PFT and PGGT-I was identified and characterized and was shown to be ABA hypersensitive but less than era1. This suggested that PFT and PGGT-I have opposing functions in ABA signaling. Our results enhanced the understanding of the role of protein prenylation in ABA signaling and drought resistance in plants with the implications of developing drought resistant plants. The results of our studies were published 4 papers which acknowledge support from BARD.
APA, Harvard, Vancouver, ISO, and other styles
2

Philosoph-Hadas, Sonia, Peter B. Kaufman, Shimon Meir, and Abraham H. Halevy. Inhibition of the Gravitropic Shoot Bending in Stored Cut Flowers Through Control of Their Graviperception: Involvement of the Cytoskeleton and Cytosolic Calcium. United States Department of Agriculture, December 2005. http://dx.doi.org/10.32747/2005.7586533.bard.

Full text
Abstract:
Original objectives: The basic goal of the present project was to study the mechanism involved in shoot graviperception and early transduction, in order to determine the sequence of events operating in this process. This will enable to control the entire process of gravity-induced differential growth without affecting vertical growth processes essential for development. Thus, several new postulated interactions, operating at the perception and early transduction stages of the signaling cascade leading to auxin-mediated bending, were proposed to be examined in snapdragon spikes and oat shoot pulvini, according to the following research goals: 1) Establish the role of amyloplasts as gravireceptors in shoots; 2) Investigate gravity-induced changes in the integrity of shoot actin cytoskeleton (CK); 3) Study the cellular interactions among actin CK, statoliths and cell membranes (endoplasmic reticulum - ER, plasma membrane - PM) during shoot graviperception; 4) Examine mediation of graviperception by modulations of cytosolic calcium - [Ca2+]cyt, and other second messengers (protein phosphorylation, inositol 1,4,5-trisphosphate - IP3). Revisions: 1) Model system: in addition to snapdragon (Antirrhinum majus L.) spikes and oat (Avena sativa) shoot pulvini, the model system of maize (Zea mays) primary roots was targeted to confirm a more general mechanism for graviperception. 2) Research topic: brassinolide, which were not included in the original plan, were examined for their regulatory role in gravity perception and signal transduction in roots, in relation to auxin and ethylene. Background to the topic: The negative gravitropic response of shoots is a complex multi-step process that requires the participation of various cellular components acting in succession or in parallel. Most of the long-lasting studies regarding the link between graviperception and cellular components were focused mainly on roots, and there are relatively few reports on shoot graviperception. Our previous project has successfully characterized several key events occurring during shoot bending of cut flowers and oat pulvini, including amyloplast displacement, hormonal interactions and differential growth analysis. Based on this evidence, the present project has focused on studying the initial graviperception process in flowering stems and cereal shoots. Major conclusions and achievements: 1) The actin and not the microtubule (MT) CK is involved in the graviperception of snapdragon shoots. 2) Gravisensing, exhibited by amyloplast displacement, and early transduction events (auxin redistribution) in the gravitropic response of snapdragon spikes are mediated by the acto-myosin complex. 3) MTs are involved in stem directional growth, which occurs during gravitropism of cut snapdragon spikes, but they are not necessary for the gravity-induced differential growth. 4) The role of amyloplasts as gravisensors in the shoot endodermis was demonstrated for both plant systems. 5) A gravity-induced increase in IP.
APA, Harvard, Vancouver, ISO, and other styles
3

Delmer, Deborah P., Douglas Johnson, and Alex Levine. The Role of Small Signal Transducing Gtpases in the Regulation of Cell Wall Deposition Patterns in Plants. United States Department of Agriculture, August 1995. http://dx.doi.org/10.32747/1995.7570571.bard.

Full text
Abstract:
The combined research of the groups of Delmer, Levine and Johnson has led to a number of interesting findings with respect to the function of the small GTPase Rac in plants and also opened up new leads for future research. The results have shown: 1) The Rac13 protein undergoes geranylgeranlyation and is also translocated to the plasma membrane as found for Rac in mammals; 2) When cotton Rac13 is highly- expressed in yeast, it leads to an aberrant phenotype reminiscent of mutants impaired in actin function, supporting a role for Rac13 in cytoskeletal organization; 3) From our searches, there is no strong evidence that plants contain homologs of the related CDC42 genes found in yeast and mammals; 4) We have identified a rather unique Rac gene in Arabidopsis that has unusual extensions at both the N- and C-terminal portions of the protein; 5) New evidence was obtained that an oxidative burst characterized by substantial and sustained production of H202 occurs coincident with the onset of secondary wall synthesis in cotton fibers. Further work indicates that the H202 produced may be a signal for the onset of this phase of development and also strongly suggests that Rac plays an important role in signaling for event. Since the secondary walls of plants that contain high levels of lignin and cellulose are the major source of biomass on earth, understanding what signals control this process may well in the future have important implications for manipulating the timing and extent of secondary wall deposition. 6) When the cotton Rac13 promoter is fused to the reporter gene GUS, expression patterns in Arabidopsis indicate very strong and specific expression in developing trichomes and in developing xyelm. Since both of these cell types are engaged in secondary wall synthesis, this further supports a role for Rac in signaling for onset of this process. Since cotton fibers are anatomically defined as trichomes, these data may also be quite useful for future studies in which the trichomes of Arabidopsis may serve as a model for cotton fiber development; the Rac promoter can therefore be useful to drive expression of other genes proposed to affect fiber development and study the effects on the process; 7) The Rac promoter has also been shown to be the best so far tested for use in development of a system for transient transformation of developing cotton fibers, a technique that should have many applications in the field of cotton biotechnology; 8) One candidate protein that may interact with Rac13 to be characterized further in the future is a protein kinase that may be analogous to the PAK kinase that is known to interact with Rac in mammals.
APA, Harvard, Vancouver, ISO, and other styles
4

Avni, Adi, and Gitta L. Coaker. Proteomic investigation of a tomato receptor like protein recognizing fungal pathogens. United States Department of Agriculture, January 2015. http://dx.doi.org/10.32747/2015.7600030.bard.

Full text
Abstract:
Maximizing food production with minimal negative effects on the environment remains a long-term challenge for sustainable food production. Microbial pathogens cause devastating diseases, minimizing crop losses by controlling plant diseases can contribute significantly to this goal. All plants possess an innate immune system that is activated after recognition of microbial-derived molecules. The fungal protein Eix induces defense responses in tomato and tobacco. Plants recognize Eix through a leucine-rich-repeat receptor- like-protein (LRR-RLP) termed LeEix. Despite the knowledge obtained from studies on tomato, relatively little is known about signaling initiated by RLP-type immune receptors. The focus of this grant proposal is to generate a foundational understanding of how the tomato xylanase receptor LeEix2 signals to confer defense responses. LeEix2 recognition results in pattern triggered immunity (PTI). The grant has two main aims: (1) Isolate the LeEix2 protein complex in an active and resting state; (2) Examine the biological function of the identified proteins in relation to LeEix2 signaling upon perception of the xylanase elicitor Eix. We used two separate approaches to isolate receptor interacting proteins. Transgenic tomato plants expressing LeEix2 fused to the GFP tag were used to identify complex components at a resting and activated state. LeEix2 complexes were purified by mass spectrometry and associated proteins identified by mass spectrometry. We identified novel proteins that interact with LeEix receptor by proteomics analysis. We identified two dynamin related proteins (DRPs), a coiled coil – nucleotide binding site leucine rich repeat (SlNRC4a) protein. In the second approach we used the split ubiquitin yeast two hybrid (Y2H) screen system to identified receptor-like protein kinase At5g24010-like (SlRLK-like) (Solyc01g094920.2.1) as an interactor of LeEIX2. We examined the role of SlNRC4a in plant immunity. Co-immunoprecipitation demonstrates that SlNRC4a is able to associate with different PRRs. Physiological assays with specific elicitors revealed that SlNRC4a generally alters PRR-mediated responses. SlNRC4a overexpression enhances defense responses while silencing SlNRC4 reduces plant immunity. We propose that SlNRC4a acts as a non-canonical positive regulator of immunity mediated by diverse PRRs. Thus, SlNRC4a could link both intracellular and extracellular immune perception. SlDRP2A localizes at the plasma membrane. Overexpression of SlDRP2A increases the sub-population of LeEIX2 inVHAa1 endosomes, and enhances LeEIX2- and FLS2-mediated defense. The effect of SlDRP2A on induction of plant immunity highlights the importance of endomembrane components and endocytosis in signal propagation during plant immune . The interaction of LeEIX2 with SlRLK-like was verified using co- immunoprecipitation and a bimolecular fluorescence complementation assay. The defence responses induced by EIX were markedly reduced when SlRLK-like was over-expressed, and mutation of slrlk-likeusing CRISPR/Cas9 increased EIX- induced ethylene production and SlACSgene expression in tomato. Co-expression of SlRLK-like with different RLPs and RLKs led to their degradation, apparently through an endoplasmic reticulum-associated degradation process. We provided new knowledge and expertise relevant to expression of specific be exploited to enhance immunity in crops enabling the development of novel environmentally friendly disease control strategies.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography