Academic literature on the topic 'Plasma distribution function'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Plasma distribution function.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Plasma distribution function"

1

Levko, Dmitry, Rochan R. Upadhyay, Laxminarayan L. Raja, Alok Ranjan, and Peter Ventzek. "Influence of electron energy distribution on fluid models of a low-pressure inductively coupled plasma discharge." Physics of Plasmas 29, no. 4 (2022): 043510. http://dx.doi.org/10.1063/5.0083274.

Full text
Abstract:
The aim of the present paper is to examine the influence of assumption on the electron energy distribution function on the relation between the plasma potential and the electron temperature for both electropositive (argon) and electronegative (chlorine) plasmas. A one-dimensional fluid model is used for simplicity although similar results were obtained using a self-consistent two-dimensional fluid model coupled with the Maxwell's equations for inductively coupled plasmas. We find that for electropositive plasma only a bi-Maxwellian electron energy distribution function provides reasonable resu
APA, Harvard, Vancouver, ISO, and other styles
2

Orefice, A. "Relativistic theory of absorption and emission of electron cyclotron waves in anisotropic plasmas." Journal of Plasma Physics 39, no. 1 (1988): 61–70. http://dx.doi.org/10.1017/s002237780001285x.

Full text
Abstract:
The weakly relativistic theory of absorption and emission of electron cyclotron waves in hot magnetized plasmas is developed for a large class of anisotropic electron distribution functions. The results are expressed in terms of the weakly relativistic plasma dispersion functions, and therefore of the well-known plasma Z-function. The particular case of a loss-cone electron distribution function is presented as a simple example.
APA, Harvard, Vancouver, ISO, and other styles
3

Saito, S., F. R. E. Forme, S. C. Buchert, S. Nozawa, and R. Fujii. "Effects of a kappa distribution function of electrons on incoherent scatter spectra." Annales Geophysicae 18, no. 9 (2000): 1216–23. http://dx.doi.org/10.1007/s00585-000-1216-2.

Full text
Abstract:
Abstract. In usual incoherent scatter data analysis, the plasma distribution function is assumed to be Maxwellian. In space plasmas, however, distribution functions with a high energy tail which can be well modeled by a generalized Lorentzian distribution function with spectral index kappa (kappa distribution) have been observed. We have theoretically calculated incoherent scatter spectra for a plasma that consists of electrons with kappa distribution function and ions with Maxwellian neglecting the effects of the magnetic field and collisions. The ion line spectra have a double-humped shape s
APA, Harvard, Vancouver, ISO, and other styles
4

Nicolaou, Georgios, George Livadiotis, and Robert T. Wicks. "On the Determination of Kappa Distribution Functions from Space Plasma Observations." Entropy 22, no. 2 (2020): 212. http://dx.doi.org/10.3390/e22020212.

Full text
Abstract:
The velocities of space plasma particles, often follow kappa distribution functions. The kappa index, which labels and governs these distributions, is an important parameter in understanding the plasma dynamics. Space science missions often carry plasma instruments on board which observe the plasma particles and construct their velocity distribution functions. A proper analysis of the velocity distribution functions derives the plasma bulk parameters, such as the plasma density, speed, temperature, and kappa index. Commonly, the plasma bulk density, velocity, and temperature are determined fro
APA, Harvard, Vancouver, ISO, and other styles
5

Benisti, D., A. Friou, and L. Gremillet. "Nonlinear Electron Distribution Function in a Plasma." Interdisciplinary journal of Discontinuity, Nonlinearity, and Complexity 3, no. 4 (2014): 435–44. http://dx.doi.org/10.5890/dnc.2014.12.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

SHAIKH, DASTGEER, and B. DASGUPTA. "An analytic model of plasma-neutral coupling in the heliosphere plasma." Journal of Plasma Physics 76, no. 6 (2010): 919–27. http://dx.doi.org/10.1017/s0022377810000310.

Full text
Abstract:
AbstractWe have developed an analytic model to describe coupling of plasma and neutral fluids in the partially ionized heliosphere plasma medium. The sources employed in our analytic model are based on a κ-distribution as opposed to the Maxwellian distribution function. Our model uses the κ-distribution to analytically model the energetic neutral atoms that result in the heliosphere partially ionized plasma from charge exchange with the protons and subsequently produce a long tail, which is otherwise not describable by the Maxwellian distribution. We present our analytic formulation and descri
APA, Harvard, Vancouver, ISO, and other styles
7

Lago, V., A. Lebehot, Michel A. Dudeck, and Z. Szymanski. "ELECTRON ENERGY DISTRIBUTION FUNCTION IN PLASMA ARC JETS." High Temperature Material Processes (An International Quarterly of High-Technology Plasma Processes) 6, no. 1 (2002): 8. http://dx.doi.org/10.1615/hightempmatproc.v6.i1.20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Maslov, S. A., S. Ya Bronin, N. G. Gusein-zade, and S. A. Trigger. "Photon Distribution Function in Weakly Coupled Maxwellian Plasma." Bulletin of the Lebedev Physics Institute 46, no. 8 (2019): 263–66. http://dx.doi.org/10.3103/s1068335619080062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hasegawa, Akira, Kunioki Mima, and Minh Duong-van. "Plasma Distribution Function in a Superthermal Radiation Field." Physical Review Letters 54, no. 24 (1985): 2608–10. http://dx.doi.org/10.1103/physrevlett.54.2608.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Melrose, D. B., and A. Mushtaq. "Plasma dispersion function for a Fermi–Dirac distribution." Physics of Plasmas 17, no. 12 (2010): 122103. http://dx.doi.org/10.1063/1.3528272.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Plasma distribution function"

1

Harada, Yuki. "Interactions of Earth's Magnetotail Plasma with the Surface, Plasma, and Magnetic Anomalies of the Moon." 京都大学 (Kyoto University), 2014. http://hdl.handle.net/2433/188495.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mukhopadhyay, Amit Kumar. "Statistics for motion of microparticles in a plasma." Diss., University of Iowa, 2014. https://ir.uiowa.edu/etd/1369.

Full text
Abstract:
I report experimental and numerical studies of microparticle motion in a dusty plasma. These microparticles are negatively charged and are levitated in a plasma consisting of electrons, ions and neutral gas atoms. The microparticles repel each other, and are confined by the electric fields in the plasma. The neutral gas damps the microparticle motion, and also exerts random forces on them. I investigate and characterize microparticle motion. In order to do this, I study velocity distributions of microparticles and correlations of their motion. To perform such a study, I develop new experimenta
APA, Harvard, Vancouver, ISO, and other styles
3

Behlman, Nicholas James. "Electron Energy Distribution Measurements in the Plume Region of a Low Current Hollow Cathode." Digital WPI, 2010. https://digitalcommons.wpi.edu/etd-theses/72.

Full text
Abstract:
A hollow cathode is an electron source used in a number of different electric thrusters for space propulsion. One important component of the device that helps initiate and sustain the discharge is called the keeper electrode. Cathode keeper erosion is one of the main limiting factors in the lifetime of electric thrusters. Sputtering due to high-energy ion bombardment is believed to be responsible for keeper erosion. Existing models of the cathode plume, including the OrCa2D code developed at Jet Propulsion Laboratory, do not predict these high-energy ions and experimental measurement of the el
APA, Harvard, Vancouver, ISO, and other styles
4

Montello, Aaron David. "Studies of Nitrogen Vibrational Distribution Function and Rotational-Translational Temperature in Nonequilibrium Plasmas by Picosecond Coherent Anti-Stokes Raman Scattering Spectroscopy." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1345522814.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Li, Chun. "Measurement and understanding the residual stress distribution as a function of depth in atmosphere plasma sprayed thermal barrier coatings." Thesis, University of Manchester, 2018. https://www.research.manchester.ac.uk/portal/en/theses/measurement-and-understanding-the-residual-stress-distribution-as-a-function-of-depth-in-atmosphere-plasma-sprayed-thermal-barrier-coatings(e4dd38cc-2800-4719-bfe5-cccd0d6ff8c8).html.

Full text
Abstract:
Residual stresses are generally considered to be the driving forces for the failure of APS TBCs. In this thesis, the residual stress distribution as a function of depth in APS TBC has been measured by synchrotron XRD and explained by image based modelling based on the microstructure detailed studied by SEM and CT. The residual stress/ strain distribution as a function of depth was measured by synchrotron XRD in transmission and reflection geometry. The residual stress/ strain values were analysed using full pattern Rietveld refinement, the sin square psi method and XRD2 method. For the reflect
APA, Harvard, Vancouver, ISO, and other styles
6

Lunt, Tilmann. "Experimental investigation of the plasma-wall transition." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2008. http://dx.doi.org/10.18452/15837.

Full text
Abstract:
In der vorliegenden Arbeit wurde das Strömungsverhalten eines magnetisierten Argonplasmas beim Auftreffen auf eine neutralisierende Oberfläche untersucht. Mit Hilfe der Laserinduzierten Fluoreszenz wurde dazu nicht-invasiv die Geschwindigkeitsverteilung der Ionen mit einer Ortsauflösung von standardmäßig dz=0.5 mm als Funktion des Abstandes zur Oberfläche gemessen. Zwei Situationen wurden untersucht (a): praktisch das ganze Plasma strömt auf ein großes Target (Durchmesser 100 mm) und (b) die Größe des Targets ist wesentlich kleiner (Durchmesser 15 mm) als der Durchmesser der Plasmasäule. Unmi
APA, Harvard, Vancouver, ISO, and other styles
7

Vitelaru, Catalin. "Caractérisation du procédé plasma de pulvérisation cathodique magnétron à ionisation additionnelle pour la synthèse de couches minces." Thesis, Paris 11, 2011. http://www.theses.fr/2011PA112077.

Full text
Abstract:
Les exigences de plus en plus élevés concernant la qualité et propriétés de couches minces ont soutenu le développement de nouveaux procédés de pulvérisation. Ainsi, la décharge magnétron conventionnelle en courant continu, une des sources d’atomes la plus utilisée pour le dépôt de couches minces, a été améliorée par le couplage avec une décharge additionnelle de radio fréquence pour obtenir le nouveau procédé RF-IPVD (Radio Frequency-Ionized Physical Vapour Deposition). Ce procédé permet de générer un degré d’ionisation supérieur à celui dans la décharge magnétron classique, nécessaire pour c
APA, Harvard, Vancouver, ISO, and other styles
8

Ahmad, Ahmad. "Etude de la production d'ions négatifs sur des surfaces de carbone dans un plasma d'hydrogène sans Cs à basse pression." Thesis, Aix-Marseille, 2012. http://www.theses.fr/2012AIXM4702/document.

Full text
Abstract:
Cette thèse porte sur l'étude de la production d'ions négatifs (INs) en surface pour des applications à la fusion contrôlée. Les INs formés en surface d'un échantillon dans un plasma d'hydrogène à partir de bombardement par les ions positifs sont collectés et analysés en énergie par un spectromètre de masse (SM). Les fonctions de distribution en énergie des INs (FDIs) que mesure le SM sont différentes de celles émises par la surface f(E, Θ) du fait des modifications de trajectoires et d'énergie induites par la traversée du plasma et du SM. Afin de déterminer la FDI émis par la surface f(E, Θ)
APA, Harvard, Vancouver, ISO, and other styles
9

Roettgen, Andrew M. "Vibrational Energy Distribution, Electron Density and Electron Temperature Behavior in Nanosecond Pulse Discharge Plasmas by Raman and Thomson Scattering." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1428940661.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Blessington, Jon C. "Measurements of metastable atom density using energies and densities of energetic "fast" electrons detected in the electron energy distribution function associated with the afterglow plasma produced by a radio frequency inductively coupled plasma helium discharge." Morgantown, W. Va. : [West Virginia University Libraries], 2007. https://eidr.wvu.edu/etd/documentdata.eTD?documentid=5214.

Full text
Abstract:
Thesis (M.S.)--West Virginia University, 2007.<br>Title from document title page. Document formatted into pages; contains v, 36 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 21).
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Plasma distribution function"

1

United States. National Aeronautics and Space Administration., ed. Stationary plasma thruster ion velocity distributions. National Aeronautics and Space Administration, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mehta, Shailesh. The Monte Carlo approach to calculating radial distribution functions in dense plasmas. University of Birmingham, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

library, Wiley online, ed. Plasma technology for hyperfunctional surfaces: Food, biomedical and textile applications. Wiley-VCH, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kortgen, Andreas, and Michael Bauer. The effect of acute hepatic failure on drug handling in the critically ill. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199600830.003.0197.

Full text
Abstract:
Impaired hepatic function is a common event in intensive care unit patients and as the liver plays a central role in drug metabolism and excretion this may lead to profound changes in pharmacokinetics. Underlying mechanisms are altered enzyme function of phase I and phase II metabolism, altered transporter protein function together with cholestasis and hepatic perfusion disorders. Moreover, multidrug therapy may lead to induction and inhibition of these enzymes and transporter proteins. In addition, changes in plasma protein binding and volumes of distribution of drugs are common. Altogether,
APA, Harvard, Vancouver, ISO, and other styles
5

Raghunathan, Karthik, and Andrew Shaw. Crystalloids in critical illness. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199600830.003.0057.

Full text
Abstract:
‘Crystalloid’ refers to solutions of crystalline substances that can pass through a semipermeable membrane and are distributed widely in body fluid compartments. The conventional Starling model predicts transvascular exchange based on the net balance of opposing hydrostatic and oncotic forces. Based on this model, colloids might be considered superior resuscitative fluids. However, observations of fluid behaviour during critical illness are not consistent with such predictions. Large randomized controlled studies have consistently found that colloids offer no survival advantage relative to cry
APA, Harvard, Vancouver, ISO, and other styles
6

Morawetz, Klaus. Transient Time Period. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198797241.003.0019.

Full text
Abstract:
The formation of correlations at short- time scales is considered. A universal response function is found which allows describing the formation of collective modes in plasmas created by femto-second lasers as well as the formation of occupations in cold atomic optical lattices. Quantum quench and sudden switching of interactions are possible to describe by such Levinson-type kinetic equations on the transient time regime. On larger time scales it is shown that non-Markovian–Levnson equations double count correlations and the extended quasiparticle picture to distinguish between the reduced den
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Plasma distribution function"

1

Niel, Fabien. "Photon Distribution Function." In Classical and Quantum Description of Plasma and Radiation in Strong Fields. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73547-0_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Capitelli, Mario, Roberto Celiberto, Gianpiero Colonna, et al. "Superelastic Collisions and Electron Energy Distribution Function." In Fundamental Aspects of Plasma Chemical Physics. Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4419-8185-1_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kawata, Shigeo. "Plasma Treated by Distribution Function: Kinetic Model." In Springer Series in Plasma Science and Technology. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1137-0_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Niel, Fabien. "Effect of RR on the Electron Distribution Function." In Classical and Quantum Description of Plasma and Radiation in Strong Fields. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73547-0_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cereceda, C., M. de Peretti, and M. Sabatier. "Distribution Function of Charged Particles in a Plasma of Fusion Interest." In Strongly Coupled Coulomb Systems. Springer US, 2002. http://dx.doi.org/10.1007/0-306-47086-1_99.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ueno, Genta, Nagatomo Nakamura, Tomoyuki Higuchi, Takashi Tsuchiya, Shinobu Machida, and Tohru Araki. "Application of Multivariate Maxwellian Mixture Model to Plasma Velocity Distribution Function." In Discovery Science. Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/3-540-44418-1_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Möbius, E., L. M. Kistler, M. A. Popecki, et al. "The 3-D Plasma Distribution Function Analyzers with Time-of-Flight Mass Discrimination for Cluster, FAST, and Equator-S." In Measurement Techniques in Space Plasmas: Particles. American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm102p0243.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Saikia, Banashree, and P. N. Deka. "Non-linear Fluctuating Parts of the Particle Distribution Function in the Presence of Drift Wave Turbulence in Vlasov Plasma." In Nonlinear Dynamics and Applications. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-99792-2_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bauche, Jacques, Claire Bauche-Arnoult, and Olivier Peyrusse. "Distribution functions. Energy levels." In Atomic Properties in Hot Plasmas. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18147-9_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Fahr, Hans-Jörg, and Horst Fichtner. "On ‘Isobaric and Isentropic’ Distribution Functions of Plasma Particles in the Heliosheath." In Kappa Distributions. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-82623-9_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Plasma distribution function"

1

Manservisi, S., V. G. Molinari, and A. Nespoli. "Electron distribution function in a strong electric field." In International Conference on Plasma Sciences (ICOPS). IEEE, 1993. http://dx.doi.org/10.1109/plasma.1993.593112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Roudaki, F. S. M. M. A., A. Salar Elahi, and M. Ghoranneviss. "Determination of electron energy distribution function in tokamak plasma." In 2015 IEEE International Conference on Plasma Sciences (ICOPS). IEEE, 2015. http://dx.doi.org/10.1109/plasma.2015.7179853.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Meezan, N., and M. Cappelli. "Electron energy distribution function in a Hall discharge plasma." In 37th Joint Propulsion Conference and Exhibit. American Institute of Aeronautics and Astronautics, 2001. http://dx.doi.org/10.2514/6.2001-3326.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Scime, E., R. Murphy, I. Biloiu, and C. Compton. "Ion velocity distribution function measurements in a helium helicon plasma." In The 33rd IEEE International Conference on Plasma Science, 2006. ICOPS 2006. IEEE Conference Record - Abstracts. IEEE, 2006. http://dx.doi.org/10.1109/plasma.2006.1707036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Abbasi, Hossein, and Reza Shokoohi. "Influence of particle distribution function on plasma expansion into vacuum." In 2008 IEEE 35th International Conference on Plasma Science (ICOPS). IEEE, 2008. http://dx.doi.org/10.1109/plasma.2008.4591204.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Garcia, M. "Molecular gas electron distribution function with space and time variation." In International Conference on Plasma Science (papers in summary form only received). IEEE, 1995. http://dx.doi.org/10.1109/plasma.1995.531584.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dodt, D., A. Dinklage, R. Fischer, et al. "Form-Free Reconstruction of an Electron Energy Distribution Function from Optical Emission Spectroscopy." In PLASMA 2007: International Conference on Research and Applications of Plasmas; 4th German-Polish Conference on Plasma Diagnostics for Fusion and Applications; 6th French-Polish Seminar on Thermal Plasma in Space and Laboratory. AIP, 2008. http://dx.doi.org/10.1063/1.2909110.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Halenka, J. "Joint Probability Distribution Function for the Electric Microfield and its Ion-Octupole Inhomogeneity Tensor." In PLASMA 2005: Int. Conf. on Research and Applications of Plasmas; 3rd German-Polish Conf.on Plasma Diagnostics for Fusion and Applications; 5th French-Polish Seminar on Thermal Plasma in Space and Laboratory. AIP, 2006. http://dx.doi.org/10.1063/1.2168882.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Qureshi, M. N. S., J. K. Shi, and S. Z. Ma. "Landau damping in space plamas with generalized (r , q) distribution function." In The 33rd IEEE International Conference on Plasma Science, 2006. ICOPS 2006. IEEE Conference Record - Abstracts. IEEE, 2006. http://dx.doi.org/10.1109/plasma.2006.1707106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Adamovich, Igor, and J. Rich. "The effect of superelastic electron-molecule collisions on the vibrational energy distribution function." In 27th Plasma Dynamics and Lasers Conference. American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-2314.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Plasma distribution function"

1

Tynan, G. R., D. M. Goebel, and R. W. Conn. Measurement of parallel ion energy distribution function in PISCES plasma. Office of Scientific and Technical Information (OSTI), 1987. http://dx.doi.org/10.2172/6268436.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

B.C. Lyons, S. C. Jardin, and J. J. Ramos. Numerical Calculation of Neoclassical Distribution Functions and Current Profiles in Low Collisionality, Axisymmetric Plasmas. Office of Scientific and Technical Information (OSTI), 2012. http://dx.doi.org/10.2172/1057481.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

McClure, Michael A., Yitzhak Spiegel, David M. Bird, R. Salomon, and R. H. C. Curtis. Functional Analysis of Root-Knot Nematode Surface Coat Proteins to Develop Rational Targets for Plantibodies. United States Department of Agriculture, 2001. http://dx.doi.org/10.32747/2001.7575284.bard.

Full text
Abstract:
The goal of this research was to provide a better understanding of the interface between root-knot nematodes, Meloidogyne spp., and their host in order to develop rational targets for plantibodies and other novel methods of nematode control directed against the nematode surface coat (SC). Specific objectives were: 1. To produce additional monoclonal SC antibodies for use in Objectives 2, 3, and 4 and as candidates for development of plantibodies. 2. To determine the production and distribution of SC proteins during the infection process. 3. To use biochemical and immunological methods to pertu
APA, Harvard, Vancouver, ISO, and other styles
4

Ohad, Itzhak, and Himadri Pakrasi. Role of Cytochrome B559 in Photoinhibition. United States Department of Agriculture, 1995. http://dx.doi.org/10.32747/1995.7613031.bard.

Full text
Abstract:
The aim of this research project was to obtain information on the role of the cytochrome b559 in the function of Photosystem-II (PSII) with special emphasis on the light induced photo inactivation of PSII and turnover of the photochemical reaction center II protein subunit RCII-D1. The major goals of this project were: 1) Isolation and sequencing of the Chlamydomonas chloroplast psbE and psbF genes encoding the cytochrome b559 a and b subunits respectively; 2) Generation of site directed mutants and testing the effect of such mutation on the function of PSII under various light conditions; 3)
APA, Harvard, Vancouver, ISO, and other styles
5

Full-wave Simulations of ICRF Heating in Toroidal Plasma with Non-Maxwellian Distribution Functions in the FLR Limit. Office of Scientific and Technical Information (OSTI), 2007. http://dx.doi.org/10.2172/962732.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!