To see the other types of publications on this topic, follow the link: Plasma fysisk.

Dissertations / Theses on the topic 'Plasma fysisk'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 26 dissertations / theses for your research on the topic 'Plasma fysisk.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Ouahioune, Nedjma. "Čerenkov emission of whistler waves by electron holes." Thesis, Uppsala universitet, Institutionen för fysik och astronomi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-446395.

Full text
Abstract:
Electron holes are positively charged nonlinear structures in which trapped electrons are supported by a positive electrostatic potential. These structure are regularly observed in space and laboratory plasmas by means of diverging bipolar electric field signatures. Recent observations and simulations have shown that fast moving electron holes can generate electromagnetic whistler waves via Čerenkov emission. The fast moving positive charge correspond to localised currents which can potentially excite waves. The aim of the project is to study both theoretically and numerically the properties leading to the Čerenkov emission of whistler waves by three-dimensional electron holes. In addition, efforts are dedicated to the derivation of a model providing the properties of emitted whistlers. The model is compared with the observational features of electromagnetic whistler waves generated by electron holes.
APA, Harvard, Vancouver, ISO, and other styles
2

Jakubowska, Katarzyna. "Development of visible spectroscopic techniques for applications in plasma diagnostics." Licentiate thesis, Stockholm : KTH Physics, Royal Institute of Technology, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4252.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Shafiq, Muhammad. "Dusty plasma response to a moivng test charge." Licentiate thesis, KTH, Alfvén Laboratory Centre for Space and Fusion Plasma Physics, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-298.

Full text
Abstract:

This licentiate thesis reports analytical results for the electrostatic response to a test charge moving through dusty plasma. Two particular cases for a slowly moving test charge, namely, grain size distribution and grain charging dynamics are considered. Analytical results for the delayed shielding of a test charge due to dynamical grain charging in dusty plasma are also reported. In the first case, a dusty plasma in thermal equilibrium and with a distribution of grain sizes is considered. A size distribution is assumed which decreases exponentially with the grain mass for large sizes and gives a simple smooth reduction for small sizes. The electrostatic response to a slowly moving test charge, using a second order approximation is found and the effects of collisions are also investigated. It turns out that for this particular size distribution, there is a remarkably simple result that the resulting effective distribution for the electrostatic response is a kappa (generalized Lorentzian) distribution. In the second case, we present an analytical model for the shielding of a slowly moving test charge in a dusty plasma with dynamical grain charging for cases both with and without the collision effects. The response potential is treated as a power series in test charge velocity. Analytical expressions for the response potential are found up to second order in test charge velocity. The first-order dynamical charging term is shown to be the consequence of the delay in the shielding due to the dynamics of the charging process. It is concluded that the dynamical charging of the grains in a dusty plasma enhances the shielding of a test charge. To clarify the physics, a separate study is made where the charging is approximated by using a time delay. The resulting potential shows the delayed shielding effect explicitly. The terms in the potential that depend on the charging dynamics involve a spatial shift given by the test charge velocity and the charging time. This kind of work has relevance both in space and astrophysical plasmas.

APA, Harvard, Vancouver, ISO, and other styles
4

Carlsson, Ella. "Mars : plasma environment and surface." Doctoral thesis, Luleå, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-16797.

Full text
Abstract:
This doctoral thesis treats parts of the solar wind interaction with the Martian atmosphere and the water-related features known as gullies. The composition of the escaping plasma at Mars has been investigated in an analysis of data from the IMA sensor, which is a part of the ASPERA-3 instrument suit onboard the European satellite Mars Express. The goal of the investigation is to determine if there are any high abundances of escaping ion species incorporating carbon, such as in CO_2^+ . The most abundant ion species was found to be O^+ and O_2^+, followed by CO_2^+. The following ratios were identifed: CO_2^+/O^+ = 0:2 and O_2^+ /O^+ = 0:9. The escaping plasma, in form of ion beam events, has also been correlated to the magnetic anomalies found on the surface, where no clear association was found. Similar ion beams have also been detected on Venus, which does not have any crustal magnetic fields, and hence the fields are not required for the formation process of the beams. The ion beams' dependence of the direction of the solar wind convection electric field has also been studied, where a correlation was found, suggesting that the ion beams are accelerated by this field. The studies mentioned above are important in order to understand the evolution of Mars and its atmosphere, as well as plasma acceleration processes at non-magnetized planetary bodies. On 5 December 2006 the ASPERA instruments of both Venus Express and Mars Express detected a large enhancement in their respective background count level. These readings are associated with events of SEPs (Solar Energetic Particles), which are believed to be coupled with the CMEs (Coronal Mass Ejection) identified 43 ¡ 67 hours after the SEPs. The CMEs occurred on the far side of the sun (with respect to the locations of Venus and Mars), which indicates that these events can a®ect the space weather in areas situated 90 degrees in both azimuthal directions in the heliosphere with respect to the target. During this event the heavy ion outflow from the atmosphere of Mars increased by one order of magnitude, suggesting that EUV flux levels significantly affect the atmospheric loss from unmagnetized bodies. The gully formations have been investigated with data from the MOC, MOLA and TES instruments onboard the satellite Mars Global Surveyor. The features suggest that there has been fluvial erosion on the surface of Mars. The shallow and deep aquifer models remain the most plausible formation theories. Gully formation processes are important to understand since their eroding agent may be liquid water.
Godkänd; 2008; 20080206 (ysko)
APA, Harvard, Vancouver, ISO, and other styles
5

Almqvist, Nils. "Studies of plasma-facing materials and macromolecules using scanning probe microscopy." Doctoral thesis, Luleå tekniska universitet, Materialvetenskap, 1995. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-16824.

Full text
Abstract:
The main topic of this thesis is experimental analysis of material surfaces using scanning probe microscopies. These microscopes are used for characterization through high-resolution topographical imaging, but also for controlled modification of surfaces and molecules. The surface characterization includes evaluation and development of fractal methods for surface roughness determination. The term modification is used for manipulating the structures on a microscale by scraping them with a tiny tip. The major application of this technique in the present work is the analysis of effects induced by plasma-surface interactions. Such studies are fundamental in the understanding of erosion and deposition processes on the first wall in controlled fusion devices. In this work, scanning probe microscopes were for the first time used for studying such plasma-facing materials. Both the surface structure and composition have to be known in order to evaluate new wall-materials for fusion reactors. The materials studied here are graphites, SiC/Al coatings, graphite-silicon mixtures and various silicon carbide based composites. They were all exposed to plasmas, either to lowenergy deuterium plasmas and ions in laboratory experiments, or to the plasma in a socalled tokamak. The results show the usefulness of these high-resolution microscopes in the study of plasma-surface interaction. Several other surface sensitive techniques were also applied, at the home laboratories of our collaborators, the most important ones being Rutherford backscattering spectroscopy and nuclear reaction analysis. The scanning probe microscopy in combination with the ion-beam analysis made it possible to trace fine structural features on the surfaces and to measure the surface roughness. The main results are: (i) the detection of the initial stages of bubble/blister formation on CSi mixtures, SiC/AI coatings and graphites; (ii) the morphological changes and the physical properties of the silicon carbide composites; (iii) the distinction of radiation damages on different phases of multicomponent composites; (iv) the estimation of layer thickness with scanning probe microscopy; (v) the determination of the structure of codeposited layers formed during exposure in a tokamak; (vi) the uptake of deuterium by the materials. The atomic force microscope has also been used to study the human protein spectrin, and we managed to image free spectrins with molecular resolution in an almost natural environment. The elongated spectrin macromolecule was found to be 100 rim long and 5 nm broad. Indications of a substructure were observed. The force between the sensor tip and the molecules was crucial, both for sample movement, manipulation and image resolution. Therefore, the instrument was rebuilt to operate with so called tapping-mode in liquid. Preliminary results with this method on spectrin are presented.
Godkänd; 1995; 20070410 (ysko)
APA, Harvard, Vancouver, ISO, and other styles
6

Böhlmark, Johan. "Fundamentals of High Power Impulse Magnetron Sputtering." Doctoral thesis, Linköpings universitet, Plasma och beläggningsfysik, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-7359.

Full text
Abstract:
In plasma assisted thin film growth, control over the energy and direction of the incoming species is desired. If the growth species are ionized this can be achieved by the use of a substrate bias or a magnetic field. Ions may be accelerated by an applied potential, whereas neutral particles may not. Thin films grown by ionized physical vapor deposition (I-PVD) have lately shown promising results regarding film structure and adhesion. High power impulse magnetron sputtering (HIPIMS) is a relatively newly developed technique, which relies on the creation of a dense plasma in front of the sputtering target to produce a large fraction of ions of the sputtered material. In HIPIMS, high power pulses with a length of ~100 μs are applied to a conventional planar magnetron. The highly energetic nature of the discharge, which involves power densities of several kW/cm2, creates a dense plasma in front of the target, which allows for a large fraction of the sputtered material to be ionized. The work presented in this thesis involves plasma analysis using electrostatic probes, optical emission spectroscopy (OES), magnetic probes, energy resolved mass spectrometry, and other fundamental observation techniques. These techniques used together are powerful plasma analysis tools, and used together give a good overview of the plasma properties is achieved. from the erosion zone of the magnetron. The peak plasma density during the active cycle of the discharge exceeds 1019 electrons/m3. The expanding plasma is reflected by the chamber wall back into the center part of the chamber, resulting in a second density peak several hundreds of μs after the pulse is turned off. Optical emission spectroscopy (OES) measurements of the plasma indicate that the degree of ionization of sputtered Ti is very high, over 90 % in the peak of the pulse. Even at relatively low applied target power (~200 W/cm2 peak power) the recorded spectrum is totally dominated by radiation from ions. The recorded HIPIMS spectra were compared to a spectrum taken from a DC magnetron discharge, showing a completely different appearance. Magnetic field measurements performed with a coil type probe show significant deformation in the magnetic field of the magnetrons during the pulse. Spatially resolved measurements show evidence of a dense azimuthally E×B drifting current. Circulating currents mainly flow within 2 away cm from the target surface in an early part of the pulse, to later diffuse axially into the chamber and decrease in intensity. We record peak current densities of the E×B drift to be of the order of 105 A/m2. A mass spectrometry (MS) study of the plasma reveals that the HIPIMS discharge contains a larger fraction of highly energetic ions as compared to the continuous DC discharge. Especially ions of the target material are more energetic. Time resolved studies show broad distributions of ion energies in the early stage of the discharge, which quickly narrows down after pulse switch-off. Ti ions with energies up to 100 eV are detected. The time average plasma contains mainly low energy Ar ions, but during the active phase of the discharge, the plasma is highly metallic. Shortly after pulse switch-on, the peak value of the Ti1+/Ar1+ ratio is over 2. The HIPIMS discharge also contains a significant amount of doubly charged ions.
APA, Harvard, Vancouver, ISO, and other styles
7

Söderström, Daniel. "Modelling and Applications of the Hollow Cathode Plasma." Doctoral thesis, Uppsala universitet, Elektricitetslära, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-8747.

Full text
Abstract:
This thesis presents experimental and modelling research on atmospheric pressure hollow cathodes and hollow electrodes. Experiments with the hybrid hollow electrode activated discharge (H-HEAD), which is a combination of a hollow cathode and a microwave plasma source, is presented. The experiments show that this source is able to produce long plasma columns in air and nitrogen at atmospheric pressure and at very low gas flow rates. Measurements of the vibrational temperature of the nitrogen molecules are also presented in this thesis. The vibrational temperature is an indication of the electron temperature in the plasma, an important characteristic of the plasma. Modelling work on the hollow cathode at atmospheric pressure with fluid equations is also presented. It is shown that the inclusion of fast and secondary electrons, characteristic of the hollow cathode plasmas, increases the sheath width. The sheath width was found to be of the order of 100 μm. By modelling the plasma as highly collisional by using the drift-diffusion approximation, it was shown that the increase in sheath thickness was larger at lower pressures than at higher pressures. Still, the sheath width can be of the order of 100 μm. A pulsed atmospheric plasma in a hollow electrode geometry was also modelled by the drift-diffusion fluid equations, with the addition of the energy equation for electrons. Rate and transport coefficients for the electrons were calculated from the solution to the Boltzmann equation as functions of mean electron energy. The dynamics of the plasma at pulse rise time showed large electron density and mean energy peaks at the cathode ends, but also that these quantities were enhanced at the centre of the discharge, between the cathode plates.
APA, Harvard, Vancouver, ISO, and other styles
8

Rygaard, Lovisa, and Andreas Ström. "Simulations of fission fragments in VERDI : A study of the Plasma Delay Time phenomenon." Thesis, Uppsala universitet, Tillämpad kärnfysik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-412949.

Full text
Abstract:
The purpose of this project is to study the plasma delay time phenomenon in preparation for the construction of the VERDI spectrometer. To accomplish this, simulations of the spontaneous fissioning process of Cf-252 were created using the fission code GEF, as well as MATLAB. GEF has produced one million fission events, from which the time of flight and kinetic energy of each fission fragment have been calculated with classical mechanics, to replicate the experiment. To imitate the plasma delay time phenomenon, three different models, found in the literature, have been compared. Accounting for other realistic resolution effects and using the first model as the plasma delay time phenomenon, the absolute errors of the mass-yields reaches up to 4 u, whereas the second and third model display absolute errors up to 3 u. Furthermore, it is found that, despite the significant differences in the models' dependencies, the resulting effects are quite similar. All models are found to have a narrowing influence on the pre-neutron emission mass- yield distributions, resulting in an increased peak-to-valley ratio. In the detection of fission fragments, a higher peak-to-valley resolution is often associated with a better mass resolution. This study shows that the plasma delay time could have a misleading influence in regards to estimating an experimental mass resolution.
APA, Harvard, Vancouver, ISO, and other styles
9

Järleblad, Henrik. "Helical Magnetic Fields in the FEMIC Code for RF Heating of Fusion Plasmas." Thesis, KTH, Tillämpad fysik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-254432.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Eriksson, Jacob. "Fuel ion densities and distributions in fusion plasmas : Modeling and analysis for neutron emission spectrometry." Licentiate thesis, Uppsala universitet, Tillämpad kärnfysik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-192530.

Full text
Abstract:
Neutrons produced in fusion reactions in a magnetically confined plasma carry information about the distributions and densities of the fuel ions in the plasma. This thesis presents work where various theoretical models of different fuel ion distributions in the plasma are used to calculate modeled components of the neutron energy spectrum. The calculated components can then be compared with measured data, either to benchmark and validate the model or to derive various plasma parameters from the experimental data. Neutron spectra measured with the spectrometers TOFOR and the MPR, which are both installed at the JET tokamak in England, are used for this purpose. The thesis is based on three papers. The first paper presents the analysis of TOFOR data from plasmas heated with neutral beams and radio frequency waves tuned to the third harmonic of the deuterium cyclotron frequency, which creates fast (supra thermal) ions in the MeV range. It is found that effects of the finite Larmor radii of the fast ions need to be included in the modeling in order to understand the data. These effects are important for fast ion measurements if there is a gradient in the fast ion distribution function with a scale length that is comparable to - or smaller than - the width of the field of view of the measuring instrument, and if this scale length is comparable to - or smaller than - the Larmor radii of the fast ions. The second paper presents calculations of the neutron energy spectrum from the T(t,n)4He reaction, for JET relevant fuel ion distributions. This is to to form a starting point for the investigation of the possibility to obtain fast ion information from the t-t neutron spectrum, in a possible future deuterium-tritium campaign at JET. The t-t spectrum is more challenging to analyze than the d-d and d-t cases, since this reaction has three (rather than two) particles in the final state, which results in a broad continuum of neutron energies rather than a peak. However, the presence of various final state interactions - in particular between the neutron and the 4He - might still allow for spectrometry analysis. Finally, in Paper III, a method to derive the fuel ion ratio, nt/nd, is presented and applied to MPR data from the JET d-t campaign in 1997. The trend in the results are consistent with Penning trap measurements of the fuel ion ratio at the plasma edge, but the absolute numbers are not the same. Measuring the fuel ion ratio in the core plasma is an important task for fusion research, and also a very complicated one. Future work should aim at measuring this quantity in several independent ways, which should then be cross checked against each other.
APA, Harvard, Vancouver, ISO, and other styles
11

Savenko, Natalia. "MHD Stability and Confinement of Plasmas in a Single Mirror Cell." Doctoral thesis, Uppsala University, Division for Electricity and Lightning Research, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-6637.

Full text
Abstract:

Thermonuclear fusion is a promising energy source for the future. If an economically efficient thermonuclear reactor would be built it has to be a cheap, safe, and highly productive electric power plant, or, a heating plant.

The emphasis of this thesis is on the single cell mirror trap with a marginally stable minimum B vacuum magnetic field, the straight field line mirror field, which provides MHD stability of the system, absence of the radial drift even to the first order in plasma β , and a reduced magnetic flux tube ellipticity. Strong density depletion at the mirrors is proposed as a mean to build up a strong potential barrier for the electrons and thereby increase the electron temperature. Conditions to obtain an energy gain factor Q>10 are briefly analyzed. Current coils which could generate the derived magnetic field are proposed. A sloshing ion distribution function is constructed for the three dimensional ‘straight line mirror field’. The gyro centre Clebsch coordinates are found to be a new pair of motional invariants for this magnetic field. The gyro centre Clebsch coordinate invariants can be used to obtain complete solutions of the Vlasov equation, including the diamagnetic drift. These solutions show that the equilibria satisfy the locally omniginuity criterion to the first order in β .

Contributions of the plasma diamagnetism to the magnetic flux tube ellipticity are studied for the straight field line mirror vacuum magnetic field and a sloshing ion distribution. Computations employing ray tracing have shown that there is a modest increase in the ellipticity, but the effect is small if β <0.2 .

Adiabatic charged particle motion in general field geometry has been studied. A set of four independent stationary invariants, the energy, the magnetic moment, the radial drift invariant, and the bounce average parallel velocity is proposed to describe adiabatic equilibria.

APA, Harvard, Vancouver, ISO, and other styles
12

Servin, Martin. "Nonlinear interaction and propagation of gravitational and electromagnetic waves in plasmas." Doctoral thesis, Umeå University, Physics, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-122.

Full text
Abstract:

Gravitational waves and electromagnetic waves are important as carriers of energy and information. This thesis is devoted to the study of the propagation and interaction of these waves in plasmas, with emphasis on nonlinear effects and applications within astrophysics.

The physical systems are described by the Einstein-Maxwell-fluid equations or Einstein-Maxwell-Vlasov equations, when a kinetic treatment is required. The small amplitude and high-frequency approximation is employed for the gravitational waves, such that perturbative techniques can be applied and space-time can be considered locally flat, with a gravitational radiation field superimposed on it. The gravitational waves give rise to coupling terms that have the structure of effective currents in the Maxwell equations and an effective gravitational force in the equation of motion for the plasma. The Einstein field equations describe the evolution of the gravitational waves, with the perturbed energy-momentum density of the plasma and the electromagnetic field as a source.

The processes that are investigated are gravitational waves exciting electromagnetic waves in plasmas, altering the optical properties of plasmas and accelerating charged particles. The thesis also deals with the propagation propertities of gravitational and electromagnetic waves, e.g. effects due to resonant wave-particle interactions, plasma inhomogeneties and nonlinear self-interactions. It is also shown that plasmas that are not in thermodynamical equilibrium may release their free energy by emitting gravitational waves.

APA, Harvard, Vancouver, ISO, and other styles
13

Sorasio, Gianfranco. "Nonlinear Dust Particle Dynamics and Collective Effects in Complex Plasmas." Doctoral thesis, Umeå : Univ, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-74.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Torokoff, Kristel. "Field Theories and Vortices with Nontrivial Geometry." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Universitetsbiblioteket [distributör], 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-6744.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Tjulin, Anders. "Waves in space plasmas : Lower hybrid cavities and simple-pole distribution functions." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-3527.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Larsson, Daniel. "Cryogenic Etching of the Electroplating Mold for Improved Zone Plate Lenses." Thesis, KTH, Applied Physics, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-12109.

Full text
Abstract:

The fabrication of zone plate lenses that are used for focusing X-rays relies on nanofabrication techniques such as e-beam lithography, reactive ion etching, and electroplating. The circular grating-like zone plate pattern can have a smallest half-period, a so-called zone width, of down to 20 nm while it also needs to have a height that is 5 to 10 times the zone width to have good diffraction efficiency. This high aspect ratio structuring is a very challenging field of nanofabrication.

This diploma project has focused on improving the process step of fabricating the electroplating mold by cryo-cooling the polymer during the reactive ion etching with O2. The low temperature causes passivation of the sidewalls of the mold during etching which results in a more ideal rectangular profile of the high aspect ratio plating mold.

By etching at -100 °C, structures with highly vertical sidewalls and no undercut were realized. The experiments showed that there is a tradeoff between the anisotropy of the zone profile and the formation rate of polymer residue, so-called RIE grass. Through a proper choice of process parameters the grass could be completely removed without introducing any undercut.


QC 20100414
APA, Harvard, Vancouver, ISO, and other styles
17

Takman, Per. "Compact Soft X-Ray Microscopy : Sources, Optics and Instrumentation." Doctoral thesis, Stockholm : Tillämpad fysik, Kungliga Tekniska högskolan, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4342.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Lekander, Moa Li, and Alan Aliyali. "Simulations of silicon detector response in nuclear fission experiments : A study of the plasma delay time in an experiment performed at the Tandem lab." Thesis, Uppsala universitet, Tillämpad kärnfysik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-413013.

Full text
Abstract:
The goal of the project was to simulate a typical silicon detectorresponse in an experiment made at the Tandem lab in Uppsala. The plasma delay time was analyzed by simulating the experiment. Three different models of the plasma delay time were introduced and their effects on time of flight measurements were studied. A continuation of the main goal was to see if the inserted PDT models could be extracted from the simulations when being treated as a pseudo experiment, to see theoverall effectiveness of the experiment. When comparing the final simulations with actual measurements, it was concluded that the main properties of the detector response had been featured and that the simulations were successful. The successful extraction of the inserted plasma delay times and their dependencies on energy also proved that the experiment was a good one. The result of the project was that one of the models seemed to have a strong mass dependence, however with no clear dependence on the energy. The other two models showed a somewhat similar dependence on energy. One of the two models also showed a relatively weak mass dependence.
APA, Harvard, Vancouver, ISO, and other styles
19

Fogelqvist, Emelie. "Laboratory Soft X-Ray Cryo Microscopy: Source, System and Bio Applications." Doctoral thesis, KTH, Biomedicinsk fysik och röntgenfysik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-206428.

Full text
Abstract:
Soft x-ray microscopes routinely perform high-resolution 3D imaging of biological cells in their near-native environment with short exposure times at synchrotron radiation facilities. Some laboratory-sized microscopes are aiming to make this imaging technique more accessible to a wider scientific community. However, these systems have been hampered by source instabilities hindering routine imaging of biological samples with short exposure times. This Thesis presents work performed on the Stockholm laboratory x-ray microscope. A novel heat control system has been implemented, improving the stability of the laser-produced plasma source. In combination with recent upgrades to the imaging system and an improved cryofixation method, the microscope now has the capability to routinely produce images with 10-second exposure time of cryofixed biological samples. This has allowed for tomographic imaging of cell autophagy and cell-cell interactions. Furthermore, a numerical 3D image formation model is presented as well as a novel reconstruction approach dealing with the limited depth of focus in x-ray microscopes.

QC 20170505

APA, Harvard, Vancouver, ISO, and other styles
20

Backrud, Marie. "Cluster Observations and Theoretical Explanations of Broadband Waves in the Auroral Region." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-5809.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Jonsson, Kerstin. "Wafer Bonding for Spaceflight Applications : Processing and Characterisation." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-5853.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Norin, Lars. "Secondary Electromagnetic Radiation Generated by HF Pumping of the Ionosphere." Doctoral thesis, Uppsala universitet, Astronomi och rymdfysik, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-9393.

Full text
Abstract:
Electromagnetic waves can be used to transmit information over long distances and are therefore often employed for communication purposes. The electromagnetic waves are reflected off material objects on their paths and interact with the medium through which they propagate. For instance, the plasma in the ionosphere can refract and even reflect radio waves propagating through it. By increasing the power of radio waves injected into the ionosphere, the waves start to modify the plasma, resulting in the generation of a wide range of nonlinear processes, including turbulence, in particular near the reflection region. By systematically varying the injected radio waves in terms of frequency, power, polarisation, duty cycle, inclination, etc. the ionosphere can be used as an outdoor laboratory for investigating fundamental properties of the near-Earth space environment as well as of plasma turbulence. In such ionospheric modification experiments, it has been discovered that the irradiation of the ionosphere by powerful radio waves leads to the formation of plasma density structures and to the emission of secondary electromagnetic radiation, a phenomenon known as stimulated electromagnetic emission. These processes are highly repeatable and have enabled systematic investigations of the nonlinear properties of the ionospheric plasma. In this thesis we investigate features of the plasma density structures and the secondary electromagnetic radiation. In a theoretical study we analyse a certain aspect of the formation of the plasma structures. The transient dynamics of the secondary radiation is investigated experimentally in a series of papers, focussing on the initial stage as well as on the decay. In one of the papers we use the transient dynamics of the secondary radiation to reveal the intimate relation between certain features of the radiation and structures of certain scales. Further, we present measurements of unprecedentedly strong secondary radiation, attributed to stimulated Brillouin scattering, and report measurements of the secondary radiation using a novel technique imposed on the transmitted radio waves.
APA, Harvard, Vancouver, ISO, and other styles
23

Ullbrand, Jennifer. "A comparison of SPS and HP sintered, electroless copper plated carbon nanofibre composites for heat sink applications." Thesis, Linköping University, Department of Physics, Chemistry and Biology, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-21106.

Full text
Abstract:

The aim of this study is to synthesize a material with high thermal conductivity and a low coefficient of thermal expansion (CTE), useful as a heat sink. Carbon nanofibres (CNF) are first coated with copper by an electroless plating technique and then sintered to a solid sample by either spark plasma sintering (SPS) or hot pressing (HP). The final product is a carbon nanofibre reinforced copper composite. Two different fibre structures are considered: platlet (PL) and herringbone (HB). The influence of the amount of CNF reinforcement (6-24 %wt), on the thermal conductivity and CTE is studied. CNF has an excellent thermal conductivity in the direction along the fibre while it is poor in the transverse direction. The CTE is close to zero in the temperature range of interest. The adhesion of Cu to the CNF surface is in general poor and thus improving the the wetting of the copper by surface modifications of the fibres are of interest such that thermal gaps in the microstructure can be avoided. The poor wetting results in CNF agglomerates, resulting in an inhomogeneous microstructure. In this report a combination of three different types of surface modifications has been tested: (1) electroless deposition of copper was used to improve Cu impregnation of CNF; (2) heat treatment of CNF to improve wetting; and (3) introduction of a Cr buffer layer to further enhance wetting. The obtained composite microstructures are characterized in terms of chemical composition, grain size and degree of agglomeration. In addition their densities are also reported. The thermal properties were evaluated in terms of thermal diffusivity, thermal conductivity and CTE. Cr/Cu coated platelet fibres (6wt% of CNF reinforcement) sintered by SPS is the sample with the highest thermal conductivity, ~200 W/Km. The thermal conductivity is found to decrease with increasing content of CNFs.

APA, Harvard, Vancouver, ISO, and other styles
24

Pinto, Dias Daniela. "Topological properties of flat bands in generalized Kagome lattice materials." Thesis, KTH, Fysik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-301294.

Full text
Abstract:
Topological insulators are electronic materials that behave like an ordinary insulator in their bulk but have robust conducting states on their edge. Besides, in some materials the band structure presents completely flat bands, a special feature leading to strong interactions effects. In this thesis we present a study of the edge states of three particular two-dimensional models presenting flat bands: the honeycomb-Kagome, the $\alpha$--graphyne and a ligand decorated honeycomb-Kagome lattice models. We extend earlier work done on these lattice models by focusing on the topological nature of the edge states involving flat bands. We start by giving a review of the band structure theory and the tight-binding approximation. We then present several main topics in two-dimensional topological insulators such as the notion of topological invariants, the Kane-Mele model and the bulk-edge correspondence. Using these theoretical concepts we study the band structure of these lattices firstly without taking into account the spin and spin-orbit interations. We finally add these interactions to get their bulk band structures as well as the edge states. We observe how these spin-orbit interactions relieve degeneracies and allow for the emergence of edge states of topological nature. Since the lattices studied have an arrangement based on the honeycomb-Kagome lattice, two-dimensional materials having the structures of these lattices can be designed assembling metal ions and organic ligands. Therefore the results obtained could be used as a first hint to create new two-dimensional materials presenting topological properties.
Topologiska isolatorer är elektroniska material som uppför sig som en vanlig isolator i sin bulk men har robusta ledande stater på kanten. Dessutom presenterar bandstrukturen i vissa material helt platta band, en speciell egenskap som leder till starka interaktionseffekter. I denna avhandling presenterar vi en studie av kanttillstånden för tre speciella tvådimensionella modeller som presenterar platta band: bikakan-Kagome, $\alpha$-grafynen och en liganddekorerad honungskaka-Kagome modeller. Vi utökar tidigare arbete med dessa gittermodeller genom att fokusera på den topologiska karaktären hos kanttillstånd som innefattar platta band. Vi börjar med att ge en genomgång av bandstruktursteorin och den tätt bindande approximationen. Vi presenterar sedan flera huvudämnen i tvådimensionella topologiska isolatorer såsom begreppet topologiska invarianter, Kane-Mele modellen och bulk-kant korrespondensen. Med hjälp av dessa teoretiska begrepp studerar vi bandstrukturen för dessa gitter först utan att ta hänsyn till spinnen och spinnsorbital interaktioner. Vi lägger sedan till dessa interaktioner för att få sina bulkbandstrukturer såväl som kanttillstånden. Vi observerar hur dessa spinnsorbital interaktioner lindrar degenerationer och möjliggör uppkomsten av kanttillstånd av topologisk naturen. Eftersom de undersökta gitterna har ett arrangemang baserat på honungskaka-Kagome gitteren, kan tvådimensionella material med strukturerna hos dessa gitter utformas genom att montera metalljoner och organiska ligander. Därför kan de erhållna resultaten användas som en första ledtråd för att skapa nya tvådimensionella material med topologiska egenskaper.
APA, Harvard, Vancouver, ISO, and other styles
25

Laurell, Hugo, and Johan Hillborg. "Towards a tunable nanometer thick flat lens." Thesis, Uppsala universitet, Materialfysik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-341710.

Full text
Abstract:
This report examines the cross sections of silver microresonators subjected to an incident light with different polarization. The microresonators had different geometries with and without broken symmetries. Cross section profiles for different microresonator configurations are interesting for the division of Material Physics, Uppsala University, when designing metamaterials to tune the optical response of the material. The goal is to form an insight of how the optical response can be tuned by choosing different geometries, varying the size and polarization of the incident light. In this project computer simulations in COMSOL were made to simulate the optical response of different microresonators. When the incident light interact with the silver microresonators plasmonic excitations is generated which in turn interacts with the light changing the phase and therefore the optical response. By increasing the radius of the disk silver microresonantors the resonance was found to shift to lower energies. For a geometry with a disk microresonator inside a ring microresonator the Fano resonances were dependent of the radius of the disk microresonator.
APA, Harvard, Vancouver, ISO, and other styles
26

Johnson, Thomas. "Fast wave heating of cyclotron resonant ions in tokamaks." Doctoral thesis, KTH, Alfvénlaboratoriet, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3771.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography