Academic literature on the topic 'Plant secondary cell walls'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Plant secondary cell walls.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Plant secondary cell walls"
Avci, Utku. "Trafficking of Xylan to Plant Cell Walls." Biomass 2, no. 3 (August 25, 2022): 188–94. http://dx.doi.org/10.3390/biomass2030012.
Full textWightman, Raymond, and Simon Turner. "Digesting the indigestible: Biosynthesis of the plant secondary wall." Biochemist 33, no. 2 (April 1, 2011): 24–28. http://dx.doi.org/10.1042/bio03302024.
Full textMa, Yingxuan, Luke Stafford, Julian Ratcliffe, Antony Bacic, and Kim L. Johnson. "WAKL8 Regulates Arabidopsis Stem Secondary Wall Development." Plants 11, no. 17 (September 2, 2022): 2297. http://dx.doi.org/10.3390/plants11172297.
Full textBlanchette, Robert A., Kory R. Cease, André R. Abad, Todd A. Burnes, and John R. Obst. "Ultrastructural characterization of wood from Tertiary fossil forests in the Canadian Arctic." Canadian Journal of Botany 69, no. 3 (March 1, 1991): 560–68. http://dx.doi.org/10.1139/b91-076.
Full textPesquet, Edouard, Andrey V. Korolev, Grant Calder, and Clive W. Lloyd. "Mechanisms for shaping, orienting, positioning and patterning plant secondary cell walls." Plant Signaling & Behavior 6, no. 6 (June 2011): 843–49. http://dx.doi.org/10.4161/psb.6.6.15202.
Full textTerrett, Oliver M., and Paul Dupree. "Covalent interactions between lignin and hemicelluloses in plant secondary cell walls." Current Opinion in Biotechnology 56 (April 2019): 97–104. http://dx.doi.org/10.1016/j.copbio.2018.10.010.
Full textBusse-Wicher, Marta, Nicholas J. Grantham, Jan J. Lyczakowski, Nino Nikolovski, and Paul Dupree. "Xylan decoration patterns and the plant secondary cell wall molecular architecture." Biochemical Society Transactions 44, no. 1 (February 9, 2016): 74–78. http://dx.doi.org/10.1042/bst20150183.
Full textSeago, Jr., James L., Carol A. Peterson, and Daryl E. Enstone. "Cortical ontogeny in roots of the aquatic plant, Hydrocharis morsus-ranae L." Canadian Journal of Botany 77, no. 1 (June 1, 1999): 113–21. http://dx.doi.org/10.1139/b98-210.
Full textIdris, Nurul A., Maketelana Aleamotuʻa, David W. McCurdy, and David A. Collings. "The Orchid Velamen: A Model System for Studying Patterned Secondary Cell Wall Development?" Plants 10, no. 7 (July 2, 2021): 1358. http://dx.doi.org/10.3390/plants10071358.
Full textKeplinger, Tobias, Johannes Konnerth, Véronique Aguié-Béghin, Markus Rüggeberg, Notburga Gierlinger, and Ingo Burgert. "A zoom into the nanoscale texture of secondary cell walls." Plant Methods 10, no. 1 (2014): 1. http://dx.doi.org/10.1186/1746-4811-10-1.
Full textDissertations / Theses on the topic "Plant secondary cell walls"
Escamez, Sacha. "Xylem cells cooperate in the control of lignification and cell death during plant vascular development." Doctoral thesis, Umeå universitet, Institutionen för fysiologisk botanik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-115787.
Full textKarlsson, Marlene. "Molecular factors involved in the formation of secondary vascular tissues and lignification in higher plants : studies of CuZn-SOD and members of MYB and zinc-finger transcription factor families /." Umeå : Dept. of Forest Genetics and Plant Physiology, Swedish Univ. of Agricultural Sciences, 2003. http://epsilon.slu.se/s280.pdf.
Full textBonham, Victoria Anne. "Secondary cell wall specific proteins in plants." Thesis, Royal Holloway, University of London, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.312839.
Full textIslam, Azharul. "Cell-walls of growing plant cells." Thesis, University of Westminster, 2013. https://westminsterresearch.westminster.ac.uk/item/8z033/cell-walls-of-growing-plant-cells.
Full textCuello, Clément. "Vers l'élaboration d'un modèle de construction des parois secondaires des fibres de bois chez le peuplier." Electronic Thesis or Diss., Orléans, 2021. https://theses.univ-orleans.fr/prive/accesESR/2021ORLE3118_va.pdf.
Full textTrees are able to grow high et survive many years thanks to their wood properties. Wood delivers three major functions in trees : (i) water conduction, (ii) mechanical support et (iii) nutrient storage. In Angiosperm trees, vessels, fibers et parenchyma rays are respectively assigned to these functions, each of them following their own development scheme. Cell wall composition et structure varies greatly depending on cell type, developmental stage et environmental conditions. This complexity therefore represents a hindrance to study the molecular mechanisms of wood formation. However, this can be circumvented by the development of cell-specific approaches.This work aims at characterizing fiber development, focusing on their secondary cell wall, developing cell-specific methods et integrative analysis at the cell level. Development of ATR-FTIR hyperspectral imaging enabled to finely characterize differences in cell wall composition between cell types in a tree et within cell types in different types of wood. Transcriptomics data obtained by RNA-Seq of microdissected fibers et rays gave rise to major differences in the transcriptome of these two cell types. Combining both kind of result led to the identification of key players in fibers development. Hence, this work opens up new research hypothesis, which could lead to a better understanding of the molecular mechanisms underlying wood fiber development, including from a dynamic perspective
Murugesan, Yogesh Kumar. "Anisotropic soft matter models for plant cell walls." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=117093.
Full textCette thèse utilise la théorie et la simulation pour élucider les principes et mécanismes qui gouverne la hermodynamique, la science des matériaux, et la rhéologie de la matière biologique molle anisotropique qui est impliquée dans ledéveloppement/auto-assemblage/la transformation des parois cellulaires de plantes, un composite biologique fibreux multifonctionnel. Les parois cellulaires de plantes peuvent être considérées comme des membranes biologiques renforcées consistant en des microfibres de cellulose (CMFs) de hautes ténacités contenues dans une matrice de polysaccaride. Ces CMFs dans la matrice extracellulaire sont orientés dans une direction stratégique hélices et des hélicoïdes. L'orientation des CMFs gouverne les propriétés physiques du bois et contrôle la forme des cellules. Deux modèles sont employés dans cette thèse dépendamment de la concentration en CMFs. A la concentration de CMFs dessous la limite critique de Onsager, nous développons un modèle mécanique intégré qui décrit un auto-assemblage de fibres rigides de type cristal liquide nématique sur une membrane courbée bidimensionnelle arbitraire afin de démontrer la possibilité de l'orientation des CMFs indue par les interactions entre la courbature de la membrane et l'organisation fibrillaire intrinsèque. Cette auto-assemblage planaire indus par la courbature peut prédire et expliquer les lignes, annaux et textures hélicoïdales observées dans les parois cellulaires. Ces prédictions sont partiellement validées au travers d'observations expérimentales publiés. Une équation décrivant l'ordre nématique et la forme intégrée qui a été développé dans cette thèse fournis un modèle complet dont la solution décrit le couplage entre l'alignement des fibres et la forme de la membrane. Le model validé est par la suite utilisé à fin d'analyser la structure et la mécanique de membrane fibreuses biologiques et biomimétiques de courbatures variables. La statique des membranes fibreuses anisotropes développés dans ce modèle est intégrée avec la némato-dynamique planaire des fibres et la dynamique des membranes isotropes afin de formuler un modèle viscoélastique pour étudier le remodelage dynamique des CMF durant leur développement et morphogénèse. Le nouveau couplage entre l'orientation fibrillaire planaire et l'ordre ainsi que la courbature de la membrane formulé dans cette thèse à le potentiel d'ouvrir de nouvelles avenues pour contrôler l'ordre bidimensionnel de matière molle selon des propriétés bien définies. Quand la concentration en CMFs excède la limite critique en fibre de Onsager, l'interaction entre les CMFs résulte en un alignement dans une direction spécifique qui tente de minimiser le volume exclu de CMFs. Un modèle mathématique basé sur la théorie de Landau de Gennes des cristaux liquides est utilisé pour simuler les textures de défauts survenant dans un chirale d'auto assemblage du à la présence de phases secondaires tel que les lumens cellulaires. En plus de fournir de l'information sur les propriétés matériels et les ordres de grandeurs qui ne peuvent être mesuré expérimentalement in vivo, les motifs des défauts transitoires simulés confirment pour la première fois le mécanisme de formation des assemblages hélicoïdaux. Le modèle est de plus étendu pour investiguer les textures de défauts et les phases liquides cristallines (LC) observées dans les arrangements polygonaux de particules cylindriques inclus dans des matrices de cristaux liquide cholestériques. Ces découvertes validées fournissent un ensemble de mécanismes qui contribues à faire évoluer la compréhension des assemblages lamellaires biologiques et servent de plateforme pour de futur développement d'applications biomimétiques. L'intégration des théories et des modèles de la matière molle avec des données biologique concrète pour les parois cellulaires fournissent des fondement pour la compréhension du développement, de formation et fonctionnalité ainsi qu'une plateforme pour l'innovation biomimétique
Sene, Christophe F. B. "Infrared microspectroscopy and raman spectroscopy of plant cell walls." Thesis, University of East Anglia, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.240996.
Full textNunan, Kylie. "Cell wall metabolism in developing grape berries /." Title page, contents and abstract only, 1999. http://web4.library.adelaide.edu.au/theses/09APSP/09pspn972.pdf.
Full textJohn, Melford Apti. "Post-harvest changes in cell walls of mango fruits." Thesis, Royal Holloway, University of London, 1985. http://repository.royalholloway.ac.uk/items/e6f2ec32-7c86-4106-a945-0ac589c09f14/1/.
Full textMcCann, Maureen C. "Architecture of the plant extracellular matrix." Thesis, University of East Anglia, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.279709.
Full textBooks on the topic "Plant secondary cell walls"
Carpita, N. C., M. Campbell, and M. Tierney, eds. Plant Cell Walls. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0668-2.
Full textGeitmann, Anja. Plant Cell Walls. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003178309.
Full textT, Brett C., and Hillman John R, eds. Biochemistry of plant cell walls. Cambridge [Cambridgeshire]: Cambridge University Press, 1985.
Find full text1921-, Linskens H. F., Jackson J. F. 1935-, and Bacic A, eds. Plant cell wall analysis. Berlin: Springer, 1996.
Find full textF, Linskens H., Jackson J. F, and Bacic A, eds. Plant cell wall analysis. Berlin: Springer, 1996.
Find full textBrett, C., and K. Waldron. Physiology and Biochemistry of Plant Cell Walls. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-010-9641-6.
Full textK, Waldron, ed. Physiology and biochemistry of plant cell walls. London: Unwin Hyman, 1990.
Find full textFukuda, H. Plant cell wall patterning and cell shape. Hoboken, New Jersey: John Wiley & Sons Inc., 2015.
Find full textPhillip, Morris, and International Association of Plant Cell and Tissue Culture., eds. Secondary metabolism in plant cell cultures. Cambridge: Cambridge University Press, 1986.
Find full textCell Wall Meeting (4th 1986 Paris, France). Cell walls '86: Proceedings of the Fourth Cell Wall Meeting, Paris, September 10th-12th, 1986. Edited by Vian Brigitte, Goldberg R, and Reis Daniéle. Paris: Université Pierre et Marie Curie, École Normal Supérieure, 1986.
Find full textBook chapters on the topic "Plant secondary cell walls"
Turner, Simon R., Neil Taylor, and Louise Jones. "Mutations of the secondary cell wall." In Plant Cell Walls, 209–19. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0668-2_13.
Full textKoch, Gerald, and Uwe Schmitt. "Topochemical and Electron Microscopic Analyses on the Lignification of Individual Cell Wall Layers During Wood Formation and Secondary Changes." In Plant Cell Monographs, 41–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36491-4_2.
Full textShafi, Amrina, and Insha Zahoor. "Plant Survival and Tolerance Under High Salinity: Primary and Secondary Cell Wall-Sensing Mechanism." In Salt Stress, Microbes, and Plant Interactions: Causes and Solution, 129–46. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8801-9_6.
Full textSandstrom, Richard P., and W. David Loomis. "Cell Walls and Secondary Products as Obstacles to Plant Enzyme Isolation: Problems and Solutions, Including a Simple Liquid-Nitrogen Homogenizer for Bulk Tissue Extraction." In The Metabolism, Structure, and Function of Plant Lipids, 45–52. Boston, MA: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4684-5263-1_6.
Full textCivardi, Laura, Alain Murigneux, Patricia Tatout, Pere Puigdomènech, and Joan Rigau. "Molecular Cloning and Characterization of two cDNAs Encoding Enzymes Required for Secondary Cell Wall Biosynthesis in Maize." In Cellular Integration of Signalling Pathways in Plant Development, 135–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-72117-5_13.
Full textCrang, Richard, Sheila Lyons-Sobaski, and Robert Wise. "Cell Walls." In Plant Anatomy, 155–79. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-77315-5_5.
Full textNoguchi, Tetsuko. "Cell Walls." In Atlas of Plant Cell Structure, 137–56. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-54941-3_7.
Full textBidlack, James E., and William V. Dashek. "Plant cell walls." In Plant Cells and their Organelles, 209–38. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781118924846.ch9.
Full textMoore, John P., Maïté Vicré, Eric Nguema-Ona, Azeddine Driouich, and Jill M. Farrant. "Drying Out Walls." In Plant Cell Walls, 441–51. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003178309-22.
Full textVissenberg, Kris, and Herman Höfte. "Cell Wall-Related Mechanisms Underlying Plant Cell Expansion." In Plant Cell Walls, 127–46. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003178309-6.
Full textConference papers on the topic "Plant secondary cell walls"
Tran, Thi Ngoc Anh. "Ectopic secondary cell wall formation in Arabidopsis by overexpression of an unusual MYB transcription factor from poplar." In ASPB PLANT BIOLOGY 2020. USA: ASPB, 2020. http://dx.doi.org/10.46678/pb.20.1052914.
Full textFaisal, Tanvir R., Nicolay Hristozov, Tamara Western, Alejandro Rey, and Damiano Pasini. "A Multiscale Model to Determine the Stiffness of Collenchyma Tissue in Rheum Rhabarbarum." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-39676.
Full textPilot, Guy, Sylvain Fauvel, Xavier Gosse, and Guillaume de Dinechin. "Dismantling of Evaporators by Laser Cutting: Measurement of Secondary Emissions." In 14th International Conference on Nuclear Engineering. ASMEDC, 2006. http://dx.doi.org/10.1115/icone14-89709.
Full textBaumann, Sven, Lucien Teunckens, Robert Walthéry, Patrick Lewandowski, and Danny Millen. "The Results of Specific Efforts to Improve Techniques for the Decontamination of Concrete Surfaces in Nuclear Facilities." In ASME 2001 8th International Conference on Radioactive Waste Management and Environmental Remediation. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/icem2001-1309.
Full textMokshina, N. E., O. V. Gorshkov, and T. A. Gorshkova. "Thickening of Plant Cell Walls: Scenarios and Directing." In IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future". Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-21.
Full textQuang, R. Do, V. Petitjean, F. Hollebecque, O. Pinet, T. Flament, and A. Prod’homme. "Vitrification of HLW Produced by Uranium/Molybdenum Fuel Reprocessing in COGEMA’s Cold Crucible Melter." In ASME 2003 9th International Conference on Radioactive Waste Management and Environmental Remediation. ASMEDC, 2003. http://dx.doi.org/10.1115/icem2003-4594.
Full textZhu, Ying, Filomena Pettolino, Shaio-lim Mau, and Tony Bacic. "CHARACTERIZATION OF ROOT CELL WALLS OF THE MEDICINAL PLANT PANAX NOTOGINSENG." In XXIst International Carbohydrate Symposium 2002. TheScientificWorld Ltd, 2002. http://dx.doi.org/10.1100/tsw.2002.683.
Full textSiemiawski, Oskar. "Tender Resonant X-ray Scattering at calcium K-edge to resolve cellulose microstructure in Arabidopsis primary plant cell walls." In ASPB PLANT BIOLOGY 2020. USA: ASPB, 2020. http://dx.doi.org/10.46678/pb.20.989679.
Full textOrfila, Caroline, Florence Dal Degan, Peter Ulvskov, and Henrik V. Scheller. "BIOSYNTHESIS AND DEGRADATION OF O-ACETYLATED PECTIC POLYSACCHARIDES IN PLANT PRIMARY CELL WALLS." In XXIst International Carbohydrate Symposium 2002. TheScientificWorld Ltd, 2002. http://dx.doi.org/10.1100/tsw.2002.404.
Full textGordeeva, E. P., A. R. Nazipova, P. V. Mikshina, and T. A. Gorshkova. "Ramnogalacturonan I in the tertiary cell walls of fibers of various plants." In IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future". Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-130.
Full textReports on the topic "Plant secondary cell walls"
Delmer, Deborah P., Douglas Johnson, and Alex Levine. The Role of Small Signal Transducing Gtpases in the Regulation of Cell Wall Deposition Patterns in Plants. United States Department of Agriculture, August 1995. http://dx.doi.org/10.32747/1995.7570571.bard.
Full textSharon, Amir, and Maor Bar-Peled. Identification of new glycan metabolic pathways in the fungal pathogen Botrytis cinerea and their role in fungus-plant interactions. United States Department of Agriculture, 2012. http://dx.doi.org/10.32747/2012.7597916.bard.
Full textDickman, Martin B., and Oded Yarden. Characterization of the chorismate mutase effector (SsCm1) from Sclerotinia sclerotiorum. United States Department of Agriculture, January 2015. http://dx.doi.org/10.32747/2015.7600027.bard.
Full textDarvill, Alan, Michael G. Hahn, Malcolm A. O'Neill, and William S. York. Structural Studies of Complex Carbohydrates of Plant Cell Walls. Office of Scientific and Technical Information (OSTI), February 2015. http://dx.doi.org/10.2172/1170244.
Full textDarvill, A. Structural studies of complex carbohydrates of plant cell walls. Office of Scientific and Technical Information (OSTI), August 1990. http://dx.doi.org/10.2172/6158915.
Full textAlan G. Darvill. Structural studies of complex carbohydrates of plant cell walls. Office of Scientific and Technical Information (OSTI), December 1995. http://dx.doi.org/10.2172/764078.
Full textManulis-Sasson, Shulamit, Christine D. Smart, Isaac Barash, Laura Chalupowicz, Guido Sessa, and Thomas J. Burr. Clavibacter michiganensis subsp. michiganensis-tomato interactions: expression and function of virulence factors, plant defense responses and pathogen movement. United States Department of Agriculture, February 2015. http://dx.doi.org/10.32747/2015.7594405.bard.
Full textGranot, David, and Noel Michelle Holbrook. Role of Fructokinases in the Development and Function of the Vascular System. United States Department of Agriculture, January 2011. http://dx.doi.org/10.32747/2011.7592125.bard.
Full textMeyerowitz, Elliot M. Regulation of plant cells, cell walls and development by mechanical signals. Office of Scientific and Technical Information (OSTI), June 2016. http://dx.doi.org/10.2172/1302424.
Full textStaehelin, A. 1997 Gordon Research Conference on Plant Cell Walls. Final progress report. Office of Scientific and Technical Information (OSTI), August 1999. http://dx.doi.org/10.2172/764188.
Full text