Academic literature on the topic 'Plasma interactions'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Plasma interactions.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Plasma interactions"

1

Kallenbach, A., M. Balden, R. Dux, T. Eich, C. Giroud, A. Huber, G. P. Maddison, et al. "Plasma surface interactions in impurity seeded plasmas." Journal of Nuclear Materials 415, no. 1 (August 2011): S19—S26. http://dx.doi.org/10.1016/j.jnucmat.2010.11.105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bruggeman, P. J., A. Bogaerts, J. M. Pouvesle, E. Robert, and E. J. Szili. "Plasma–liquid interactions." Journal of Applied Physics 130, no. 20 (November 28, 2021): 200401. http://dx.doi.org/10.1063/5.0078076.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Boeuf, J. P., P. Belenguer, and T. Hbid. "Plasma particle interactions." Plasma Sources Science and Technology 3, no. 3 (August 1, 1994): 407–17. http://dx.doi.org/10.1088/0963-0252/3/3/026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Goeckner, M. J., C. T. Nelson, S. P. Sant, A. K. Jindal, E. A. Joseph, B. S. Zhou, G. Padron-Wells, B. Jarvis, R. Pierce, and L. J. Overzet. "Plasma-surface interactions." Journal of Physics: Conference Series 133 (October 1, 2008): 012010. http://dx.doi.org/10.1088/1742-6596/133/1/012010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lafleur, Trevor, Julian Schulze, and Zoltan Donkó. "Plasma-surface interactions." Plasma Sources Science and Technology 28, no. 4 (April 16, 2019): 040201. http://dx.doi.org/10.1088/1361-6595/ab1380.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hess, Dennis W. "Plasma–material interactions." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 8, no. 3 (May 1990): 1677–84. http://dx.doi.org/10.1116/1.576829.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

F�lthammar, Carl-Gunne. "Magnetospheric plasma interactions." Astrophysics and Space Science 214, no. 1-2 (April 1994): 3–17. http://dx.doi.org/10.1007/bf00982321.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Neubauer, F. M. "Satellite plasma interactions." Advances in Space Research 10, no. 1 (January 1990): 25–38. http://dx.doi.org/10.1016/0273-1177(90)90083-c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chang, J. P., and J. W. Coburn. "Plasma–surface interactions." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 21, no. 5 (September 2003): S145—S151. http://dx.doi.org/10.1116/1.1600452.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Neyts, Erik C. "Plasma-Surface Interactions in Plasma Catalysis." Plasma Chemistry and Plasma Processing 36, no. 1 (October 16, 2015): 185–212. http://dx.doi.org/10.1007/s11090-015-9662-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Plasma interactions"

1

Thomas, Christopher B. "Plasma interactions in a plasma erosion opening switch." Thesis, Monterey, California. Naval Postgraduate School, 1991. http://hdl.handle.net/10945/27210.

Full text
Abstract:
Approved for public release; distribution is unlimited
Plasma Erosion Opening Switches (PEOS) are important elements in pulsed power equipment. The conduction and opening properties of these switches are highly dependent on the near cathode electric and magnetic fields, and plasma surface interactions. The cathode interaction is highly nonuniform, and micron sized cathode spots form within nanoseconds. The mechanism for the formation of these spots and their contribution to the conduction and opening phases of the switch is not yet well understood. The existing model of explosive electron emission does not adequately explain the performance of the switch during operation. The proposed new model for the near cathode effects accounts for time delays in the onset of conduction in the switch which have been seen experimentally. This is the first experiment in a series to verify this model, and to model a possible mechanism for cessation of conduction.
APA, Harvard, Vancouver, ISO, and other styles
2

Cameron, Richard. "Dust-plasma interactions in the plasma edge region." Thesis, Imperial College London, 2016. http://hdl.handle.net/10044/1/46194.

Full text
Abstract:
This thesis concerns the interaction of small, particulate, solid matter - 'dust' - with plasmas, in the plasma edge region where such dust is commonly found. Dust in this region can have a significant impact on a variety of industrial plasma applications, and it is low-temperature industrial plasmas that form the focus of this work. A novel model for the sheath region at the edge of a plasma is proposed, to account for the loss of electrons at the plasma boundary. This is then compared to an existing Boltzmann electron model; significant differences are noted in the sheath structure, and consequently the charging and dynamics of dust in the plasma sheath. The effect of sparse ion collisions in the vicinity of a dust grain near the plasma edge is also investigated. The strong plasma flow in the edge region is found to significantly increase collisional charging of dust grains. Somewhat counter-intuitively, it is found that even sparse collisions can play a significant (and in fact dominant) role in the charging and shielding of dust grains at the edge of a plasma. The length-scale over which the charge on such grains is shielded by the plasma is found to be significantly less than the Debye length. Together, the altered grain charging and shielding behaviour have the potential to fundamentally alter how dust grains interact with edge-plasmas.
APA, Harvard, Vancouver, ISO, and other styles
3

Lowry, Christopher Graham. "Plasma-limiter interactions on JET." Thesis, Imperial College London, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.392350.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rae, Stuart Campbell. "Short-pulse laser-plasma interactions." Thesis, University of Oxford, 1991. http://ora.ox.ac.uk/objects/uuid:c429d2ee-64d4-415a-b799-f5436d19ccc9.

Full text
Abstract:
This thesis deals with several theoretical aspects of the interaction of an intense femtosecond laser pulse with a plasma. A mechanism for the enhancement of the collisional absorption of light at high intensities is described, involving the direct excitation of collective modes of the plasma, and the importance of this mechanism for a solid-density laser-produced plasma is studied under a range of conditions. An intensity-dependent collision rate is used in a numerical calculation of the reflectivity of a steep-gradient plasma, such as might be produced by an intense femtosecond laser pulse, and the conditions required to maximize absorption at high intensities are determined. The relative contributions of field-induced ionization and collisional ionization in laser-produced plasmas are studied, and it is shown that the behaviour of a gaseous plasma is almost solely governed by the field-induced process. A model is developed to simulate the propagation of an intense femtosecond laser pulse through an initially neutral gas, and this model is used to make predictions about spectral modifications to the laser pulse. Under certain conditions the spectrum is significantly broadened and suffers an overall blue shift. Quantitative fitting of theoretical spectra to experimental results in the literature is attempted, but is complicated by associated defocusing effects in the plasma. Field-induced ionization can produce a gaseous plasma which is significantly colder, for the same degree of ionization, than a plasma produced by collisional ionization. One possible application for a cold highly-ionized plasma is in a recombination x-ray laser, and the propagation model allows the calculation of the plasma temperature, which is a crucial parameter in assessing the feasibility of such schemes.
APA, Harvard, Vancouver, ISO, and other styles
5

Blackburn, Thomas George. "QED effects in laser-plasma interactions." Thesis, University of Oxford, 2015. http://ora.ox.ac.uk/objects/uuid:d026b091-f278-4fbe-b27e-bd6af4a91b7a.

Full text
Abstract:
It is possible to reach the radiation-reaction–dominated regime in today’s high-intensity laser facilities, using the collision of a wakefield-accelerated GeV electron beam with a 30 fs laser pulse of intensity 1022 Wcm-2. This would demonstrate that the yield of high energy gamma rays is increased by the stochastic nature of photon emission: a beam of 109 electrons will emit 6300 photons with energy > 700 MeV, 60 times the number predicted classically. Detecting those photons, or a prominent low energy peak in the electron beam's post-collision energy spectrum, will provide strong evidence of quantum radiation reaction; we place constraints on the accuracy of timing necessary to achieve this. This experiment would provide benchmarking for the simulations that will be used to study the plasmas produced in the next generation of laser facilities. With focused intensities > 1023 Wcm-2, these will be powerful enough to generate high fluxes of gamma rays and electron-positron pairs from laser–laser and laser–solid interactions. It will become possible to test the physics of exotic astrophysical phenomena, such as pair cascades in pulsar magnetospheres, and explore fundamental aspects of quantum electrodynamics (QED). To that end we will discuss: classical theories of radiation reaction; QED processes in intense fields; and a Monte Carlo algorithm by which the latter may be included in particle-in-cell codes. The feedback between QED processes and classical plasma dynamics characterises a new regime we call QED-plasma physics.
APA, Harvard, Vancouver, ISO, and other styles
6

Surdu-Bob, Carmen Cristina. "Surface : plasma interactions in GaAs subjected to capacitively coupled RF plasmas." Thesis, Aston University, 2002. http://publications.aston.ac.uk/8000/.

Full text
Abstract:
Surface compositional changes in GaAs due to RF plasmas of different gases have been investigated by XPS and etch rates were measured using AFM. Angular Resolved XPS (ARXPS) was also employed for depth analysis of the composition of the surface layers. An important role in this study was determination of oxide thickness using XPS data. The study of surface - plasma interaction was undertaken by correlating results of surface analysis with plasma diagnosis. Different experiments were designed to accurately measure the BEs associated with the Ga 3d, Ga 2P3/2 and LMM peaks using XPS analysis and propose identification in terms of the oxides of GaAs. Along with GaAs wafers, some reference compounds such as metallic Ga and Ga2O3 powder were used. A separate study aiming the identification of the GaAs surface oxides formed on the GaAs surface during and after plasma processing was undertaken. Surface compositional changes after plasma treatment, prior to surface analysis are considered, with particular reference to the oxides formed in the air on the activated surface. Samples exposed to ambient air for different periods of time and also to pure oxygen were analysed. Models of surface processes were proposed for explanation of the stoichiometry changes observed with the inert and reactive plasmas used. In order to help with the understanding of the mechanisms responsible for surface effects during plasma treatment, computer simulation using SRIM code was also undertaken. Based on simulation and experimental results, models of surface phenomena are proposed. Discussion of the experimental and simulated results is made in accordance with current theories and published results of different authors. The experimental errors introduced by impurities and also by data acquisition and processing are also evaluated.
APA, Harvard, Vancouver, ISO, and other styles
7

Neil, Alastair John. "Quasilinear theory of laser-plasma interactions." W&M ScholarWorks, 1992. https://scholarworks.wm.edu/etd/1539623827.

Full text
Abstract:
The interaction of a high intensity laser beam with a plasma is generally susceptible to the filamentation instability due to nonuniformities in the laser profile. In ponderomotive filamentation high intensity spots in the beam expell plasma by ponderomotive force, lowering the local density, causing even more light to be focused into the already high intensity region. The result--the beam is broken up into a filamentary structure.;Several optical smoothing techniques have been proposed to eliminate this problem. In the Random Phase Plates (RPS) approach, the beam is split into a very fine scale, time-stationary interference pattern. The irregularities in this pattern are small enough that thermal diffusion is then responsible for smoothing the illumination. In the Induced Spatial Incoherence (ISI) approach the beam is broken up into a larger scale but non-time-stationary interference pattern. In this dissertation we propose that the photons in an ISI beam resonantly interact with the sound waves in the wake of the beam. Such a resonant interaction induces diffusion in the velocity space of the photons. The diffusion will tend to spread the distribution of photons, thus if the diffusion time is much shorter than the e-folding time of the filamentation instability, the instability will be suppressed.;Using a wave-kinetic description of laser-plasma interactions we have applied quasilinear theory to model the resonant interaction of the photons in an ISI beam with the beam's wake field. We have derived an analytic expression for the transverse diffusion coefficient. The quasilinear hypothesis was tested numerically and shown to yield an underestimate of the diffusion rate. By comparing the quasilinear diffusion rate, {dollar}\gamma\sb{lcub}D{rcub}{dollar}, with the maximum growth rate for the ponderomotive filamentation of a uniform beam, {dollar}\gamma\sb{lcub}f\sb{lcub}max{rcub}{rcub}{dollar}, we have derived a worst case criterion for stability against ponderomotive filamentation: {dollar}{dollar}{lcub}\gamma\sb{lcub}f\sb{lcub}max{rcub}{rcub}\over \gamma\sb D{rcub} \sim .5 {lcub}\tilde f\sp5/\tilde D\sp5\over \vert \tilde E\vert\sp2 \tilde\omega\sbsp{lcub}0{rcub}{lcub}2{rcub}\tilde N\sp6{rcub}\ll 1.{dollar}{dollar}The tildaed quantities are scaled to the following fusion relevant reference values; laser intensity: {dollar}\vert E\vert\sp2{dollar} = 10{dollar}\sp{lcub}15{rcub}\vert\tilde E\vert{dollar} Watts cm,{dollar}\sp{lcub}-2{rcub}{dollar} focal length: {dollar}f = 30\tilde f{dollar}m, width of each ISI echelon: {dollar}D = .75\tilde D{dollar} cm, laser carrier frequency: {dollar}\omega\sb{lcub}0{rcub} = 7.5 \times 10\sp{lcub}15{rcub}\tilde\omega\sb0{dollar} s{dollar}\sp{lcub}-1{rcub}{dollar}, and the number of ISI echelons: {dollar}N = 20\tilde N{dollar}.
APA, Harvard, Vancouver, ISO, and other styles
8

McKenna, RossAllan D. "A study of laser plasma interactions in a cylindrical cavity." Thesis, University of British Columbia, 1990. http://hdl.handle.net/2429/29588.

Full text
Abstract:
A CO₂ laser system delivering a 12 J pulse with a FWHM of 2 ns on target was developed to serve as a driver for studies of laser plasma interactions within a cylindrical cavity. The system consisted of a hybrid oscillator, followed by an amplifier chain, and it achieved its design goals of delivering an intense CO₂ pulse, Gaussian in time and space, with a high contrast ratio on a reliable basis. The targets in which the plasma was produced consisted of small rectangular plates of lucite, with holes drilled through one of the long axes. The holes were 350 μm to 600 μm in diameter, and 10 mm in length. These dimensions allowed the laser beam, focused at the entrance of the hole, to produce sufficient intensity on the inner walls of the cylindrical cavity for plasma formation, while allowing the beam, with a waist diameter of 100 μm at the focus to deliver most of its energy within the cavity. The beam propagated via multiple reflections from the plasma through the cavity. Diagnostics were performed on the beam transmitted through the target. Streak camera images were collected of the intensity of visible emission from the plasma along the axis of the target. Anomalous results were obtained with respect to the reproducible observation of maximum visible light emission from regions at the far end cavity from where the laser beam is injected. Another unforseen but interesting result was the small divergence of the beam transmitted through the cavity. Preliminary models were developed to attempt to explain the observations.
Science, Faculty of
Physics and Astronomy, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
9

Fukumoto, Hiroshi. "Model Analysis of Plasma-Surface Interactions during Silicon Oxide Etching in Fluorocarbon Plasmas." 京都大学 (Kyoto University), 2012. http://hdl.handle.net/2433/158076.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Slikboer, Elmar. "Investigation of Plasma Surface Interactions using Mueller Polarimetry." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLX093/document.

Full text
Abstract:
Cette thèse examine une nouvelle méthode de diagnostic, appelée Polarimètrie de Mueller, pour l’étude des interactions plasma-surface. Cette technique d’imagerie permet la caractérisation optique résolue en temps des cibles exposées au plasma. Les matrices de Mueller mesurées sont analysées en utilisant la décomposition logarithmique donnant des informations polarimétriques sur la diattenuation, la dépolarisation et la biréfringence. Cette dernière est exploitée en examinant des matériaux optiquement actifs afin d’identifier des aspects spécifiques de l’interaction avec le plasma, tels que les champs électriques ou la température de surface.Ce travail se concentre sur les cibles électro-optiques, qui permettent principalement la détection de champs électriques induits par la charge de surface déposée lors de l’interaction. La biréfringence est couplée analytiquement au champ électrique, en rapportant le retard de phase du faisceau sonde de lumière polarisée, à l’ellipsoïde d’index perturbé suivant l’effet Pockels. Grâce à cette approche analytique, les matériaux ayant des propriétés électrooptiques spécifiques peuvent être choisis de telle manière que toutes les composantes individuelles de champ électrique (axiales et radiales) induites à l’intérieur de l’échantillon soient imagées séparément. Pour la première fois les composantes du champ électriques peuvent être découplées permettant de mieux comprendre la dynamique du plasma proche d’une surface diélectrique.Cette technique est utilisée pour étudier l’impact d’ondes d’ionisation sur des surfaces. Ces décharges, générées par un jet de plasma à pression atmosphérique dans la gamme kHz, sont des plasmas froids filamentaires généralement utilisés pour des applications diverses telles que la fonctionnalisation de surface de polymères ou des traitements biomédicaux, mais les méthodes de diagnostic disponibles pour étudier les effets induits sur les surfaces sont limités. L’imagerie de polarimètrie Mueller appliquée aux cibles électro-optiques permet d’examiner les champs axiaux et radiaux en termes d’amplitude (3-6 kV/cm), d’échelles spatiales (<1mm axiales and <1cm radiales) et d’échelles temporelles (< 1μs pulsée and < 10μs CA) pour divers paramètres de fonctionnement du jet, e.g. amplitude de tension et gaz environnant.Simultanément à la biréfringence transitoire induite par le champ électrique, un signal de fond constant est également observé. Il est induit par la contrainte résultante du gradient de température induit à l’intérieur du matériau ciblé. Une relation analytique est obtenue en utilisant l’effet photo-élastique, permettant de développer une procédure de fitting pour retrouver la distribution de température. Cette procédure est utilisée, après calibration, pour montrer que la température de l’échantillon peut varier jusqu’`a 25 degrés par rapport aux conditions ambiantes – tandis que les changements dans le champ électrique sont également mesurés – et dépend de la fréquence de la tension d’alimentation AC du jet de plasma. La détermination précise de la température induite dans les cibles est importante car la plupart des applications visent des échantillons thermosensibles.Enfin, ce travail montre comment des échantillons complexes (aussi bien en terme d’état de surface que de composition chimique) peuvent être examinés lors d’une interaction plasma-surface, en les combinant avec une cible électrooptique. En raison de l’ajout d’un échantillon complexe, une composante de dépolarisation est ajoutée due à la diffusion du faisceau lumineux polarisé. Les changements de dépolarisation sont liés à l’évolution de l’échantillon complexe au cours du traitement par plasma. Ceux-ci, couplés aux champs électriques mesurés simultanément, fournissent un outil de diagnostic unique pour examiner les interactions plasma-surface. Cela a été appliqué à un cas test où une seule couche de cellules d’oignon est exposée aux ondes d’ionisation générées par le jet de plasma froid
In this thesis, a new diagnostic method called Mueller Polarimetry is examined for the investigation of plasma-surface interactions. This imaging technique allows the time-resolved optical characterization of targets under plasma exposure. The measured Mueller matrices are analyzed by using the logarithmic decomposition providing polarimetric data on diattenuation, depolarization, and birefringence. The latter is used by examining materials that possess optically active behavior to identify specific aspects of the plasma interaction, e.g. electric fields or temperature.This work focusses on electro-optic targets, which primarily enables the detection of electric fields induced by surface charge deposited during the interaction. The birefringence is coupled to the externally induced electric field by analytically relating the phase retardance for the probing polarized light beam to the perturbed index ellipsoid, according to the Pockels effect. Through this analytical approach, materials with specific electro-optic properties can be chosen in such a way – together with the orientation of the Mueller polarimeter itself – that all the individual electric field components (axial and radial) induced inside the sample are imaged separately. This has never been done before and allows to better understand the plasma dynamics in the vicinity of a dielectric surface.It is used to investigate the surface impact by guided ionization waves generated by a kHz-driven atmospheric pressure plasma jet. These non-thermal filamentary discharges are generally applied to various samples for e.g. surface functionalization of polymers or biomedical treatment of organic tissues. However, available diagnostic tools are limited to study these interactions. Imaging Mueller polarimetry applied to electro-optic targets examines the axial and radial field patterns in terms of amplitude (3-6 kV/cm), spatial scales (< 1mm axial and <1cm radial), and timescales (<1μs pulsed and <10μs AC) for various operating parameters of the jet, for example voltage amplitude and surrounding gas.Simultaneous with the transient birefringence induced by the electric field, a constant background pattern is also observed. This results from strain induced by temperature gradients inside the targeted material. An analytical relation is obtained following the photo-elastic effect, which allowed a fitting procedure to be designed to retrieve the temperature pattern. This procedure is used after calibration to show that the temperature of the sample can vary up to 25 degrees relative to room conditions – while changes in the electric field are seen as well – depending on the operating frequency of the AC driven plasma jet. The accurate determination of the temperature is important since most applications involve temperature sensitive samples.Lastly, this work shows how complex samples (in terms of surface geometry and/or chemical composition) can be examined during a plasma-surface interaction. This is done by combining them with the electro-optic targets. Due to the addition of a (thin) complex sample, depolarization is added to the system through scattering of the polarized light beam. In-situ observed changes of depolarization relate to the evolution of the complex sample during the plasma treatment. This, coupled with the simultaneously monitored electric field patterns, provides a unique diagnostic tool to examine the plasma-surface interactions. This has been applied for a test case where a single layer of onion cells is exposed to the ionization waves generated by the non-thermal plasma jet
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Plasma interactions"

1

Scottish Universities Summer School in Physics (60th 2005 St. Andrews, Scotland). Laser-plasma interactions. Edited by Jaroszynski Dino A, Bingham R. A, and Cairns R. A. Boca Raton: Taylor & Francis, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

A, Jaroszynski Dino, Bingham R. A, and Cairns R. A, eds. Laser-plasma interactions. Boca Raton: Taylor & Francis, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Scottish Universities Summer School in Physics (60th 2005 St Andrews, Scotland). Laser-plasma interactions. Edited by Jaroszynski Dino A, Bingham R, and Cairns R. A. Boca Raton: Taylor & Francis, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Stefan, V. Alexander. Nonlinear electromagnetic radiation plasma interactions. La Jolla, CA: Stefan University Press, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Thomas, Christopher B. Plasma interactions in a plasma erosion opening switch. Monterey, Calif: Naval Postgraduate School, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

V, Vladimirov Sergey, ed. Modulational interactions in plasmas. Dordrecht: Kluwer Academic, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

McKenna, Paul, David Neely, Robert Bingham, and Dino Jaroszynski, eds. Laser-Plasma Interactions and Applications. Heidelberg: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00038-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Vladimirov, Sergey V. Modulational interactions in plasmas. Dordrecht: Springer, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

The physics of laser plasma interactions. Boulder, Colo: Westview Press, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

The physics of laser plasma interactions. Redwood City, Calif: Addison-Wesley, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Plasma interactions"

1

Nishikawa, Kyoji, and Masashiro Wakatani. "Wave-Plasma Interactions." In Plasma Physics, 240–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-662-02658-8_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nishikawa, Kyoji, and Masahiro Wakatani. "Wave-Plasma Interactions." In Plasma Physics, 240–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04078-2_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Nishikawa, Kyoji, and Masahiro Wakatani. "Wave-Plasma Interactions." In Plasma Physics, 240–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-662-03068-4_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kim, Hyun-Ha, Yoshiyuki Teramoto, and Atsushi Ogata. "Plasma-Catalyst Interactions." In Plasma Catalysis, 47–68. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05189-1_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mihailescu, Ion N., and Jörg Hermann. "Laser–Plasma Interactions." In Laser Processing of Materials, 49–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13281-0_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

d’Agostino, Riccardo. "Plasma-Surface Interactions." In Plasma Processing of Semiconductors, 221–42. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5884-8_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tachon, J. "Plasma Wall Interactions in Heated Plasmas." In Physics of Plasma-Wall Interactions in Controlled Fusion, 1005–66. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4757-0067-1_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Takabe, Hideaki. "Relativistic Laser Plasma Interactions." In Springer Series in Plasma Science and Technology, 203–38. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-49613-5_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kono, Mitsuo, and Miloš M. Škorić. "Relativistic Laser Plasma Interactions." In Nonlinear Physics of Plasmas, 415–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14694-7_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Malka, Victor. "Laser Plasma Accelerators." In Laser-Plasma Interactions and Applications, 281–301. Heidelberg: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00038-1_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Plasma interactions"

1

Cairns, R. A., I. Vorgul, R. Bingham, K. Ronald, D. C. Speirs, A. D. R. Phelps, S. L. McConville, et al. "Beam-Plasma Interactions." In NEW DEVELOPMENTS IN NONLINEAR PLASMA PHYSICS: Proceedings of the 2009 ICTP Summer College on Plasma Physics and International Symposium on Cutting Edge Plasma Physics. AIP, 2009. http://dx.doi.org/10.1063/1.3266816.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bron, Walter E., Gregory O. Smith, and Tibor Juhasz. "Plasma-phonon interactions." In Semiconductors '92, edited by Robert R. Alfano. SPIE, 1992. http://dx.doi.org/10.1117/12.137695.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Škorić, Miloš M., Bengt Eliasson, and Padma K. Shukla. "Relativistic Laser-Plasma Interactions." In NEW DEVELOPMENTS IN NONLINEAR PLASMA PHYSICS: Proceedings of the 2009 ICTP Summer College on Plasma Physics and International Symposium on Cutting Edge Plasma Physics. AIP, 2009. http://dx.doi.org/10.1063/1.3266794.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Schaaf, Peter. "Laser Plasma Material Interactions." In THE PHYSICS OF IONIZED GASES: 22nd Summer School and International Symposium on the Physics of Ionized Gases; Invited Lectures, Topical Invited Lectures and Progress Reports. AIP, 2004. http://dx.doi.org/10.1063/1.1843502.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Krstić, Predrag S., Carlos O. Reinhold, and Kevin B. Fournier. "Burning Plasma—Wall Interactions." In ATOMIC PROCESSES IN PLASMAS: Proceedings of the 16th International Conference on Atomic Processes in Plasmas. AIP, 2009. http://dx.doi.org/10.1063/1.3241212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Myra, J. R. "Nonlinear ICRF-Plasma Interactions." In RADIO FREQUENCY POWER IN PLASMAS: 16th Topical Conference on Radio Frequency Power in Plasmas. AIP, 2005. http://dx.doi.org/10.1063/1.2098187.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Silva, L. O. "Electroweak Interactions in Dense Plasmas." In PLASMA PHYSICS: 11th International Congress on Plasma Physics: ICPP2002. AIP, 2003. http://dx.doi.org/10.1063/1.1593962.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dumitrache, Cristiana, Cristiana Dumitrache, Vasile Mioc, and Nedelia A. Popescu. "Plasma Flows in Coronal Streamers—Numerical Simulation." In Flows, Boundaries, Interactions. AIP, 2007. http://dx.doi.org/10.1063/1.2790339.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

"Session: laser-plasma interactions and plasma diagnostics. II." In IEEE 1988 International Conference on Plasma Science. IEEE, 1988. http://dx.doi.org/10.1109/plasma.1988.132286.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kruer, W. L. "Long Pulse Laser-Plasma Interactions." In 1988 Los Angeles Symposium--O-E/LASE '88, edited by Hector A. Baldis and E. M. Campbell. SPIE, 1988. http://dx.doi.org/10.1117/12.965116.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Plasma interactions"

1

Dr. M. Rosenberg. DUST-PLASMA INTERACTIONS. Office of Scientific and Technical Information (OSTI), January 2010. http://dx.doi.org/10.2172/969918.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Baldis, H. Laser-Plasma Interactions in High-Energy-Density Plasmas. Office of Scientific and Technical Information (OSTI), October 2006. http://dx.doi.org/10.2172/900158.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dylla, H. F., M. G. Bell, W. R. Blanchard, F. P. Boody, N. Bretz, R. Budny, C. E. Bush, J. L. Cecchi, S. A. Cohen, and S. K. Combs. Plasma-material interactions in TFTR. Office of Scientific and Technical Information (OSTI), October 1986. http://dx.doi.org/10.2172/7018318.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Uckan, T. Plasma-Materials Interactions Test Facility. Office of Scientific and Technical Information (OSTI), November 1986. http://dx.doi.org/10.2172/6978780.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

MacGowan, B., R. Berger, and J. Fernandez. Laser-plasma interactions in NIF-scale plasmas (HLP5 and HLP6). Office of Scientific and Technical Information (OSTI), June 1996. http://dx.doi.org/10.2172/376965.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Stern, R. A. Ion Transport in Beam-Plasma Interactions. Fort Belvoir, VA: Defense Technical Information Center, May 1985. http://dx.doi.org/10.21236/ada169936.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kruer, W. Simulations of electromagnetic wave plasma interactions. Office of Scientific and Technical Information (OSTI), August 1986. http://dx.doi.org/10.2172/5351494.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Conn, R. W., and Y. Hirooka. PISCES Program: Plasma-materials interactions and edge-plasma physics research. Office of Scientific and Technical Information (OSTI), July 1992. http://dx.doi.org/10.2172/7154540.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Beyer, Richard A. Small-Scale Experiments in Plasma-Propellant Interactions. Fort Belvoir, VA: Defense Technical Information Center, September 2001. http://dx.doi.org/10.21236/ada396479.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Slough, John, Fumio Ohuchi, Richard Milroy, DuWayne L. Smith, Samuel Andreason, and Chris Pihl. Materials Analysis of Transient Plasma-Wall Interactions. Fort Belvoir, VA: Defense Technical Information Center, May 2014. http://dx.doi.org/10.21236/ada609812.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography