Academic literature on the topic 'Plasma flow in magnetic field'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Plasma flow in magnetic field.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Plasma flow in magnetic field"

1

Ho, Ching Yen, Yu Hsiang Tsai, and Chung Ma. "Effects of External Magnetic Field on Intensity of Plasma Flow." Applied Mechanics and Materials 597 (July 2014): 272–75. http://dx.doi.org/10.4028/www.scientific.net/amm.597.272.

Full text
Abstract:
This paper investigates the intensity distribution along the radial direction for plasma flow subject to external magnetic Field. The toroidal external magnetism is applied in the transverse direction of plasma flow. Considering the steady-state continuity and momentum of the plasma flow subject to external magnetic field, the intensity profile of the plasma is obtained. The results quantitatively verify the intensity enhancement of the plasma with the increasing external magnetic field.
APA, Harvard, Vancouver, ISO, and other styles
2

Nickeler, D. H., and T. Wiegelmann. "Thin current sheets caused by plasma flow gradients in space and astrophysical plasma." Annales Geophysicae 28, no. 8 (2010): 1523–32. http://dx.doi.org/10.5194/angeo-28-1523-2010.

Full text
Abstract:
Abstract. Strong gradients in plasma flows play a major role in space and astrophysical plasmas. A typical situation is that a static plasma equilibrium is surrounded by a plasma flow, which can lead to strong plasma flow gradients at the separatrices between field lines with different magnetic topologies, e.g., planetary magnetospheres, helmet streamers in the solar corona, or at the boundary between the heliosphere and interstellar medium. Within this work we make a first step to understand the influence of these flows towards the occurrence of current sheets in a stationary state situation.
APA, Harvard, Vancouver, ISO, and other styles
3

MOHAPATRA, RANJITA K., P. S. SAUMIA, and AJIT M. SRIVASTAVA. "ENHANCEMENT OF FLOW ANISOTROPIES DUE TO MAGNETIC FIELD IN RELATIVISTIC HEAVY-ION COLLISIONS." Modern Physics Letters A 26, no. 33 (2011): 2477–86. http://dx.doi.org/10.1142/s0217732311036711.

Full text
Abstract:
It is known that the presence of background magnetic field in cosmic plasma distorts the acoustic peaks in CMBR. This primarily results from different types of waves in the plasma with velocities depending on the angle between the magnetic field and the wave vector. We consider the consequences of these effects in relativistic heavy-ion collisions where very strong magnetic fields arise during early stages of the plasma evolution. We show that flow coefficients can be significantly affected by these effects when the magnetic field remains strong during early stages due to strong induced fields
APA, Harvard, Vancouver, ISO, and other styles
4

Alexeev, I. I., and V. V. Kalegaev. "Magnetic field and plasma flow structure near the magnetopause." Journal of Geophysical Research 100, A10 (1995): 19267. http://dx.doi.org/10.1029/95ja01345.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Korobkin, Yu V., N. V. Lebedev, and V. L. Paperny. "Charge separation of plasma flow in curvilinear magnetic field." Technical Physics Letters 38, no. 3 (2012): 254–57. http://dx.doi.org/10.1134/s1063785012030248.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kotalik, P., and H. Nishiyama. "An effect of magnetic field on arc plasma flow." IEEE Transactions on Plasma Science 30, no. 1 (2002): 160–61. http://dx.doi.org/10.1109/tps.2002.1003973.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Juusola, Liisa, Sanni Hoilijoki, Yann Pfau-Kempf, et al. "Fast plasma sheet flows and X line motion in the Earth's magnetotail: results from a global hybrid-Vlasov simulation." Annales Geophysicae 36, no. 5 (2018): 1183–99. http://dx.doi.org/10.5194/angeo-36-1183-2018.

Full text
Abstract:
Abstract. Fast plasma flows produced as outflow jets from reconnection sites or X lines are a key feature of the dynamics in the Earth's magnetosphere. We have used a polar plane simulation of the hybrid-Vlasov model Vlasiator, driven by steady southward interplanetary magnetic field and fast solar wind, to study fast plasma sheet ion flows and related magnetic field structures in the Earth's magnetotail. In the simulation, lobe reconnection starts to produce fast flows after the increasing pressure in the lobes has caused the plasma sheet to thin sufficiently. The characteristics of the earth
APA, Harvard, Vancouver, ISO, and other styles
8

Rincon, François, Francesco Califano, Alexander A. Schekochihin, and Francesco Valentini. "Turbulent dynamo in a collisionless plasma." Proceedings of the National Academy of Sciences 113, no. 15 (2016): 3950–53. http://dx.doi.org/10.1073/pnas.1525194113.

Full text
Abstract:
Magnetic fields pervade the entire universe and affect the formation and evolution of astrophysical systems from cosmological to planetary scales. The generation and dynamical amplification of extragalactic magnetic fields through cosmic times (up to microgauss levels reported in nearby galaxy clusters, near equipartition with kinetic energy of plasma motions, and on scales of at least tens of kiloparsecs) are major puzzles largely unconstrained by observations. A dynamo effect converting kinetic flow energy into magnetic energy is often invoked in that context; however, extragalactic plasmas
APA, Harvard, Vancouver, ISO, and other styles
9

Petralia, A., F. Reale, and P. Testa. "Guided flows in coronal magnetic flux tubes." Astronomy & Astrophysics 609 (December 22, 2017): A18. http://dx.doi.org/10.1051/0004-6361/201731827.

Full text
Abstract:
Context. There is evidence that coronal plasma flows break down into fragments and become laminar. Aims. We investigate this effect by modelling flows confined along magnetic channels. Methods. We consider a full magnetohydrodynamic (MHD) model of a solar atmosphere box with a dipole magnetic field. We compare the propagation of a cylindrical flow perfectly aligned with the field to that of another flow with a slight misalignment. We assume a flow speed of 200 km s-1 and an ambient magnetic field of 30 G. Results. We find that although the aligned flow maintains its cylindrical symmetry while
APA, Harvard, Vancouver, ISO, and other styles
10

Alekseeva, Liliya M. "Instabilities of a Hall plasma flowing across a magnetic field." Laser and Particle Beams 15, no. 1 (1997): 65–72. http://dx.doi.org/10.1017/s0263034600010752.

Full text
Abstract:
Under certain restrictions imposed on the plasma parameters, an analytical 2D solution to the magnetohydrodynamic equations, taking into account the Hall effect [of the HMHD (Hall magnetohydrodynamic) equations], is found for the case when plasma flows across a magnetic field. This solution has the form of the sum of a rather arbitrary steady flow and a small time-dependent disturbance. We show that waves of a purely acoustic nature can propagate against the background of the flow. The magnetic field manifests itself in this process only in that it produces an effective gravity force, the “gra
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Plasma flow in magnetic field"

1

Bissell, R. C. "Steady, collisionless plasma flow along a magnetic field." Thesis, University of Oxford, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.379920.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Plechaty, Christopher Ryan. "Penetration of conductive plasma flows across a magnetic field." abstract and full text PDF (free order & download UNR users only), 2008. http://0-gateway.proquest.com.innopac.library.unr.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1453608.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lee, Hyunyong. "Study on Effect of Magnetic Field Configuration on Parallel Plasma Flow during Neutral Beam Injection in Heliotron J." Kyoto University, 2013. http://hdl.handle.net/2433/174742.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sato, Kunihiro. "Kinetic Analyses of Potential Formation in Plasma Flow along Open Magnetic Fields to a Wall." Kyoto University, 1993. http://hdl.handle.net/2433/154656.

Full text
Abstract:
本文データは平成22年度国立国会図書館の学位論文(博士)のデジタル化実施により作成された画像ファイルを基にpdf変換したものである<br>Kyoto University (京都大学)<br>0048<br>新制・論文博士<br>博士(工学)<br>乙第8140号<br>論工博第2669号<br>新制||工||906(附属図書館)<br>UT51-93-F240<br>(主査)教授 板谷 良平, 教授 秋宗 秀夫, 教授 大引 得弘<br>学位規則第4条第2項該当
APA, Harvard, Vancouver, ISO, and other styles
5

Kevin, Obrejan. "Study of magnetic shaping effects on plasma flows and micro-instabilities in tokamak plasmas using the full-f gyrokinetic code based on a real space field solver." Kyoto University, 2017. http://hdl.handle.net/2433/227650.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Margetis, Alexander. "Beltrami Flows." Kent State University Honors College / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ksuhonors1525299172164402.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Viré, Axelle. "Study of the dynamics of conductive fluids in the presence of localised magnetic fields: application to the Lorentz force flowmeter." Doctoral thesis, Universite Libre de Bruxelles, 2010. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210062.

Full text
Abstract:
When an electrically conducting fluid moves through a magnetic field, fluid mechanics and electromagnetism are coupled.<p>This interaction is the object of magnetohydrodynamics, a discipline which covers a wide range of applications, from electromagnetic processing to plasma- and astro-physics.<p><p>In this dissertation, the attention is restricted to turbulent liquid metal flows, typically encountered in steel and aluminium industries. Velocity measurements in such flows are extremely challenging because liquid metals are opaque, hot and often corrosive. Therefore, non-intrusive measurement d
APA, Harvard, Vancouver, ISO, and other styles
8

Langlois, Yilin. "Modélisation de l’arc électrique dans un disjoncteur à vide." Thesis, Vandoeuvre-les-Nancy, INPL, 2010. http://www.theses.fr/2010INPL062N/document.

Full text
Abstract:
Un modèle numérique d’un arc électrique diffus dans un disjoncteur à vide à champ magnétique axial (AMF) a été développé dans le but de mieux comprendre à terme la transition d’un mode de fonctionnement diffus de l’arc vers un mode plus concentré. Le comportement du plasma d’arc a été simulé depuis la sortie de la zone de mélange cathodique jusqu’à l’entrée de la gaine anodique. Le modèle bidimensionnel est basé sur un système d’équations hydrodynamiques à deux fluides non magnétisés (ions et électrons), incluant les équations de conservation d’énergie ionique et électronique. Il est démontré
APA, Harvard, Vancouver, ISO, and other styles
9

Garren, David Alan. "Magnetic field strength of toroidal plasma equilibria." W&M ScholarWorks, 1991. https://scholarworks.wm.edu/etd/1539623809.

Full text
Abstract:
The goal of nuclear fusion research is to confine a deuterium-tritium plasma at a sufficiently high temperature (15 keV) and density (3 $\times$ 10$\sp{20}$ m$\sp{-3}$) for a sufficient length of time (1 sec) to produce net fusion power. One means to attain the required plasma confinement is to embed the plasma within a magnetic field. The global structure of this magnetic field determines the variation of magnetic field strength within the surfaces of constant plasma pressure. This field strength variation in turn determines many of the stability and confinement properties of the plasma. This
APA, Harvard, Vancouver, ISO, and other styles
10

Simakov, Andrei N. 1974. "Plasma stability in a dipole magnetic field." Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/60756.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 2001.<br>Includes bibliographical references (p. 137-141).<br>The MHD and kinetic stability of an axially symmetric plasma, confined by a poloidal magnetic field with closed lines, is considered. In such a system the stabilizing effects of plasma compression and magnetic field compression counteract the unfavorable field line curvature and can stabilize pressure gradient driven magnetohydrodynamic modes provided the pressure gradient is not too steep. Isotropic pressure, ideal MHD stability is studied first and a general
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Plasma flow in magnetic field"

1

Stangeby, P. C. Comments on "A fluid theory of ion collection by probes in strong magnetic fields with plasma flow" [Phys. Fluids 30, 3777 (1987)]. [s.n.], 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

York, Thomas M. The effects of magnetic nozzle configurations on plasma thrusters: Semi-annual progress report. National Aeronautics and Space Administration, Lewis Research Center, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hamilton, Russell J. Cyclotron maser and plasma wave growth in magnetic loops. National Aeronautics and Space Administration, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Brosius, Jeffrey W. Plasma properties and magnetic field structure of the solar corona, based on coordinated Max '91 observations fron SERTS, the VLA, and magnetographs. National Aeronautics and Space Administration, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Voorhies, Coerte V. Simultaneous solution for core magnetic field and fluid flow beneath an electrically conducting mantle. National Aeronautics and Space Administration, Goddard Space Flight Center, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Voorhies, Coerte V. Simultaneous solution for core magnetic field and fluid flow beneath an electrically conducting mantle. National Aeronautics and Space Administration, Goddard Space Flight Center, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Brosius, Jeffrey W. Plasma properties and magnetic field structure of the solar corona, based on coordinated Max '91 observations from SERTS, the VLA, and magnetographs: Final report of work on NASA grant NASW-4933, covering the period 12 July 1994 - 11 July 1996. National Aeronautics and Space Administration, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Brosius, Jeffrey W. "Plasma properties and magnetic field structure of the solar corona, based on coordinated Max '91 observations fron SERTS, the VLA, and magnetographs": Annual report of work progress on NASA grant NASW-4933 covering the period 12 July 1994 - 11 July 1995. National Aeronautics and Space Administration, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Manzella, David. High voltage SPT performance. National Aeronautics and Space Administration, Glenn Research Center, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Moore, T. E. The geopause. National Aeronautics and Space Administration, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Plasma flow in magnetic field"

1

Somov, Boris V. "Stationary Plasma Flows in a Magnetic Field." In Fundamentals of Cosmic Electrodynamics. Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1184-3_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Somov, Boris V. "Plasma Flows in a Strong Magnetic Field." In Fundamentals of Cosmic Electrodynamics. Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1184-3_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Somov, Boris V. "Plasma Flows in a Strong Magnetic Field." In Astrophysics and Space Science Library. Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-4283-7_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Somov, Boris V. "Cosmic Plasma Flows in a Strong Magnetic Field." In Astrophysics and Space Science Library. Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-015-9592-6_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nishida, Hiroyuki, Hiroyuki Ogawa, and Yoshifumi Inatani. "MHD Analysis of Force Acting on Dipole Magnetic Field in Magnetized Plasma Flow." In Computational Fluid Dynamics 2006. Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-92779-2_120.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kervalishvili, Guram N., and Hermann Lühr. "Climatology of Air Upwelling and Vertical Plasma Flow in the Terrestrial Cusp Region: Seasonal and IMF-Dependent Processes." In Magnetic Fields in the Solar System. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-64292-5_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Somov, Boris V. "Plasma Equilibrium in Magnetic Field." In Astrophysics and Space Science Library. Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-4283-7_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Parker, E. N. "Magnetic Discontinuities From Field Topology." In Plasma Astrophysics And Space Physics. Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4203-8_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Clemente, Roberto Antonio. "Anisotropic Magnetic Confinement. Applications to Field-Reversed Configurations." In Plasma Physics. Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-4758-3_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yokoyama, Tatsuhiro, and Claudia Stolle. "Low and Midlatitude Ionospheric Plasma Density Irregularities and Their Effects on Geomagnetic Field." In Earth's Magnetic Field. Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-024-1225-3_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Plasma flow in magnetic field"

1

Zimmerman, Joseph W., David L. Carroll, Georgi Hristov, and Phillip J. Ansell. "Configuration Studies for a Plasma Actuator Technique using Arc Breakdown in a Magnetic Field." In 2018 Flow Control Conference. American Institute of Aeronautics and Astronautics, 2018. http://dx.doi.org/10.2514/6.2018-3758.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bobashev, Sergey, Yurii Golovachov, and David VanWie. "Deceleration of Supersonic Plasma Flow by an Applied Magnetic Field." In 33rd Plasmadynamics and Lasers Conference. American Institute of Aeronautics and Astronautics, 2002. http://dx.doi.org/10.2514/6.2002-2247.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kozlov, Andrey. "Plasma Flow Peculiarities in Accelerator Channel with Longitudinal Magnetic Field." In 37th AIAA Plasmadynamics and Lasers Conference. American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-3564.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bobashev, S., Yu Golovachov, V. Maslennikov, et al. "Interaction of supersonic flow of xenon plasma with magnetic field." In 32nd AIAA Plasmadynamics and Lasers Conference. American Institute of Aeronautics and Astronautics, 2001. http://dx.doi.org/10.2514/6.2001-2879.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Plechaty, C., R. Presura, S. Stein, L. O'Brien, S. Haque, and M. Tooth. "Investigation of plasma flow redirection by an externally applied magnetic field." In 2011 IEEE 38th International Conference on Plasma Sciences (ICOPS). IEEE, 2011. http://dx.doi.org/10.1109/plasma.2011.5992890.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chernyshev, Alexander, Yurii Golovachov, Yurii Kurakin, Alexander Schmidt, and David Van Wie. "Effect of an Applied Magnetic Field on Blunt Body Plasma Flow." In 44th AIAA Aerospace Sciences Meeting and Exhibit. American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-1002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bandyopadhyay, P., U. Konopka, K. Jiang, et al. "Magnetic Field Induced Shear Flow in a Strongly Coupled Complex Plasma." In DUSTY∕COMPLEX PLASMAS: BASIC AND INTERDISCIPLINARY RESEARCH: Sixth International Conference on the Physics of Dusty Plasmas. AIP, 2011. http://dx.doi.org/10.1063/1.3659857.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Stein, Sandra, Radu Presura, Andrey Esaulov, Stephan Neff, David Martinez, and Christopher Plechaty. "Kelvin-Helmholtz instability in a sheared flow actuated by a magnetic field." In 2010 IEEE 37th International Conference on Plasma Sciences (ICOPS). IEEE, 2010. http://dx.doi.org/10.1109/plasma.2010.5534118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Den Hartog, D. J., A. F. Almagri, J. T. Chapman, et al. "Plasma flow and magnetic mode rotation in the MST reversed-field pinch." In International Conference on Plasma Science (papers in summary form only received). IEEE, 1995. http://dx.doi.org/10.1109/plasma.1995.531702.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Domonkos, M. T., J. H. Degnan, P. E. Adamson, et al. "Adventures in the experimental development of an ultrahigh speed plasma flow." In 2012 14th International Conference on Megagauss Magnetic Field Generation and Related Topics (MEGAGAUSS). IEEE, 2012. http://dx.doi.org/10.1109/megagauss.2012.6781456.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Plasma flow in magnetic field"

1

Gerwin, R. A., G. J. Marklin, A. G. Sgro, and A. H. Glasser. Characterization of Plasma Flow Through Magnetic Nozzles. Office of Scientific and Technical Information (OSTI), 1990. http://dx.doi.org/10.2172/763033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fisch, Nathaniel J. Ultra-High Intensity Magnetic Field Generation in Dense Plasma. Office of Scientific and Technical Information (OSTI), 2014. http://dx.doi.org/10.2172/1115189.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

J.A. Krommes and Allan H. Reiman. Plasma Equilibrium in a Magnetic Field with Stochastic Regions. Office of Scientific and Technical Information (OSTI), 2009. http://dx.doi.org/10.2172/953207.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Okuda, H., and S. Hiroe. Neutral beam injection and plasma convection in a magnetic field. Office of Scientific and Technical Information (OSTI), 1988. http://dx.doi.org/10.2172/7108894.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

J.A. Krommes. Statistical Plasma Physics in a Strong Magnetic Field: Paradigms and Problems. Office of Scientific and Technical Information (OSTI), 2004. http://dx.doi.org/10.2172/827685.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Okuda, H., M. Ono, and R. J. Armstrong. Anomalous electron diffusion across a magnetic field in a beam-plasma system. Office of Scientific and Technical Information (OSTI), 1987. http://dx.doi.org/10.2172/5757792.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Brooks, J. N. Near-surface sputtered particle transport for an oblique incidence magnetic field plasma. Office of Scientific and Technical Information (OSTI), 1989. http://dx.doi.org/10.2172/5343157.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

A. Reiman, M. Zarnstorff, D. Mikkelsen, et al. Interaction of Ambipolar Plasma Flow with Magnetic Islands in a Quasi-axisymmetric Stellarator. Office of Scientific and Technical Information (OSTI), 2004. http://dx.doi.org/10.2172/836570.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Okuda, H., R. Horton, M. Ono, and M. Ashour-Abdalla. Propagation of a nonrelativistic electron beam in a plasma in a magnetic field. Office of Scientific and Technical Information (OSTI), 1986. http://dx.doi.org/10.2172/6979454.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Reed, C. B., and S. Molokov. Flow of two-dimensional liquid metal jet in a strong magnetic field. Office of Scientific and Technical Information (OSTI), 2002. http://dx.doi.org/10.2172/821667.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!