Academic literature on the topic 'Plasma d'Hélium'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Plasma d'Hélium.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Plasma d'Hélium"

1

Benmebrouk, Lazhar, S. Bentedj, and Fethi Khelfaoui. "Détermination de la Densité Électronique et de la Température Électronique par Spectroscopie d'une Décharge Micro-Onde dans un Plasma d'Hélium." حوليات العلوم و التكنولوجيا 7, no. 1 (May 2015): 1–5. http://dx.doi.org/10.12816/0040255.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Plasma d'Hélium"

1

Cosimi, Julien. "Caractérisations d'un jet de plasma froid d'hélium à pression atmosphérique." Thesis, Toulouse 3, 2020. http://www.theses.fr/2020TOU30136.

Full text
Abstract:
Les jets de plasma froid à la pression atmosphérique connaissent un réel engouement dans de nombreux domaines du biomédical depuis la dernière décennie. Dans les différentes applications de ces jets, le plasma généré est amené à interagir avec de nombreux types de surfaces. Les jets de plasma ont une influence sur les surfaces traitées, mais il est maintenant connu que les surfaces traitées influencent également le plasma en fonction de leurs caractéristiques. Le travail mené dans cette thèse a donc pour but de caractériser un jet de plasma froid d'hélium à la pression atmosphérique en contact avec trois types de surfaces (diélectrique, métallique et eau ultrapure) au moyen de différents diagnostics électriques et optiques afin de comprendre l'influence de la nature des surfaces sur les propriétés physiques du plasma et les espèces chimiques générées. La première partie de cette thèse s'intéresse à l'étude de l'influence des surfaces sur le jet de plasma. Différents paramètres sont étudiés, tels que la nature de la surface exposée, le débit de gaz, la distance entre la sortie du dispositif et la surface exposée ou encore la composition du gaz plasmagène. Pour ce faire, nous avons utilisé dans un premier temps l'imagerie Schlieren afin de suivre le flux d'hélium en sortie du dispositif en présence ou non de la décharge. La spectroscopie d'émission a été utilisée pour déterminer les espèces émissives générées par le plasma. L'imagerie rapide nous a permis de suivre la génération et la propagation de la décharge et la distribution de certaines espèces excitées dans le jet avec l'aide de filtres interférentiels passe-bandes. Une cible diélectrique entraîne un étalement de l'onde d'ionisation sur sa surface et une cible conductrice entraîne la formation d'un canal de conduction. L'évolution de la densité d'espèces excitées (OH*, N2*, He* et O*) augmente avec la permittivité relative de la surface traitée. Le rôle joué par les espèces actives générées par les jets de plasma est fondamental dans la cinétique et la chimie des mécanismes liés aux procédés plasma. La seconde étape de la thèse porte donc sur l'évaluation spatiale et temporelle des densités du radical hydroxyle OH, une espèce jouant un rôle majeur dans de nombreux mécanismes. La cartographie spatiale et l'évolution temporelle des densités absolues et relatives de OH ont été obtenues au moyen de diagnostics lasers LIF et PLIF. La densité de OH générée augmente avec la permittivité relative de la surface traitée. On constate que les radicaux OH restent présents dans le canal d'hélium entre deux décharges consécutives (plusieurs dizaines de microsecondes). Enfin, nous nous sommes intéressés à la production d'espèces réactives à longue durée de vie dans l'eau ultrapure traitée par plasma. L'influence de différents paramètres sur la concentration d'espèces dans l'eau traitée a été étudiée dans le but d'optimiser la production de ces espèces. Dans nos conditions expérimentales, la mise à la masse de l'eau ultrapure lors du traitement permet l'augmentation de la concentration de H2O2. Par ailleurs, la mise à la masse induit une diminution la concentration de NO2-
Cold atmospheric pressure plasma jets are a subject of great interest in many biomedical fields for the past decade. In the various applications of these jets, the plasma generated can interact with many types of surfaces. Plasma jets influence the treated surfaces, but it is now well known that the treated surface also influences the plasma according to their characteristics. The work carried out in this thesis therefore aims to characterize a cold helium atmospheric pressure plasma jet in contact with three surfaces (dielectric, metallic and ultrapure water) by means of different electrical and optical diagnostics in order to understand the influence of the nature of the surfaces on the physical properties of the plasma and the chemical species generated. The first part of this thesis is focused on the study of the influence of surfaces on the plasma jet. Different parameters are studied, such as the nature of treated surfaces, the gas flow, the distance between the outlet of the device and the surface or the composition of the injected gas. For this purpose, helium flow at the outlet of the device is followed by Schlieren imagery with and without the discharge. Emission spectroscopy is used to determine the emissive species generated by the plasma. ICCD imagery is employed to follow the generation and the propagation of the discharge and the distribution of several excited species in the jet by using band-pass interference filters. A dielectric target causes the ionization wave to spread over its surface and a conductive target leads to the formation of a conduction channel. The evolution of excited species densities (OH*, N2*, He* and O*) increases with the relative permittivity of the treated surface. As well known, active species generated by plasma jets play a fundamental role in the kinetics and the chemistry of the mechanisms linked to plasma processes. The second part of the present work therefore relates to the spatial and temporal evaluation of the densities of the hydroxyl radical OH which plays a major role in many cellular mechanisms. The spatial mapping and the temporal evolution of the absolute and relative densities of OH are obtained by LIF and PLIF laser diagnostics. The density of OH generated increases with the electrical conductivity of the treated surface. It can be noted that the OH molecules remain present in the helium channel between two consecutive discharges (several tens of microseconds). Finally, we focus on the production of chemical species in ultrapure water treated with plasma. The influence of different parameters on the concentration of species in the treated water has been studied to optimize the production of chemical species. In experimental conditions, grounding the ultrapure water during treatment increases the concentration of H2O2. Furthermore, the grounding induces a decrease in the NO2- concentration
APA, Harvard, Vancouver, ISO, and other styles
2

Fawaz, Farah. "Simulation multidimensionnelle d'un jet de plasma froid d'hélium pour des applications biomédicales." Thesis, Toulouse 3, 2019. http://www.theses.fr/2019TOU30204.

Full text
Abstract:
Les jets de plasma froid peuvent être générés dans des mélanges hélium-air en faisant circuler de l'hélium dans un tube qui s'ouvre à l'air ambiant et en alimentant sous haute tension pulsée des électrodes annulaires collées autour du tube. Les études expérimentales ont montré que ces jets de plasma sont en fait composés d'une succession d'ondes d'ionisation guidées par le canal d'hélium. Ces ondes d'ionisation génèrent des espèces actives chargées ou non qui peuvent être appliquées sur des cellules animales ou végétales ou servir à activer un milieu liquide. Les applications sont multiples et concernent par exemple la cicatrisation, le traitement du cancer, la décontamination, l'activation cellulaire ou l'aide à la germination et à la croissance des plantes. L'objectif de cette thèse est de construire, à l'aide du logiciel commercial COMSOL, un modèle 2D de l'écoulement du mélange gazeux couplé à la dynamique des ondes d'ionisation pour mieux comprendre la formation de la décharge et les caractéristiques physico-chimiques du jet qui en découle. La simulation de ces dispositifs est cependant très complexe à cause (i) de la dépendance de la cinétique chimique et des phénomènes de transport des espèces chargées en fonction de la composition du mélange hélium-air, (ii) de l'influence mutuelle de l'écoulement sur les décharges et des décharges sur l'écoulement et (iii) de la dynamique des ondes d'ionisation qui nécessite des pas de temps d'évolution de l'ordre de la picoseconde et un maillage spatial de quelques micromètres. Sur la base d'un modèle 0D de cinétique chimique dans les mélanges hélium-air incluant plus de 1000 réactions et un peu moins de 100 espèces, un travail d'analyse et de réduction chimique a été réalisé pour extraire un jeu optimum représentatif de la cinétique chimique. Ce modèle prend en compte à la fois les variations de concentration initiale des espèces dans les mélanges et les modifications des fonctions de distribution en énergie des électrons qui en découle. Dans un second temps, un modèle 2D a été élaboré pour simuler sous COMSOL la formation et la propagation des ondes d'ionisation dans les jets hélium-air. Les ondes d'ionisation étant très dynamiques et ne durant que quelques centaines de nanosecondes, nous avons considéré que l'écoulement resté statique sur cette échelle de temps. L'évolution des espèces chargées est suivie à l'aide du modèle fluide d'ordre 1 et les données de base nécessaires sont calculées en fonction du champ électrique réduit E/N et de la concentration hélium-air en résolvant l'équation de Boltzmann. Les simulations ont permis de suivre la formation et la propagation d'une décharge dans des dispositifs à jet de plasma composé d'un tube diélectrique et de deux électrodes annulaires. Les résultats montrent clairement la formation d'une onde d'ionisation initiale concentrée autour de l'axe du tube, qui se scinde ensuite pour former une décharge annulaire qui se propage le long du tube diélectrique jusqu'à sa sortie. Une étude paramétrique a été réalisée sur la propagation des ondes en sortie du tube en fonction de la vitesse d'écoulement du gaz dans le tube
The cold plasma jets can be generated in helium-air mixtures by circulating helium in a tube that opens to the ambient air and by feeding pulsed high voltage on annular electrodes glued around the tube. Experimental studies have shown that these plasma jets are in fact composed of a succession of ionization waves guided by the helium channel. These ionization waves generate charged or unloaded active species that can be applied to animal or plant cells or serve to activate a liquid medium. The applications are multiple and concern, for example, scarring, cancer treatment, decontamination, cellular activation or help with germination and plant growth. The aim of this thesis is to build, using the COMSOL commercial software, a 2D model of the gas mixture flow coupled to ionization wave dynamics to better understand the formation of the discharge and the physicochemical characteristics of the jet that flows from it. The simulation of these devices is however very complex because of (i) the dependence of the chemical kinetics and the transport phenomena of the charged species as a function of the composition of the helium-air mixture, (ii) the mutual influence of the flow on the discharges and discharges on the flow and (iii) the dynamics of the ionization waves which requires steps of evolution time of the order of the picosecond and a spatial mesh of a few micrometres. On the basis of a 0D model of chemical kinetics in helium-air mixtures including more than 1000 reactions and a little less than 100 species, a chemical analysis and reduction work was done to extract an optimum game representative of the chemical kinetics. This model takes into account both the initial concentration variations of the species in the mixtures and the modifications of the energy distribution functions of the electrons. In a second step, a 2D model was developed to simulate the formation and propagation of ionization waves in helium-air jets using COMSOL. The ionization waves being very dynamic and lasting only a few hundred nanoseconds, we considered that the flow remained static on this time scale. The evolution of the charged species is followed using the fluid model order 1 and the necessary basic data are calculated as a function of the reduced electric field E/N and the helium-air concentration by solving the Boltzmann equation. The simulations followed the formation and the propagation of a discharge in plasma jet devices consisting of a dielectric tube and two annular electrodes. The results clearly show the formation of an initial ionization wave concentrated around the axis of the tube, which then splits to form an annular discharge that propagates along the dielectric tube to its exit. A parametric study was carried out on the wave propagation at the outlet of the tube as a function of the flow velocity of the gas in the tube
APA, Harvard, Vancouver, ISO, and other styles
3

Foletto, Marc. "Les micro-jets de plasma à pression atmosphérique et température ambiante." Thesis, Toulouse 3, 2015. http://www.theses.fr/2015TOU30026/document.

Full text
Abstract:
Les micro-jets de plasma, se propageant dans un flux d'hélium entouré d'air libre, à pression atmosphérique et à température ambiante, ont attiré l'attention des chercheurs depuis une dizaine d'années. Ces micro-jets sont créés dans une décharge à barrière diélectrique alimentée par des impulsions de tension. Ils se propagent dans le flux d'hélium à l'extérieur de la DBD sous la forme d'une onde d'ionisation. Le plasma est confiné spatialement là où l'hélium est dominant, car l'ionisation de l'air nécessite un champ électrique plus important que celui présent dans le front d'ionisation. Leurs applications biomédicales sont prometteuses car ils permettent de produire des espèces réactives à quelques centimètres de distance de la DBD sans augmenter la température du gaz. Dans cette thèse, l'objectif a été de développer une meilleure compréhension de l'influence des conditions expérimentales et de la géométrie de la DBD sur les propriétés des jets de plasma. À ces fins, l'écoulement d'hélium a été étudié expérimentalement et numériquement, et des simulations sur la génération et la propagation du micro-jet de plasma ont été réalisées
Microplasma jets propagating in a helium flow surrounded by air at ambient pressure and temperature have attracted the attention of many researchers over the past decade. These microplasma jets are ignited in a cylindrical dielectric barrier discharge (DBD) powered by impulse or sinusoidal voltage pulses with an amplitude of several kilovolts and then propagate as an ionization wave in the helium flow outside the DBD. The plasma so-generated is confined to the region where helium is the dominant species because ionization of the surrounding air requires a significantly higher electric field strength than is present at the ionization front in the plasma jet. The putative biomedical applications of microplasma jets are particularly promising because they provide a way of producing reactive oxygen and nitrogen species some centimeters downstream from the DBD without significant gas heating. The objective of the work reported in this thesis has been to develop a better understanding of the influence of the operating conditions and geometry on the properties of the plasma jets. To this end, experimental and numerical studies of the hydrodynamics of the helium flow and simulations of the generation and propagation of the microplasma jet have been carried out
APA, Harvard, Vancouver, ISO, and other styles
4

Jomaa, Neil. "Modélisations multi-physiques avec validations expérimentales des jets de plasmas froids d'hélium à la pression atmosphérique." Toulouse 3, 2014. http://www.theses.fr/2014TOU30094.

Full text
Abstract:
Le développement de sources de plasmas froids stables et bien adaptées aux applications biomédicales est en plein essor notamment pour répondre à des exigences strictes comme une quasi-température ambiante, la production d'espèces actives contrôlées, etc. Les jets de plasmas froids à la pression atmosphérique générés par décharges à barrière diélectrique (DBD) dans l'hélium peuvent répondre à ces exigences. Ils constituent l'objectif de notre étude numérique qui est corrélée aux mesures pour la validation de notre modélisation hydro-électrodynamique. Le dispositif modélisé mis en place dans le groupe est constitué par un tube de quartz de petit diamètre traversé par l'hélium et enveloppé par deux électrodes d'aluminium alimentées par une tension pulsée mono-polaire. L'imagerie rapide a montré que le jet de plasma apparaissant continue est en fait la succession rapide de "balles de plasma" constituant les fronts de l'onde d'ionisation se propageant dans le mélange He-air à l'extérieur du tube, une hypothèse d'onde d'ionisation guidée dont la confirmation constitue l'un des objectifs de ce travail. L'étude menée en 2Drz est basée sur la méthode des éléments finis pour la discrétisation en utilisant le logiciel COMSOL. Trois modèles couplés ont été mis en place pour les études hydrodynamique, électrostatique et électrodynamique. La modélisation hydrodynamique nous a fourni, pour différents rayons du tube et vitesses d'écoulement, la distribution 2Drz de la fraction molaire d'hélium qui se dilue progressivement dans l'air ambiant. Ce mélange gazeux constitue le milieu dans lequel se propage l'onde d'ionisation dont le front d'onde initial au voisinage de la sortie du tube est le champ électrique géométrique. Ce champ a constitué l'objectif de la simulation électrostatique qui nous a permis de quantifier l'influence de chacun des paramètres du dispositif sur la valeur maximale de ce front d'onde initial. Le fruit de cette étude est une configuration optimale validée expérimentalement pour soit optimiser la longueur du jet facilitant la manipulation du jet, soit minimiser la tension appliquée pour réduire le cout énergétique dans le cas d'une longueur fixée du jet. La simulation hydro- électrodynamique du jet est basée sur le système couplé formé par les équations de Poisson, de transport des particules, de conservation de l'énergie électronique, du transport convecto-diffusif et de Navier Stokes. Les données de base nécessaires en entrée comme les coefficients de transport et de réaction ont été déterminés par résolution de l'équation de Boltzmann multi-termes en fonction de la dilution progressive de l'He dans l'air. Chaque cas de simulation de notre modèle multi-physiques, consommateur de temps de calcul (3 jours sur un processeur Xeon), fournit beaucoup d'informations précieuses pour l'optimisation du jet. On peut citer la confirmation de la nature "streamer guidé", l'analyse 2Drz fine à l'aide des cinétiques réactionnelles des différentes phases du jet (développement, propagation à l'intérieur puis à l'extérieur du tube et post-décharge), la détermination du profil de sa vitesse instantanée et de sa longueur, l'identification des mécanismes conduisant à sa forme annulaire observée expérimentalement, l'étude spatio-temporelle de l'énergie électronique moyenne, du champ électrique local générant la seconde onde d'ionisation, du courant électronique et des densités des espèces chargées et neutres comme l'hélium métastable jouant un rôle majeur et l'oxygène atomique pour son importance dans le biomédical. Les bonnes cohérences entre nos résultats et les mesures sont autant d'éléments de validation de notre modèle hydro-électrodynamique. On a mené aussi une étude paramétrique systématique pour quantifier l'effet de la tension et du rayon interne sur les caractéristiques du jet de plasma. On a finalement apporté dans une annexe notre contribution sur la physique de l'interaction entre notre jet et les micro-organismes
The development of reliable plasma sources well suited for biomedical applications is nowadays an increased need. These sources must meet strict requirements such as low temperature (quasi-ambient), easy handling, production of tuned active species, etc. The cold atmospheric pressure plasma jet generated by dielectric barrier discharge can meet these requirements. They are the focus of our hydro-electrodynamics model that is correlated with measurements for experimental validations. The modeled system implemented within our team consists of a quartz tube of small diameter crossed by helium gas flow and around which are wrapped two aluminum electrodes powered by a mono-polar pulsed voltage. Rapid imagery showed that the plasma jet that looks like continuous at naked eye is in reality a rapid succession of "plasma bullets" which are guided ionization waves propagating in He-air mixture, a hypothesis whose confirmation is one of the main objectives of the present work. The study was conducted in 2Drz. The finite element method was used for numerical discretization and COMSOL software is used. We developed three coupled models: hydrodynamic, electrostatic and electrodynamics models. Hydrodynamic modeling has provided us, for different radii of the tube and flow rates, the 2Drz distribution of the mole fraction of helium which is gradually diluted in the ambient air. This gas mixture is the medium in which the ionization waves propagate. The initial wave front in the vicinity of the outlet tube is the geometric electric field. Electrostatic simulation allowed us to quantify the influence of each parameter of the device on the maximum value of this geometric electric field. An important result of this study is an optimal configuration of the plasma jet device (experimentally validated) allowing us to maximize the length of the jet in order to facilitate the manipulation of the plasma source, or to minimize the magnitude of the voltage applied to the device to significantly reduce the energy cost in the case of a fixed length of the jet. The electro-hydrodynamic simulation of the plasma jet is based on the coupled system formed by the Poisson equation, the equations of particle transport, the electron energy conservation equation, the convecto-diffusive transport equation of helium in ambient air and the Navier-Stokes equation. The required input data in the models as reactions and transport coefficients determined from multi-term Boltzmann equation solution take into account the progressive dilution of He in the air. Each case of simulation of our 2Drz multi-physics model is time consuming calculation (a few days on a Xeon processor) but provide us a lot of valuable information for the optimization of the jet. Some of them are confirmation of "guided streamer " nature of plasma jet, the 2Drz rigorous analysis correlated to reaction kinetics of the different phases of the jet (development, propagation and post-discharge), the determination of its length and velocity profile, the identification of mechanisms leading to its annular shape experimentally observed, the spatial and temporal study of the average electron energy, the local electric field generating the second ionization wave, the electron current and density of the charged and neutral species such as the helium metastable playing a major role in the chemistry of the plasma and atomic oxygen because of its importance in biomedical applications. Good consistencies observed between our results and the experimental measurements are elements of validation of our hydro-electrodynamics model. We also conducted a systematic parametric study to quantify the effect of the voltage and the tube inner radius on the characteristics of the plasma jet. We have finally given, in an annex, our contribution on the physics of the interactions between our jet and micro-organisms
APA, Harvard, Vancouver, ISO, and other styles
5

Lefevre, Tony. "Etude des propriétés radiatives d'un plasma d'hélium hors équilibre : expériences et simulations avec le code SOPHIA." Thesis, Aix-Marseille, 2012. http://www.theses.fr/2012AIXM4776/document.

Full text
Abstract:
L'étude expérimentale des propriétés radiatives de plasmas d'hélium hors équilibres peut être réalisée par spectroscopie d'émission, un diagnostic non intrusif qui ne perturbe pas le système. Dans cette thèse, ce diagnostic a été utilisé sur des plasmas créés dans des tubes à décharges et dans une machine linéaire magnétisée MISTRAL. Les données expérimentales ont été confrontées aux résultats théoriques issus du code de physique atomique SOPHIA (modèle collisionnel-radiatif). Les tubes à décharge se caractérisent par des températures électroniques de l'ordre de l'électron-Volt et des densités électroniques de l'ordre de 10 exposant 12 cm-3. La première partie des résultats de cette thèse a permis de montrer que, dans ces conditions, le modèle C.C.C. (Convergent Close Coupling) reproduit au mieux la dynamique atomique d'un tel système. Dans la machine MISTRAL, la deuxième partie des résultats de cette thèse met en évidence la signature spectroscopique (rapports d'intensités de raies et étutés de raies et études radiales), de la présence d'électrons énergétiques ionisants et de la diffusion des particules chargées à travers un champ magnétique
The experimental study of the radiative properties of plasmas of helium out of equilibrium can be achieved by emission spectroscopy, a non-invasive diagnostic which does not affect the system. In this thesis, this diagnostic was used on plasmas created in discharge tubes and in the linear magnetized machine MISTRAL. The experimental data were compared with theoretical results coming from the atomic physics code SOPHIA (collisional-radiative model). The discharge tubes are characterized by electron temperatures of the order of the electron volt and electron densities in the range of 10 12 cm-3. The first part of the results of this thesis has shown that under these conditions, the CCC model (Convergent Close Coupling) reproduces in the best way the atomic dynamics of such a system. The second part of the results reveals the spectroscopic signatures (line intensities ratios and radial studies), in the machine MISTRAL, the presence of ionizing energetic electrons and the diffusion of charged particles through a magnetic field
APA, Harvard, Vancouver, ISO, and other styles
6

Vijayarangan, Vinodini. "Application des plasmas froids à la pénétration de principes actifs dans la peau." Electronic Thesis or Diss., Orléans, 2021. http://www.theses.fr/2021ORLE3207.

Full text
Abstract:
Cette thèse s’est déroulée dans le cadre d’un contrat CIFRE au sein de LVMH Recherche, en collaboration avec deux laboratoires académiques : le GREMI (Université d’Orléans/CNRS) et le CBM (CNRS). Elle porte sur l’étude de l’utilisation d’un jet de plasma froid à pression atmosphérique pour la pénétration cutanée de molécules d’intérêt cosmétique. Cette thèse s’est effectuée selon trois axes majeurs. Dans le premier, les travaux ont consisté à identifier et évaluer les caractéristiques d’un jet plasma face à un explant de peau. Une étude a été réalisée afin d’observer le comportement d’un flux d’hélium lors de traitements plasma aux caractéristiques variées par imagerie Schlieren, d’identifier le type d’espèces excitées produites par spectroscopie,de mesurer le champ électrique associé au jet plasma et la température de celui-ci dans l’environnement de l’explant. Le deuxième axe de l’étude a été focalisé sur les perturbations induites sur l’explant. L’impact d’un traitement plasma sur la barrière cutanée a été évalué par le biais de mesures de perte insensible en eau, de pH,de mouillabilité et de dégradation des lipides cutanés. L’intégrité de la structure du collagène a été visualisé par AFM et celle des couches épidermiques et dermiques par immunomarquage. Enfin dans le troisième, les travaux ont porté sur la pénétration cutanée après traitement plasma en utilisant des molécules fluorescentes ainsi que des principes actifs d’intérêt cosmétique tels que la caféine et l’acide hyaluronique. La pénétration effective de ces molécules à travers la peau a été évaluée, mesurée et quantifiée grâce à l’utilisation de cellules de Franz avec une quantification par des mesures d’absorbance, en HPLC et par imagerie en fluorescence ou MALDI FTICR sur des coupes obtenues à partir d’explants traités. Les études réalisées suivant ces trois axes ont ainsi permis de mettre en évidence les paramètres clés permettant une pénétration cutanée efficace et sans dommage pour la peau par traitement plasma froid
This thesis was performed under a CIFRE contract within LVMH Research, in collaboration with two academic laboratories : GREMI (University of Orléans / CNRS) and CBM (CNRS). The aim of the project was to assess the use of a cold atmospheric pressure plasma jet for the cutaneous penetration of molecules of cosmetic interest. This thesis was carried out along three major axes. In the first, the work consisted in identifying and evaluating the characteristics of a plasma jet in front of a skin explant. A study was carried out to observe the behavior of a helium flow during plasma treatments with various characteristics by Schlieren imaging, to identify the type of excited species produced by spectroscopy, to measure the electric field associated with the plasma jet and its temperature in the environment of the explant. The second axis of the study was focused on the disturbances induced on the skin explant. The impact of plasma treatment on the skin barrier was assessed through measurements of transepidermal water loss, pH, wettability and skin lipid degradation. The structural integrity of collagen was visualized by AFM and that of the epidermal and dermal layers by immunostaining. Finally, in thethird axis, the work focused on skin penetration after plasma treatment using fluorescent molecules as well asactive ingredients of cosmetic interest such as caffeine and hyaluronic acid. The effective penetration of these molecules through the skin was evaluated, measured and quantified using Franz cells with quantification byabsorbance measurements, by HPLC and by fluorescence or MALDI FTICR imaging on sections obtained. from treated explants. The studies carried out along these three axes have thus made it possible to highlight the key parameters allowing effective skin penetration without damage to the skin by cold plasma treatment
APA, Harvard, Vancouver, ISO, and other styles
7

TA, PHUOC KIM. "Etude du rayonnement XUV produit lors de l'interaction relativiste entre un laser femtoseconde intense et un plasma d'hélium." Phd thesis, Ecole Polytechnique X, 2002. http://tel.archives-ouvertes.fr/tel-00009602.

Full text
Abstract:
La diffusion Thomson linéaire – qui correspond à la diffusion d'une onde - électromagnétique de faible intensité par des électrons – est un processus radiatif qui émet du rayonnement à la même fréquence que celle du rayonnement incident. Cependant, lorsque l'intensité de l'onde électromagnétique incidente devient très importante (intensité laser supérieure à 1018 W/cm2), les électrons oscillant dans l'impulsion laser atteignent des vitesses relativistes et ont un mouvement fortement non linéaire. L'onde électromagnétique qu'ils diffusent est alors constituée d'harmoniques pouvant atteindre le domaine spectral des rayons X et la distribution spatiale du rayonnement est anisotrope. La diffusion Thomson est alors dite nonlinéaire et a été proposée à plusieurs reprises comme une source de rayonnement X femtoseconde. Ce n'est qu'aujourd'hui, grâce au développement des lasers intenses, que ce processus radiatif peut être étudié dans le domaine spectral X. Le travail présenté dans cette thèse est consacré à la démonstration expérimentale et à l'étude numérique du rayonnement de diffusion Thomson nonlinéaire X-UV produit lors de l'interaction Laser-Plasma.
APA, Harvard, Vancouver, ISO, and other styles
8

Douat, Claire. "Etude d'un micro-jet de plasma à pression atmosphérique." Phd thesis, Université Paris Sud - Paris XI, 2014. http://tel.archives-ouvertes.fr/tel-00960400.

Full text
Abstract:
Ces dernières années un nouveau type de décharges hors équilibre thermodynamique, aptes à générer des micro jets de plasma se propageant en atmosphère libre, a suscité beaucoup d'intérêt dans la communauté scientifique. Ces micro jets, produits dans des structures type décharge à barrière diélectrique, ont des propriétés particulièrement intéressantes, tant sur le plan de la physique des plasmas que sur celui des applications, en particulier pour des applications biomédicales ou de traitement de surface.Dans ce travail de thèse il est démontré que ces jets de plasma correspondent à la propagation à grande vitesse d'un front d'ionisation sans déplacement de matière. Une caractérisation des propriétés des jets (vitesse et distance de propagation) a été effectuée en fonction de la tension appliquée, du débit, de la composition du gaz, et de la géométrie de la décharge. La distribution spatio-temporelle des espèces réactives produites par le jet a été mesurée, et en particulier celle de l'état métastable He (2³S) mesuré par absorption laser. Des densités comprises entre 1.10¹² et 5.10¹³ cm-³ ont été obtenues pour l'état He (2³S). Sa distribution est annulaire à la sortie de la structure de la décharge et se referme le long du jet. La densité maximale est obtenue à une distance correspondant à la moitié de la zone où les atomes métastables sont présents, ce qui est en contradiction avec les modèles actuels. De plus, afin de mieux comprendre la physique des jets de plasma, nous avons fait interagir deux jets placés l'un en face de l'autre. L'étude de la contre propagation de deux jets révèle qu'il existe une distance minimale d'approche laissant entre eux une zone exempte de plasma. Après l'extinction des deux plasmas, une seconde décharge s'amorce exactement dans cette zone. Une étude détaillée couplant diagnostics électrique, imagerie ultra-rapide et spectroscopie d'émission nous a permis de montrer que cette décharge secondaire est due à une inversion de polarité conduisant à la création transitoire d'un piège à électrons.Dans le but d'aborder l'étude des applications des jets de plasma au domaine biologique, nous avons également étudié la dégradation de l'ADN plasmidique par un jet de plasma. Nous avons mis en évidence que ce type de plasma induit majoritairement des cassures simples et doubles brins, alors que très peu d'oxydations de base ou de sites abasiques sont observés, ceci même avec l'ajout de quelques pourcents d'oxygène dans le gaz.
APA, Harvard, Vancouver, ISO, and other styles
9

Invernizzi, Laurent. "Développement, caractérisation et optimisation d'une source plasma pour le traitement de liquides." Thesis, Toulouse 3, 2019. http://www.theses.fr/2019TOU30231.

Full text
Abstract:
Depuis quelques dizaines d'années, un intérêt grandissant dans la caractérisation et l'optimisation des jets de plasma à pression atmosphérique a vu le jour grâce à la variété d'applications possibles. L'une d'entre elle concerne la décontamination de liquides contenant des polluants. En effet, le plasma est capable de créer des agents oxydants tels que des espèces réactives de l'oxygène et de l'azote (RONS), des champs électriques, des radiations UV/VUV et des espèces chargées. En particulier, la variété et le nombre de RONS qui sont créés et déposés en phase liquide sont deux paramètres clés dont la compréhension et l'optimisation sont fondamentales pour pouvoir développer une source plasma efficace en terme de décontamination de liquides. La création de RONS est possible par une cascade de transferts d'énergie entre les espèces issues du plasma, l'air qui les entourent et la cible liquide placée en contact avec le jet de plasma. Il est donc nécessaire d'étudier les espèces qui donnent naissance aux RONS, à savoir les atomes d'hélium métastable He(23S). Ces espèces ont la particularité de posséder une énergie relativement conséquente (19.8 eV), en plus de pouvoir la conserver pendant plusieurs dizaines de nanosecondes dans le cas où un mélange He + 0.2% O2 est utilisé. La collision entre ces métastables et les espèces de l'air est à l'origine de la création d'espèces réactives en phase gazeuse qui se déposent ensuite en phase liquide, permettant de réduire voire de détruire le polluant présent dans l'eau. Dans ce travail, l'étude est séparée en trois parties : le plasma, le liquide et l'efficacité biocide du jet de plasma. Dans ce travail de thèse, l'étude de l'influence de la géométrie de la source, du débit ou encore du mélange gazeux sur la quantité des atomes d'hélium métastable dans le jet de plasma est réalisée par spectroscopie d'absorption laser lors de son interaction avec une cible liquide. L'utilisation de l'inversion d'Abel permet de déterminer la densité et la durée de vie de ces espèces localement dans le jet de plasma. La spectroscopie d'émission optique est utilisée pour obtenir une cartographie de toutes les espèces excitées entre 200 et 1000 nm présentes dans le jet. Ces espèces en phase gazeuse sont également étudiées grâce à l'utilisation d'une caméra intensifiée permettant de suivre l'évolution spatio-temporelle du jet de plasma au cours de sa propagation dans l'air jusqu'à son contact avec le liquide.[...]
In recent decades, a growing interest in the characterization and optimization of atmospheric pressure plasma jets has emerged due to the variety of possible applications. One of them concerns the decontamination of liquids containing pollutants. Indeed, plasma jets are capable of creating oxidizing agents such as reactive oxygen and nitrogen species (RONS), electric fields, UV/VUV radiation and charged species. In particular, the variety and number of RONS that are created and deposited in the liquid phase are two key parameters. Understanding and optimizing them is fundamental to the development of an effective plasma source for liquid decontamination. The creation of RONS is possible by a cascade of energy transfers between the species in the plasma, the surrounding air and the liquid target placed in contact with the plasma jet. Therefore, it is necessary to study the species providing these RONS, namely the metastable helium atoms He(23S). These species have the particularity of storing a relatively high energy (19.8 eV), and can release it several tens of nanoseconds after, in the case of plasma in He + 0.2% O2 mixture. The collision between these metastables and air species causes the creation of reactive species in the gas and liquid phase. These reactive species can then reduce or destroy the pollutant present in the water. In this work, the study is separated in three parts: the plasma, the liquid, and the biocidal efficiency of the plasma jet. The study of the source geometry influence, the flow rate or the gas mixture on the quantity of metastable helium atoms in the plasma jet is performed by laser absorption spectroscopy. The use of Abel inversion allows the density and lifetime of these species to be determined locally in the plasma jet during its interaction with a liquid target. Optical emission spectroscopy is used to map all excited species between 200 and 1000 nm present in the plasma jet. These excited species in the plasma are also studied using an intensified camera to monitor the spatial and temporal evolution of the plasma jet during its propagation in the air. The asymmetric source, whose mass electrode has a larger surface than a conventional source (symmetric source), produces more metastable helium atoms and excited species. The quantities of the main RONS (hydrogen peroxides, nitrites and nitrates) were measured in the liquid. The complex molecule targeted in this study to model water pollutant is methylene blue.[...]
APA, Harvard, Vancouver, ISO, and other styles
10

Perito, Cardoso Rodrigo. "Plasmas micro-ondes en cavité résonnante à la pression atmosphérique : étude des plasmas d'hélium et applications au traitement des matériaux." Thesis, Vandoeuvre-les-Nancy, INPL, 2007. http://www.theses.fr/2007INPL103N/document.

Full text
Abstract:
Les travaux présentés dans ce mémoire portent sur l’étude des plasmas d’hélium générés par micro-ondes en cavité résonnante à la pression atmosphérique et sur leurs applications en traitement de surfaces. Tout d’abord, un état de l’art sur les plasmas micro-ondes à la pression atmosphérique et leurs applications est présenté. Ensuite, un modèle collisionnel-radiatif de la décharge et de la post-décharge d’hélium pur est établi. Les résultats du modèle sont comparés aux mesures expérimentales obtenues à 2500 K et un jeu de sections efficaces et de constantes cinétiques valables pour ces conditions est proposé. Expérimentalement, des analyses par spectroscopie d’émission et d’absorption sont employées. La température du gaz est déterminée par la méthode du spectre rotationnel synthétique en fonction de la puissance, de la concentration et de la nature des impuretés introduites dans l’hélium. Il s’avère que le volume du plasma est un paramètre déterminant sur la température du gaz. La concentration du métastable He(23S), en décharge continue et pulsée, est déterminée par absorption laser. En décharge continue, la concentration du métastable est divisée par trois avec 360 ppm d’impureté, la nature de l’impureté n’ayant pas d’importance. En revanche, en post-décharge la nature de l’impureté est déterminante. Les mesures réalisées indiquent que He+ et non He2+ serait l’ion majoritaire. Concernant les applications de ce type de plasma, nous avons travaillé en post-décharge uniquement. Nous avons démontré la faisabilité du procédé de dépôt de SiOx à partir d’hexaméthyldisiloxane. Nous avons aussi montré que la nitruration du titane à haute température était possible
The present work deals with the study of helium microwave plasmas at atmospheric pressure generated in a resonant cavity and their applications in surface treatment. First of all, a state of art of microwave atmospheric pressure plasmas and their applications is presented. Next, a collisional-radiative model for pure helium discharge and post-discharge is described. The results of the model are compared to experimental data obtained at 2500 K and a coherent set of cross-sections and rate constants is obtained for these conditions. Emission and absorption spectroscopy diagnostics are employed to characterize the helium plasma. The gas temperature is determined by the rotational synthetic spectra method. The evolution of the gas temperature, as a function of the input power, the concentration and the nature of impurities in helium, is measured. It turns out that the plasma volume plays a significant role on the gas temperature. The He(23S) concentration is determined by laser absorption in pulsed and continuous mode. In continuous mode, the metastable concentration is divided by 3 with 360 ppm of impurity, regardless of the nature of the impurity. Nevertheless, during the post-discharge, in pulsed mode, the nature of the impurity plays an important role. These measurements support the idea that He+ and not He2+ is the main ion. Concerning the applications, only post-discharges are utilized. We demonstrate that deposition of SiOx using hexamethyldisiloxane as precursor can be efficient. We show that titanium nitriding at high temperature is possible
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography