Dissertations / Theses on the topic 'Plant-soil relationships – Western Australia'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 23 dissertations / theses for your research on the topic 'Plant-soil relationships – Western Australia.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Dolling, P. J. "Lucerne (Medicago sativa) productivity and its effect on the water balance in southern Western Australia /." Connect to this title, 2006. http://theses.library.uwa.edu.au/adt-WU2006.0108.
Full textCollins, Shane. "Residue composition influences nutrient release from crop residues." University of Western Australia. School of Earth and Geographical Sciences, 2009. http://theses.library.uwa.edu.au/adt-WU2009.0171.
Full textSetyawan, Dwi. "Soil development, plant colonization and landscape function analysis for disturbed lands under natural and assisted rehabilitation." University of Western Australia. School of Earth and Geographical Sciences, 2005. http://theses.library.uwa.edu.au/adt-WU2005.0117.
Full textDolling, Perry. "Lucerne (Medicago sativa) productivity and its effect on the water balance in southern Western Australia." University of Western Australia. Faculty of Natural and Agricultural Sciences, 2006. http://theses.library.uwa.edu.au/adt-WU2006.0108.
Full textDoole, Graeme John. "Value of perennial pasture phases in dryland agricultural systems of the eastern-central wheat belt of Western Australia." University of Western Australia. School of Agricultural and Resource Economics, 2007. http://theses.library.uwa.edu.au/adt-WU2007.0213.
Full textRadomiljac, Andrew M. "Santalum album L. plantations : a complex interaction between parasite and host." Murdoch University, 1998. http://wwwlib.murdoch.edu.au/adt/browse/view/adt-MU20060818.134603.
Full textHorsnell, Tara Kathleen. "Quantifying thresholds for native vegetation to salinity and waterlogging for the design of direct conservation approaches." University of Western Australia. School of Environmental Systems Engineering, 2009. http://theses.library.uwa.edu.au/adt-WU2009.0082.
Full textPoulter, Rachel. "Investigating the role of soil constraints on the water balance of some annual and perennial systems in a Mediterranean environment." University of Western Australia. Faculty of Agriculture, 2006. http://theses.library.uwa.edu.au/adt-WU2006.0018.
Full textLucas, Anne. "Water stress and disease development in Eucalyptus marginata (jarrah) infected with Phytophthora cinnamomi." Murdoch University, 2003. http://wwwlib.murdoch.edu.au/adt/browse/view/adt-MU20040820.13290.
Full textBleby, Timothy Michael. "Water use, ecophysiology and hydraulic architecture of Eucalyptus marginata (jarrah) growing on mine rehabilitation sites in the jarrah forest of south-western Australia." University of Western Australia. School of Plant Biology, 2003. http://theses.library.uwa.edu.au/adt-WU2004.0004.
Full textPritchard, Deborah Leeanne. "Phosphorus bioavailability from land-applied biosolids in south-western Australia." Curtin University of Technology, Muresk Institute, 2005. http://espace.library.curtin.edu.au:80/R/?func=dbin-jump-full&object_id=16492.
Full textThe biosolid P was predominantly inorganic (92%), and hence the organic fraction (8%) available for mineralisation at all times would be extremely low. The most common forms of biosolid P were water-soluble P and exchangeable inorganic P (66%), followed by bicarbonate extractable P (19%) and the remaining P as inorganic forms associated with Fe, Al and Ca (14%). Following the application of biosolids to a lateritic soil, the Fe and Al soil fractions sorbed large amounts of P, not unlike the distribution of P following the addition of MCP. Further investigation would be required to trace the cycling of biosolid P in the various soil pools. The growth response of wheat (Triticum aestivum L.) to increasing rates of biosolids and comparable rates of inorganic P as MCP, to a maximum of 150 mg P/kg soil was examined in the glasshouse. The percentage relative effectiveness (RE) of biosolids was calculated using fitted curve coefficients from the Mitscherlich equation: y = a (1-b exp–cx) for dry matter (DM) production and P uptake. The initial effectiveness of biosolid P was comparable to that of MCP with the percentage RE of biosolids averaging 106% for DM production of wheat shoots and 118% for shoot P uptake at 33 days after sowing (DAS) over three consecutive crops. The percentage residual value (RV) declined at similar rates for DM production in MCP and biosolids, decreasing to about 33% relative to freshly applied MCP in the second crop and to approximately 16% in the third crop. The effectiveness of biosolid P was reduced significantly compared with inorganic P when applied to a field site 80 km east of Perth (520 mm annual rainfall). An infertile lateritic podsolic soil, consistent with the glasshouse experiment and representative of a soil type typically used for the agricultural application of biosolids in Western Australia was used.
Increasing rates of biosolids and comparable rates of triple superphosphate (TSP), to a maximum of 145 kg P/ha were applied to determine a P response curve. The percentage RE was calculated for seasonal DM production, final grain yield and P uptake in wheat followed by lupin (Lupinus angustifolius L.) rotation for the 2001 and 2002 growing seasons, respectively. In the first year of wheat, the RE for P uptake in biosolids compared with top-dressed TSP ranged from 33% to 55% over the season and by grain harvest was 67%. In the second year, and following incorporation with the disc plough at seeding, the RE for P uptake by lupins in biosolids averaged 79% over the growing season compared with top-dressed TSP, and by grain harvest the RE was 60%. The residual value (RV) of lupins at harvest in biosolids compared with freshly applied TSP was 47%. The non-uniform placement of biosolids (i.e. spatial heterogeneity) was primarily responsible for the decreased ability of plant roots to absorb P. The P was more effective where biosolids were finely dispersed throughout the soil, less so when roughly cultivated and least effective when placed on the soil surface without incorporation. The RE for grain harvest of wheat in the field decreased from 67% to 39% where biosolids were not incorporated (i.e. surface-applied). The RE could also be modified by factors such as soil moisture and N availability in the field, although it was possible to keep these variables constant in the glasshouse. Consequently, absolute values determined for the RE need to be treated judiciously. Calculations showed that typical loading rates of biosolids required to satisfy agronomic P requirements of wheat in Western Australia in the first season could vary from 0 to 8.1 t DS/ha, depending on soil factors such as the P Retention Index (PRI) and bicarbonate available P value.
Loading rates of biosolids were inadequate for optimum P uptake by wheat at 5 t DS/ha (i.e. 145 kg P/ha) based on the NLBAR on high P sorbing soils with a low fertiliser history (i.e. PRI >15, Colwell bicarbonate extractable P <15 mg P/kg). On soils of PRI <2 mL/g however, biosolids applied at identical loading rates would result in high concentrations of available P. Further work on sites not P deficient would be necessary to validate these findings on farmed soils with a regular history of P fertiliser. The sieving of soil samples used in the field experiment to remove stones and coarse organic matter prior to chemical analysis inadvertently discarded biosolids particles >2 mm, and thus their was little relationship between soil bicarbonate extractable P and P uptake by plants in the field. The risk of P leaching in biosolids-amended soil was examined over a number of different soil types at comparable rates of P at 140 mg P/kg (as either biosolids or MCP) in a laboratory experiment. Given that biosolids are restricted on sites prone to water erosion, the study focussed on the movement of water-soluble P by leaching rather than by runoff of water-soluble P and particulate P. In general the percentage soluble reactive P recovered was lower in soils treated with biosolids than with MCP, as measured in leachate collected using a reverse soil leachate unit. This was particularly evident in acid washed sand with SRP measuring 14% for biosolids and 71% for MCP, respectively, although the differences were not as large in typical agricultural soils. Specific soil properties, such as the PRI, pH, organic carbon and reactive Fe content were negatively correlated to soluble reactive P in leachate and thus reduced the risk of P leaching in biosolids-amended soil.
Conversely, the total P and bicarbonate extractable P status of the soils investigated were unreliable indicators as to the amount of P leached. On the basis of the experiments conducted, soils in Western Australia were categorised according to their ability to minimise P enrichment and provide P necessary for crop growth at loading rates determined by the NLBAR. Biosolids applied at the NLBAR to soils of PRI >2mL/g with reactive Fe >200 mg/kg were unlikely to necessitate P loading restrictions. Although specific to anaerobically digested biosolids cake applied to Western Australian soils, the results will be of relevance to any industry involved in the land application of biosolids, to prevent P contamination in water bodies and to make better use of P in crop production.
Hollick, Penelope Sarah. "Mycorrhizal specificity in endemic Western Australian terrestrial orchids (tribe Diurideae) : implications for conservation /." Hollick, Penelope Sarah (2004) Mycorrhizal specificity in endemic Western Australian terrestrial orchids (tribe Diurideae): implications for conservation. PhD thesis, Murdoch University, 2004. http://researchrepository.murdoch.edu.au/103/.
Full textSpeldewinde, Peter Christiaan. "Ecosystem health : the relationship between dryland salinity and human health." University of Western Australia. School of Population Health, 2008. http://theses.library.uwa.edu.au/adt-WU2008.0127.
Full textNobbs, J. M. "The distribution and abundance of nematodes (especially the plant parasites) in the arid region of South Australia /." Title page, contents and summary only, 1987. http://web4.library.adelaide.edu.au/theses/09PH/09phn744.pdf.
Full textCooke, Sarah Spear. "The edaphic ecology of two western North American composite species /." Thesis, Connect to this title online; UW restricted, 1994. http://hdl.handle.net/1773/5569.
Full textVermeulen, Tarina. "Plant water relations of Elytropappus Rhinocerotis with specific reference to soil restrictions on growth." Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/5416.
Full textENGLISH ABSTRACT: The Renosterveld of the Western Cape region is often seen as a natural occurring veld type that will very easily re-establish itself wherever land is left unattended. In this study it was firstly noted that where wheatlands of the Berg River catchment (BRC) is left bare for a number of years, the renosterbos as a pioneer is slow in its re-growth response and when it does, certain patches in the landscape are preferred. This study therefore firstly focussed on the soil restrictions that widely determined the positions in the Berg River landscape where the renosterbos will re-establish itself. Secondly we needed to know whether some of the soil restrictions encountered could be alleviated and was possibly due to cultivation of this land. Through aerial observation it was found that a general patchiness does exist in the naturally occurring Renosterveld of the Voëlvlei area and hill tops of the region and was described by others as the true nature of this veld type. Closer investigation of the soils in the Voëlvlei reserve however showed that soil type played a major role in the patchiness found here. When re-growth of the renosterbos in previously cultivated areas was investigated, it was found that the soil type played the major role in the patchiness that occurred. The most commonly found soil restriction was soil density of the lower horizons. Any soil form that prevented the renosterbos to access the perched water table, to about 15m depth could not support the renosterbos. It is however our belief that soil could be prepared for the re-growth of renosterbos and through this action; renosterbos could also be used to alleviate the salinity problems found in this region. Additionally we investigated the impact of land-use change on the soil water balance and soil salinity by comparing a mature re-established stand of Renosterveld with an adjacent wheatfield. From the results, large differences in salinity and soil water behaviour were detected between the Renosterveld and wheatfield. Modelling of soil and plant water relations was done and the results were correlated well with field observations. This research also confirmed that the renosterbos through its deep rootedness is crucial in the conservation of other species found in the Renosterveld resulting from its ability to keep the water table down and with that the salts that is so often a problem in this area.
AFRIKAANSE OPSOMMING: In die Wes-Kaap word Renosterveld gesien as 'n veld tipe wat natuurlik voorkom en maklik sal hervestig in areas waar land sonder toesig gelaat word. In hierdie studie is dit eerstens opgemerk dat waar koringlande in die Berg Rivier opvanggebied kaal gelaat word vir 'n aantal jare, is die renosterbos as pionier stadig in sy hervestiging en wanneer terug groei wel plaasvind is dit selektief. Die studie fokus dus eerstens op grondbeperkinge wat die areas bepaal waar Renosterveld sal hervestig. Tweedens wou ons vasstel of die grondbeperkings wat voorkom in die grond en wat heel moontlik die oorsaak is van landbewerking opgehef kan word. Deur lugfoto-waarneming is dit gevind dat algemene leë kolle wel opgemerk is in die natuurlik plantegroei van die Renosterveld, in die Voëlvlei area, asook teen die berg hange. Dit word beskryf as 'n algemene kenmerk van die Renosterveld. Nadere ondersoek in die verskillende grondtipes van die area het egter gewys dat die grond tipe 'n belangrike rol speel in die voorkoms en groei van die renosterbos en uiteindelik die (her-)vestiging van Renosterveld. Die terug groei van die renosterbos is ondersoek in voorheen bewerkte lande. Dit is gevind dat die grond tipe 'n belangrike rol speel in die voorkoms van die leë kolle in die Renosterveld. Die mees algemene grond beperking wat opgemerk is, was die verdigte sub-horisonte. Enige grondvorm wat toegang van die renosterboswortels tot by die grondwatertafel (tot by 'n diepte van 15m) beperk, is nie voldoende om die groei van 'n volwasse renosterbos te onderhou nie. Dit is egter ons oortuiging dat die grond voorberei kan word vir die hervestinging van die renosterbos en deur dit te bewerkstellig sal grondversouting beheer kan word. Die impak van landgebruikverandering op die grondwaterbalans en grondversouting is ook ondersoek, deur 'n volwasse stand van Renosterveld te vergelyk met 'n nabygeleë koringveld. Die resultate het getoon dat daar groot verskille in die grondwatervlakke, asook die soutinhoud tussen die Renosterveld en die koringland voorkom. Modellering van die grond-en plantwaterverhouding is uitgevoer en data het goed gekorreleer met veld waarnemings. Die studie het bevestig dat die natuurlike bewaring van die diep gewortelde renosterbos noodsaaklik is vir die voortbestaan van blom- en skilpadspesies wat slegs in die Renosterveld voorkom asook die vermoë van die renosterbos om stygende watertafels en versouting te beheer waar dit dikwels 'n probleem in hierdie area is.
Memiaghe, Herve Roland. "Old field restoration : vegetation response to soil changes and restoration efforts in Western Cape Lowlands." Thesis, Stellenbosch : Stellenbosch University, 2008. http://hdl.handle.net/10019.1/1956.
Full textIn the Mediterranean climate regions of the world, agricultural practices have caused considerable landscape transformation and lead to introduction of alien species that now dominate secondary succession on abandoned agricultural fields. Various restoration attempts have been made to reduce alien plant species cover, and to enhance the re-establishment and cover of native plant species. However, results and successes were mostly short-term due to re-growth and persistence of the weedy alien species, which has been suggested to be caused by land use history, especially the nutrient enrichment of soil, and particularly phosphorus and nitrogen. This study investigated different soil properties (pH, electrical conductivity (EC), soil moisture, as well as available phosphorus (P) and total nitrogen (N)) on 10 and 20 year old abandoned fields, as a function of depth in three habitats (ridge (old cultivated area), ditch (old drainage line) and slope (intermediate zone between ridge and ditch)) on the old fields. The relationship between these soil properties and the vegetation occurring on the two old fields was established. At the same time, restoration treatments (autumn burn, combination of autumn burn and herbicide, herbicide application alone, as well as spring burn) were conducted to reduce the cover and abundance of non-native plant species and Cynodon dactylon, and to enhance cover of native species. Results from the study show that levels of all investigated soil properties were higher on the younger field. The highest difference was observed in EC and pH. Seasonal differences in both soil properties could also be observed. A principal component analysis indicated that the dynamic of all soil properties shaped the vegetation type on old fields, with the main soil properties being dependent on land-use history and time since abandonment. This study suggests that EC and pH could be part of parameters that drive the persistence of undesirable species persistence on old fields and inhibit native plant species instead.
Jenkins, Sommer. "Ecophysiological principles governing the zonation of puccinellia (Puccinellia ciliata) and tall wheatgrass (Thinopyrum ponticum) on saline waterlogged land in south-western Australia." University of Western Australia. School of Earth and Geographical Sciences, 2007. http://theses.library.uwa.edu.au/adt-WU2007.0133.
Full textGrigg, Alasdair M. "An ecophysiological approach to determine problems associated with mine-site rehabilitation : a case study in the Great Sandy Desert, north-western Australia." University of Western Australia. School of Plant Biology, 2009. http://theses.library.uwa.edu.au/adt-WU2009.0118.
Full textTiver, Fleur. "Vegetation patterns of eastern South Australia : edaphic control and effects of herbivory /." Title page, contents and abstract only, 1994. http://web4.library.adelaide.edu.au/theses/09PH/09pht623.pdf.
Full textGraff, Joseph Edward. "Ionic balance and the constituent organic acids of current-year foliage of western redcedar, western hemlock, and Douglas-fir seedlings /." 1993. http://hdl.handle.net/1957/10705.
Full textNobbs, J. M. (Jacqueline Mary). "The distribution and abundance of nematodes (especially the plant parasites) in the arid region of South Australia / by J.M. Nobbs." 1987. http://hdl.handle.net/2440/21590.
Full textii, 84 leaves, [7] leaves of plates : ill. (some col.) ; 30 cm.
Title page, contents and abstract only. The complete thesis in print form is available from the University Library.
Thesis (Ph.D.)--University of Adelaide, Dept. of Plant Pathology, 1987
Lenz, Tanja I. "The effect of resource dynamics on invasive annual and native perennial grasses in grasslands of the mid-north of South Australia / Tanja Lenz." 2004. http://hdl.handle.net/2440/22082.
Full textBibliography: leaves 120-136.
vii, 136 leaves : ill. (some col.), maps ; 30 cm.
Title page, contents and abstract only. The complete thesis in print form is available from the University Library.
Investigates the effects of soil moisture dynamics on the growth and interactions between invasive annual grasses and native perennial grasses in the mid-north of South Australia. At most sites annual grass abundance was positively correlated with rainfall, soil moisture after rainfall and higher soil productivity. Perennial grass abundance was negatively correlated with annual grass abundance and soil moisture after rainfall, and was weakly positively correlated with percentage summer rainfall, elevation, radiation, gravel and slope. Overall perennial grasses responded little to the environmental variables investigated, but strongly to annual grass abundance, while for annual grasses soil moisture was the driving variable.
Thesis (Ph.D.)--University of Adelaide, School of Earth and Environmental Sciences, Discipline of Environmental Biology, 2004