Jomaa, Neil. "Modélisations multi-physiques avec validations expérimentales des jets de plasmas froids d'hélium à la pression atmosphérique." Toulouse 3, 2014. http://www.theses.fr/2014TOU30094.
Abstract:
Le développement de sources de plasmas froids stables et bien adaptées aux applications biomédicales est en plein essor notamment pour répondre à des exigences strictes comme une quasi-température ambiante, la production d'espèces actives contrôlées, etc. Les jets de plasmas froids à la pression atmosphérique générés par décharges à barrière diélectrique (DBD) dans l'hélium peuvent répondre à ces exigences. Ils constituent l'objectif de notre étude numérique qui est corrélée aux mesures pour la validation de notre modélisation hydro-électrodynamique. Le dispositif modélisé mis en place dans le groupe est constitué par un tube de quartz de petit diamètre traversé par l'hélium et enveloppé par deux électrodes d'aluminium alimentées par une tension pulsée mono-polaire. L'imagerie rapide a montré que le jet de plasma apparaissant continue est en fait la succession rapide de "balles de plasma" constituant les fronts de l'onde d'ionisation se propageant dans le mélange He-air à l'extérieur du tube, une hypothèse d'onde d'ionisation guidée dont la confirmation constitue l'un des objectifs de ce travail. L'étude menée en 2Drz est basée sur la méthode des éléments finis pour la discrétisation en utilisant le logiciel COMSOL. Trois modèles couplés ont été mis en place pour les études hydrodynamique, électrostatique et électrodynamique. La modélisation hydrodynamique nous a fourni, pour différents rayons du tube et vitesses d'écoulement, la distribution 2Drz de la fraction molaire d'hélium qui se dilue progressivement dans l'air ambiant. Ce mélange gazeux constitue le milieu dans lequel se propage l'onde d'ionisation dont le front d'onde initial au voisinage de la sortie du tube est le champ électrique géométrique. Ce champ a constitué l'objectif de la simulation électrostatique qui nous a permis de quantifier l'influence de chacun des paramètres du dispositif sur la valeur maximale de ce front d'onde initial. Le fruit de cette étude est une configuration optimale validée expérimentalement pour soit optimiser la longueur du jet facilitant la manipulation du jet, soit minimiser la tension appliquée pour réduire le cout énergétique dans le cas d'une longueur fixée du jet. La simulation hydro- électrodynamique du jet est basée sur le système couplé formé par les équations de Poisson, de transport des particules, de conservation de l'énergie électronique, du transport convecto-diffusif et de Navier Stokes. Les données de base nécessaires en entrée comme les coefficients de transport et de réaction ont été déterminés par résolution de l'équation de Boltzmann multi-termes en fonction de la dilution progressive de l'He dans l'air. Chaque cas de simulation de notre modèle multi-physiques, consommateur de temps de calcul (3 jours sur un processeur Xeon), fournit beaucoup d'informations précieuses pour l'optimisation du jet. On peut citer la confirmation de la nature "streamer guidé", l'analyse 2Drz fine à l'aide des cinétiques réactionnelles des différentes phases du jet (développement, propagation à l'intérieur puis à l'extérieur du tube et post-décharge), la détermination du profil de sa vitesse instantanée et de sa longueur, l'identification des mécanismes conduisant à sa forme annulaire observée expérimentalement, l'étude spatio-temporelle de l'énergie électronique moyenne, du champ électrique local générant la seconde onde d'ionisation, du courant électronique et des densités des espèces chargées et neutres comme l'hélium métastable jouant un rôle majeur et l'oxygène atomique pour son importance dans le biomédical. Les bonnes cohérences entre nos résultats et les mesures sont autant d'éléments de validation de notre modèle hydro-électrodynamique. On a mené aussi une étude paramétrique systématique pour quantifier l'effet de la tension et du rayon interne sur les caractéristiques du jet de plasma. On a finalement apporté dans une annexe notre contribution sur la physique de l'interaction entre notre jet et les micro-organismes<br>The development of reliable plasma sources well suited for biomedical applications is nowadays an increased need. These sources must meet strict requirements such as low temperature (quasi-ambient), easy handling, production of tuned active species, etc. The cold atmospheric pressure plasma jet generated by dielectric barrier discharge can meet these requirements. They are the focus of our hydro-electrodynamics model that is correlated with measurements for experimental validations. The modeled system implemented within our team consists of a quartz tube of small diameter crossed by helium gas flow and around which are wrapped two aluminum electrodes powered by a mono-polar pulsed voltage. Rapid imagery showed that the plasma jet that looks like continuous at naked eye is in reality a rapid succession of "plasma bullets" which are guided ionization waves propagating in He-air mixture, a hypothesis whose confirmation is one of the main objectives of the present work. The study was conducted in 2Drz. The finite element method was used for numerical discretization and COMSOL software is used. We developed three coupled models: hydrodynamic, electrostatic and electrodynamics models. Hydrodynamic modeling has provided us, for different radii of the tube and flow rates, the 2Drz distribution of the mole fraction of helium which is gradually diluted in the ambient air. This gas mixture is the medium in which the ionization waves propagate. The initial wave front in the vicinity of the outlet tube is the geometric electric field. Electrostatic simulation allowed us to quantify the influence of each parameter of the device on the maximum value of this geometric electric field. An important result of this study is an optimal configuration of the plasma jet device (experimentally validated) allowing us to maximize the length of the jet in order to facilitate the manipulation of the plasma source, or to minimize the magnitude of the voltage applied to the device to significantly reduce the energy cost in the case of a fixed length of the jet. The electro-hydrodynamic simulation of the plasma jet is based on the coupled system formed by the Poisson equation, the equations of particle transport, the electron energy conservation equation, the convecto-diffusive transport equation of helium in ambient air and the Navier-Stokes equation. The required input data in the models as reactions and transport coefficients determined from multi-term Boltzmann equation solution take into account the progressive dilution of He in the air. Each case of simulation of our 2Drz multi-physics model is time consuming calculation (a few days on a Xeon processor) but provide us a lot of valuable information for the optimization of the jet. Some of them are confirmation of "guided streamer " nature of plasma jet, the 2Drz rigorous analysis correlated to reaction kinetics of the different phases of the jet (development, propagation and post-discharge), the determination of its length and velocity profile, the identification of mechanisms leading to its annular shape experimentally observed, the spatial and temporal study of the average electron energy, the local electric field generating the second ionization wave, the electron current and density of the charged and neutral species such as the helium metastable playing a major role in the chemistry of the plasma and atomic oxygen because of its importance in biomedical applications. Good consistencies observed between our results and the experimental measurements are elements of validation of our hydro-electrodynamics model. We also conducted a systematic parametric study to quantify the effect of the voltage and the tube inner radius on the characteristics of the plasma jet. We have finally given, in an annex, our contribution on the physics of the interactions between our jet and micro-organisms