Academic literature on the topic 'Plant oils'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Plant oils.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Plant oils"
Réblová, Z., Š. Součková, J. Fišnar, and R. Koplík. "Prooxidant capacity of thermoxidised plant oils." Czech Journal of Food Sciences 33, No. 5 (June 3, 2016): 416–23. http://dx.doi.org/10.17221/578/2014-cjfs.
Full textTürünç, Oğuz, Stijn Billiet, Kevin De Bruycker, Samira Ouardad, Johan Winne, and Filip E. Du Prez. "From plant oils to plant foils: Straightforward functionalization and crosslinking of natural plant oils with triazolinediones." European Polymer Journal 65 (April 2015): 286–97. http://dx.doi.org/10.1016/j.eurpolymj.2014.12.013.
Full textDíaz-Reinoso, Beatriz, Sandra Rivas, Jorge Rivas, and Herminia Domínguez. "Subcritical water extraction of essential oils and plant oils." Sustainable Chemistry and Pharmacy 36 (December 2023): 101332. http://dx.doi.org/10.1016/j.scp.2023.101332.
Full textFlores-Dávila, Mariano, Luis Alberto Aguirre-Uribe, Ernesto Cerna-Chávez, Héctor Quiñones-Dena, Yisa María Ochoa-Fuentes, Gustavo Alberto Frías-Treviño, Agustín Hernández-Juárez, and Julio Cesar Chacón-Hernández. "Plant Oils to ControlSitophilus zeamaisMotschulsky." Southwestern Entomologist 42, no. 3 (September 2017): 725–30. http://dx.doi.org/10.3958/059.042.0311.
Full textHIRANO, Jiro, Yoshihiro ISODA, and Yukio NISHIZAWA. "Utilization of n-3 Plant Oils Perilla and Flaxseed Oils." Journal of Japan Oil Chemists' Society 40, no. 10 (1991): 942–50. http://dx.doi.org/10.5650/jos1956.40.942.
Full textDatsenka, Anastasiya, Hanna Kanavod, Lizaveta Belaya, Valeriya Klimovich, Mariola Truchan, and Halyna Tkachenko. "EFFECT OF ROSEMARY ESSENTIAL OIL ON LIPID PEROXIDATION IN THE VARIOUS PLANT OILS." Scientific and Technical Bulletin of the Institute of Animal Science NAAS of Ukraine, no. 121 (2019): 23–32. http://dx.doi.org/10.32900/2312-8402-2019-121-23-32.
Full textBurnett, Christina L., Monice M. Fiume, Wilma F. Bergfeld, Donald V. Belsito, Ronald A. Hill, Curtis D. Klaassen, Daniel Liebler, et al. "Safety Assessment of Plant-Derived Fatty Acid Oils." International Journal of Toxicology 36, no. 3_suppl (November 2017): 51S—129S. http://dx.doi.org/10.1177/1091581817740569.
Full textZuzarte, Mónica, Carla Vitorino, Lígia Salgueiro, and Henrique Girão. "Plant Nanovesicles for Essential Oil Delivery." Pharmaceutics 14, no. 12 (November 24, 2022): 2581. http://dx.doi.org/10.3390/pharmaceutics14122581.
Full textJohnson, Warren T. "Horticultural Oils." Journal of Environmental Horticulture 3, no. 4 (December 1, 1985): 188–91. http://dx.doi.org/10.24266/0738-2898-3.4.188.
Full textBelaid, Souda, Imen Chemlali, Sonia Ben Rabeh, Saousan Chamali, Chokri Ben Romdhane, Nizar Tlili, Walid Elfalleh, and Ezzeddine Saadaoui. "Essential oils, chemical composition, and biological activities of Eucalyptus oleosa F. Muell. : A review." JOURNAL OF OASIS AGRICULTURE AND SUSTAINABLE DEVELOPMENT 5, no. 5 (November 15, 2023): 24–33. http://dx.doi.org/10.56027/joasd.282023.
Full textDissertations / Theses on the topic "Plant oils"
Tuzun, Alev. "Integrating plant oils in benzoxazine chemistry." Doctoral thesis, Universitat Rovira i Virgili, 2015. http://hdl.handle.net/10803/319708.
Full textLas polibenzoxazinas son una clase relativamente nueva de resinas fenólicas termoestables que poseen interesantes propiedades para la industria electrónica, automovilística, aerospacial y de adhesivos. Sus posibilidades superan a los sistemas fenólicos clásicos, novolacas y resoles, principalmente en que no necesitan catalizador y no liberan volátiles de condensación durante su curado. Los monómeros benzoxazina se preparan habitualmente por combinación de fenoles y aminas con formaldehído vía una condensación tipo Mannich. Esta química ofrece una elevada flexibilidad en el diseño estructural por lo que permite la utilización que casi cualquier fenol o amina sea comercial o sintética. En esta tesis se persigue la incorporación de derivados de aceites vegetales como bloques flexibles en monómeros y polímeros precursores de polibenzoxazinas. En concreto, nos hemos centrado en el ácido 10-undecenoico y sus derivados como productos derivados del aceite de ricino, un aceite vegetal no comestible. La incorporación de este esqueleto alifático, aparte de incorporar las fuentes renovables a este tipo de polímeros ha permitido la preparación de materiales flexibles. La rigidez es una de las principales limitaciones de las resinas benzoxazina convencionales. Estos objetivos generales se han aplicado a (i) monómeros bis-benzoxazina sintetizados por reacción de hidrosililación, (ii) monómeros bis-benzoxazina sintetizados por reacción de auto-metátesis, y (iii) polímeros que contienen grupos benzoxazina en la cadena principal sintetizados por polimerización de metátesis ADMET
Polybenzoxazines are a relatively new class of thermosetting phenolic resins which possess properties of interest for several technological industries such as electronic, automobile, aerospace, and adhesives. Polybenzoxazine possibilities surpass those of the classical phenolic resins, novolacs and resoles, mainly because do not require a catalyst and eliminate condensation products release problems during curing. Benzoxazine monomers are classically prepared combining phenols and amines with formaldehyde via a Mannich-type condensation. Interestingly, this chemistry offers a tremendous flexibility in structural design allowing the use of almost any commercially available or synthetic phenol or amine. This thesis pursues the incorporation of plant oil derivatives as flexible segments into polybenzoxazine monomeric and polymeric precursors. In particular, we have focused on 10-undecenoic acid and its derivatives which are valuable renewable materials derived from non-edible castor oil. The incorporation of this aliphatic skeleton of fatty acids, apart from bringing biobased character to these materials, has allowed preparing inherently tough and flexible cured systems. Inflexibility is one of the main limitations of convetional polybenzoxazine resins. These general objectives were applied to three groups of polybenzoxazine precursors: (i) bis-benzoxazine monomers obtained by hydrosilylation reaction, (ii) bis-benzoxazine monomers obtained by self-metathesis reaction, and (iii) main chain benzoxazine polymers obtained by acyclic diene metathesis polymerization.
Clark, Amanda. "Melaleuca Alternifolia Concentrate (MAC): A Plant-Derived Anticancer Agent." Thesis, Griffith University, 2013. http://hdl.handle.net/10072/367678.
Full textThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Medical Science
Griffith Health
Full Text
Wang, Haoran. "Development of Sustainable Polymer Coatings from Plant Oils." University of Akron / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=akron1596420480124218.
Full textZhu, Lin. "Development of elastomers and elastomeric nanocomposites from plant oils." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 275 p, 2006. http://proquest.umi.com/pqdweb?did=1068271741&sid=6&Fmt=2&clientId=8331&RQT=309&VName=PQD.
Full textDon, Pedro K. N. "Insecticidal activity of plant oils against stored product pests." Thesis, Imperial College London, 1987. http://hdl.handle.net/10044/1/38289.
Full textPan, Xiao. "Novel Biobased Resins using Sucrose Esters of Plant Oils." Diss., North Dakota State University, 2011. https://hdl.handle.net/10365/29636.
Full textChander, Anuj Kumar. "Characterisation and oxidative stability of speciality plant seed oils." Thesis, Aston University, 2010. http://publications.aston.ac.uk/15797/.
Full textSmith-Palmer, Mary Alison. "The antimicrobial properties of plant essential oils against foodborne pathogens." Thesis, Queen Margaret University, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.327082.
Full textButler, G. D. Jr, D. L. Coudriet, and T. J. Henneberry. "Effect of Plant-Derived Oils on Sweetpotato Whitefly on Cotton." College of Agriculture, University of Arizona (Tucson, AZ), 1991. http://hdl.handle.net/10150/208378.
Full textPinho, Joao Paulo Melo de. "Estudo das propriedades antiespasmÃdicas e miorrelaxantes do Ãleo essencial de Ocimum Micranthum em traquÃias isoladas de ratos wistar." Universidade Federal do CearÃ, 2010. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=5665.
Full textOcimum. micranthum Willd. à uma planta popularmente conhecida como alfavaca de folha miÃda ou estoraque sendo utilizada na medicina popular no tratamento de gripe, resfriados, febre, tosse, bronquites, nas infecÃÃes intestinais e estomacais, nas otites e como estimulante e carminativa. O presente estudo teve como objetivo mostrar a atividade do Ãleo essencial de Ocimum micranthum e seu principal constituinte, o cinamato de metila, em traquÃias isoladas de ratos Wistar. Foi evidenciado que tanto o OEOM quanto o cinamato de metila, nas concentraÃÃes de 1-1000 Âg/mL, nÃo interferem no tÃnus basal, no entanto sÃo capazes de reverter a resposta contrÃtil induzida por cloreto de potÃssio e carbacol com CI50 de 112 e 128,2 Âg/mL (para o OEOM) e 308 e 100 Âg/mL (para o cinamato de metila) respectivamente. . A concentraÃÃo de 100 Âg/mL OEOM, quando adicionada antes do agente contrÃtil, à capaz de atenuar a resposta mÃxima do KCl em traquÃias de ratos naÃve, fato que nÃo ocorreu quando a contraÃÃo foi induzida por carbacol na presenÃa de nitrendipina. Adicionalmente, em animais submetidos a modelos de asma pela OVA, o OEOM se mostrou mais ativo em animais desafiados do que apenas sensibilizados. Portanto, o mecanismo envolvido nos efeitos miorrelaxante e antiespasmÃdico do OEOM Ã, pelo menos em parte, devido à sua aÃÃo preferencial nos canais de cÃlcio operados por voltagem (VOCC). Seu principal constituinte, o cinamato de metila, parece estar envolvido nos efeitos miorrelaxantes do OEOM.
The Ocimum. micranthum Willd. is a plant popularly known as âalfavaca-de-folha-miÃdaâ or âestoraqueâ and is used in folk medicine to treat flu, colds, fever, cough, bronchitis, stomach and intestinal infections, ear infections and as stimulant and carminative. This study aimed to show the activity of its essential oil (EOOM) and of its main constituent, methyl cinnamate, in rat isolated trachea. It was shown that both the OEOM and methyl cinnamate (1-1000 Âg/mL) did not change the basal tone, but they were able to reverse the contractile response induced by potassium chloride or carbachol with IC50 of 112 and 128.2 Âg/mL (for EOOM) and 308 and 100 μg/mL (for methyl cinnamate), respectively. At 100 Âg/mL, added before the contractile agent, EOOM attenuated maximal response to KCl in trachea from naÃve rats. This effect did not occur when contraction was induced by carbachol in the presence of nitrendipine. Additionally, in animals subjected to an ovalbumin-sensitized model of asthma, EOOM was more active in challenged than in sensitized animals. In conclusion,th e myorelaxant and antispasmodic effects of the EOOM are due to its preferential action on voltage-operated calcium channels. Its major constituent, methyl cinnamte, appears to be involved in the pharmacological effects of the EOOM.
Books on the topic "Plant oils"
Prakash, Bhanu, Nawal Kishore Dubey, and Jackline Freitas Brilhante de São José, eds. Plant Essential Oils. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-4370-8.
Full textGandini, Alessandro, and Talita M. Lacerda. Polymers from Plant Oils. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119555834.
Full textMartini, Norbert, and Jozef S. Schell. Plant Oils as Fuels. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-72269-1.
Full textLiu, Zengshe, and George Kraus, eds. Green Materials from Plant Oils. Cambridge: Royal Society of Chemistry, 2014. http://dx.doi.org/10.1039/9781782621850.
Full textFontanel, Didier. Unsaponifiable Matter in Plant Seed Oils. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Find full textFontanel, Didier. Unsaponifiable Matter in Plant Seed Oils. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35710-7.
Full textMahindru, S. N. Indian plant perfumes. New Delhi: Metropolitan, 1992.
Find full textFood and Agriculture Organization of the United Nations., ed. Flavours and fragrances of plant origin. Rome: Food and Agriculture Organization of the United Nations, 1995.
Find full textSellar, Wanda. The directory of essential oils. Saffron Walden, Essex: C.W. Daniel Co., 1999.
Find full textI, Glushenkova Anna, and SpringerLink (Online service), eds. Lipids, Lipophilic Components and Essential Oils from Plant Sources. London: Springer London, 2012.
Find full textBook chapters on the topic "Plant oils"
Pengelly, Andrew. "Essential oils." In The constituents of medicinal plants, 123–46. 3rd ed. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789243079.0008.
Full textHan, Katrina, Kelley Jo Willams, and Anne Carol Goldberg. "Plant-Based Oils." In Contemporary Cardiology, 115–27. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-78177-4_7.
Full textDas, Somenath, and Bhanu Prakash. "Effect of Environmental Factors on Essential Oil Biosynthesis, Chemical Stability, and Yields." In Plant Essential Oils, 225–47. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4370-8_10.
Full textJaiswal, Atul Kumar, Prem Pratap Singh, and Bhanu Prakash. "Prospects of Bioinformatics and Data Acquirement Tools in Boosting the Application of Phytochemicals in Food Sciences." In Plant Essential Oils, 281–302. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4370-8_13.
Full textLepaus, Bárbara Morandi, Sara Jarske Geringer, Manueli Monciozo Domingos, Bárbara Santos Valiati, Daniel Sgrancio Uliana, Rhaiza Marcia Lopes Leal, Alessandra Peres Guimarães, and Jackline Freitas Brilhante de São José. "Mechanistic Investigation on Antibacterial Activity of Essential Oils against Resistant Bacteria Species." In Plant Essential Oils, 77–104. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4370-8_4.
Full textWeisany, Weria, Esmail Khosropour, and Ayda Alavian. "Application of Microbial Consortia and Biofertilizer to Improve the Quality and Yield of Essential Oils in Aromatic Plants." In Plant Essential Oils, 205–23. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4370-8_9.
Full textTiwari, Anjana, Parshant, and Ravindra Shukla. "Essential Oils: A Natural Weapon against Mycotoxins in Food." In Plant Essential Oils, 125–58. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4370-8_6.
Full textRaghuvanshi, Tanya Singh, Prem Pratap Singh, Niraj Kohar, and Bhanu Prakash. "Essential Oils: From Traditional to Modern-Day Applications with Special Reference to Medicinal and Aromatic Plants in India." In Plant Essential Oils, 1–26. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4370-8_1.
Full textSingh, Ritu, and Prem Pratap Singh. "Role of Biotechnology and Combinatorial Chemistry Approaches in Molecular-Assisted Engineering of Plant Volatile Compounds." In Plant Essential Oils, 249–65. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4370-8_11.
Full textSingh, Bijendra Kumar, and Akash Maurya. "Antioxidant Activity of Essential Oils: A Mechanistic Approach." In Plant Essential Oils, 59–76. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4370-8_3.
Full textConference papers on the topic "Plant oils"
Grushcow, J. "High Oleic Plant Oils With Hydroxy Fatty Acids for Emission Reduction." In World Tribology Congress III. ASMEDC, 2005. http://dx.doi.org/10.1115/wtc2005-63515.
Full textMeng, Zong, and Timothy Anderson. "Fat crystal network reinforced plant-derived polysaccharide-based oleogels." In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/brfu9822.
Full textLiavontsyeu, A. P., T. A. Savitskaya, I. M. Kimlenka, S. E. Makarevich, and D. D. Hrynshpan. "POLYFUNCTIONAL EDIBLE PACKAGING FILMS WITH PLANT ADDITIVES." In SAKHAROV READINGS 2022: ENVIRONMENTAL PROBLEMS OF THE XXI CENTURY. International Sakharov Environmental Institute of Belarusian State University, 2022. http://dx.doi.org/10.46646/sakh-2022-2-289-292.
Full textMorkeliūnė, Armina, Neringa Rasiukevičiūtė, and Alma Valiuškaitė. "The Essential Oils of Thyme, Sage and Peppermint against Strawberry Anthracnose." In The 1st International Electronic Conference on Plant Science. Basel, Switzerland: MDPI, 2020. http://dx.doi.org/10.3390/iecps2020-08613.
Full textVoronov, Andriy. "New Polymers and Polymer Materials based on Plant Oils." In The 2nd World Congress on New Technologies. Avestia Publishing, 2016. http://dx.doi.org/10.11159/icnfa16.1.
Full textDraeger, Norman A. "Commercial products developed from plant oils produced in microgravity." In Space technology and applications international forum - 1998. AIP, 1998. http://dx.doi.org/10.1063/1.54850.
Full textFaria, Jorge M. S., and Esther Menéndez. "Biological Activity of Plant Essential Oils against Fusarium circinatum." In IECF 2021. Basel Switzerland: MDPI, 2021. http://dx.doi.org/10.3390/iecf2021-10780.
Full textMamoci, Erjon, Maria Fe Andrés, Sonia Olmeda, and Azucena González-Coloma. "Chemical Composition and Activity of Essential Oils of Albanian Coniferous Plants on Plant Pests." In IOCAG 2022. Basel Switzerland: MDPI, 2022. http://dx.doi.org/10.3390/iocag2022-12260.
Full textHu, Ying, Lantao Guo, Xiaohong Wang, and Xi Cheng Zhang. "THz time-domain spectroscopy on plant oils and animal fats." In Photonics Asia 2004, edited by Haimei Gong, Yi Cai, and Jean-Pierre Chatard. SPIE, 2005. http://dx.doi.org/10.1117/12.580922.
Full textGoettler, Hans J., Richard F. Harwood, Mariusz Ziejewski, and Harold J. Klosterman. "On the Thermal Decomposition and Residue Formation of Plant Oils." In 1986 SAE International Fall Fuels and Lubricants Meeting and Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1986. http://dx.doi.org/10.4271/861582.
Full textReports on the topic "Plant oils"
Lula, J. W. Epoxidation Of Plant Oils. Office of Scientific and Technical Information (OSTI), June 2000. http://dx.doi.org/10.2172/756510.
Full textYankova-Tsvetkova, Elina, Milena Nikolova, Ina Aneva, Tatjana Stefanova, and Strahil Berkov. Germination Inhibition Bioassay of Extracts and Essential Oils from Plant Species. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, September 2020. http://dx.doi.org/10.7546/crabs.2020.09.09.
Full textDimitrova-Dyulgerova, Ivanka, Yulian Marinov, Tsvetelina Mladenova, Plamen Stoyanov, and Albena Stoyanova. Essential Oils Composition of the Endemic Bulgarian Plant Species Micromeria frivaldszkyana (Degen) Velen. (Lamiaceae). "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, December 2019. http://dx.doi.org/10.7546/crabs.2019.11.05.
Full textNeedham, Glenn R., Uri Gerson, Gloria DeGrandi-Hoffman, D. Samatero, J. Yoder, and William Bruce. Integrated Management of Tracheal Mite, Acarapis woodi, and of Varroa Mite, Varroa jacobsoni, Major Pests of Honey Bees. United States Department of Agriculture, March 2000. http://dx.doi.org/10.32747/2000.7573068.bard.
Full textKholoshyn, Ihor, Svitlana Mantulenko, Accola Sharon Joyce, Daniel Sherick, Talgat Uvaliev, and Victoria Vedmitska. Geography of agricultural exports from Ukraine. EDP Sciences, June 2021. http://dx.doi.org/10.31812/123456789/4618.
Full textKholoshyn, Ihor, Svitlana Mantulenko, Accola Sharon Joyce, Daniel Sherick, Talgat Uvaliev, and Victoria Vedmitska. Geography of agricultural exports from Ukraine. EDP Sciences, June 2021. http://dx.doi.org/10.31812/123456789/4618.
Full textMitchell, Brian G., Amir Neori, Charles Yarish, D. Allen Davis, Tzachi Samocha, and Lior Guttman. The use of aquaculture effluents in spray culture for the production of high protein macroalgae for shrimp aqua-feeds. United States Department of Agriculture, January 2013. http://dx.doi.org/10.32747/2013.7597934.bard.
Full textNoridin, J. S., R. Donovan, L. Trudell, J. Dean, A. Blevins, L. W. Harrington, R. James, and G. Berdan. Plan for addressing issues relating to oil shale plant siting. Office of Scientific and Technical Information (OSTI), September 1987. http://dx.doi.org/10.2172/5588444.
Full textMarinkovic, Catalina, and Adrien Vogt-Schilb. Is Energy Planning Consistent with Climate Goals? Assessing Future Emissions from Power Plants in Latin America and the Caribbean. Inter-American Development Bank, October 2023. http://dx.doi.org/10.18235/0005183.
Full textOstersetzer-Biran, Oren, and Jeffrey Mower. Novel strategies to induce male sterility and restore fertility in Brassicaceae crops. United States Department of Agriculture, January 2016. http://dx.doi.org/10.32747/2016.7604267.bard.
Full text