Academic literature on the topic 'Plant microgravity'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Plant microgravity.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Plant microgravity"

1

Yuni Pramita Utami, Ni Luh, Ni Nyoman Rupiasih, and I. Wayan Supardi. "PENGARUH PERLAKUAN MIKROGRAVITASI PADA BIJI CABAI RAWIT TERHADAP LAJU PERTUMBUHAN TANAMAN CABAI RAWIT (CAPSICUM FRUTESCENS L.)." BULETIN FISIKA 18, no. 1 (February 1, 2017): 1. http://dx.doi.org/10.24843/bf.2017.v18.i01.p01.

Full text
Abstract:
The study has been done on the effect of microgravity on cayenne pepper seed (Capsicum frutescens L.) on the growth rate and percentage of live of cayenne pepper plant. Microgravity is simulated by 2-D clinostat with the rotation speed of 2.7 rpm (1.22 × 10-4 g). The microgravity treatments werevariatewith time, known for 12 h (S1), 24 h (S2), and 48 h (S3).The seeds that have been clinorotated were planted in normal gravity environment, 1 g. Plant height and percentage of life measurements were carried out every dayduring the vegetative phase of plant of 0-40 days. The results showed that microgravity treatment on seeds gives positive effect on the growth rate of the cayenne pepper plant.
APA, Harvard, Vancouver, ISO, and other styles
2

Yamada, M., Y. Takeuchi, H. Kasahara, S. Murakami, and M. Yamashita. "Plant Growth under Clinostat-Microgravity Condition." Biological Sciences in Space 7, no. 2 (1993): 116–19. http://dx.doi.org/10.2187/bss.7.116.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Brykov, V. O. "Bioenergetics of plant cells in microgravity." Kosmìčna nauka ì tehnologìâ 21, no. 4(95) (July 30, 2015): 84–93. http://dx.doi.org/10.15407/knit2015.04.084.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Masuda, Y. "Plant Growth and Development under Microgravity Conditions." Biological Sciences in Space 7, no. 2 (1993): 101–2. http://dx.doi.org/10.2187/bss.7.101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bruce D. Wright, Walter C. Bausch, and William M. Knott. "A Hydroponic System for Microgravity Plant Experiments." Transactions of the ASAE 31, no. 2 (1988): 0440–46. http://dx.doi.org/10.13031/2013.30728.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

M. G. Lefsrud, G. A. Giacomelli, H. W. Janes, and M. H. Kliss. "DEVELOPMENT OF THE MICROGRAVITY PLANT GROWTH POCKET." Transactions of the ASAE 46, no. 6 (2003): 1647–51. http://dx.doi.org/10.13031/2013.15635.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zaidi, M. A., H. Murase, A. Tani, K. Murakami, and N. Honami. "Identification of Microgravity Role in Plant Growth." IFAC Proceedings Volumes 30, no. 11 (July 1997): 1699–702. http://dx.doi.org/10.1016/s1474-6670(17)43088-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kordyum, E. L. "Plant cell gravisensitivity and adaptation to microgravity." Plant Biology 16 (June 4, 2013): 79–90. http://dx.doi.org/10.1111/plb.12047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

XU, Zengchuang, Tao ZHANG, Weibo ZHENG, Dazhao XU, Yisong GUO, and Yongchun YUAN. "Design of Plant Incubator under Microgravity Environment." Chinese Journal of Space Science 36, no. 4 (2016): 566. http://dx.doi.org/10.11728/cjss2016.04.566.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kato, Shiho, Mana Murakami, Ryo Saika, Kouichi Soga, Kazuyuki Wakabayashi, Hirofumi Hashimoto, Sachiko Yano, et al. "Suppression of Cortical Microtubule Reorientation and Stimulation of Cell Elongation in Arabidopsis Hypocotyls under Microgravity Conditions in Space." Plants 11, no. 3 (February 8, 2022): 465. http://dx.doi.org/10.3390/plants11030465.

Full text
Abstract:
How microgravity in space influences plant cell growth is an important issue for plant cell biology as well as space biology. We investigated the role of cortical microtubules in the stimulation of elongation growth in Arabidopsis (Arabidopsis thaliana) hypocotyls under microgravity conditions with the Resist Tubule space experiment. The epidermal cells in the lower half of the hypocotyls of wild-type Columbia were longer in microgravity than at on-orbit 1 g, which precipitated an increase in the entire hypocotyl length. In the apical region, cortical microtubules adjacent to the outer tangential wall were predominantly transverse to the long axis of the cell, whereas longitudinal microtubules were predominant in the basal region. In the 9th to 12th epidermal cells (1 to 3 mm) from the tip, where the modification of microtubule orientation from transverse to longitudinal directions (reorientation) occurred, cells with transverse microtubules increased, whereas those with longitudinal microtubules decreased in microgravity, and the average angle with respect to the transverse cell axis decreased, indicating that the reorientation was suppressed in microgravity. The expression of tubulin genes was suppressed in microgravity. These results suggest that under microgravity conditions, the expression of genes related to microtubule formation was downregulated, which may cause the suppression of microtubule reorientation from transverse to longitudinal directions, thereby stimulating cell elongation in Arabidopsis hypocotyls.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Plant microgravity"

1

Basu, Proma. "Proteomic Analysis of Arabidopsis Seedlings Germinated in Microgravity to Identify Candidate Genes for Gravity Signal Transduction." Ohio University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1565216423464876.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Palmieri, Maria. "The Role of the Actin Cytoskeleton in Gravity Signal Transduction of Hypocotyls of Arabidopsis thaliana." Miami University / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=miami1155230444.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kannengieser, Olivier. "Étude de l'ébullition sur plaque plane en microgravité, application aux réservoirs cryogéniques des fusées Ariane V." Thesis, Toulouse, INPT, 2009. http://www.theses.fr/2009INPT068H/document.

Full text
Abstract:
Ce rapport de thèse porte sur une étude expérimentale et théorique de l'ébullition en microgravité. Les expériences furent réalisées en condition de gravité terrestre, en vol parabolique et en fusée-sonde. Les expériences en vol parabolique ont montré l'influence de divers paramètres sur le transfert thermique et ont mis en évidence les mécanismes contrôlant le transfert thermique. De l'écriture des équations gouvernant ces mécanismes et de l'identification des échelles caractéristiques, une corrélation permettant d'estimer le transfert de chaleur lors de l'ébullition en microgravité pour une large gamme de fluide est bâtie. L'expérience en fusée-sonde a permis d'étudier l'influence des gaz incondensables et notamment de la convection Marangoni sur le comportement de l'ébullition et sur le transfert thermique
Between the different propulsion phases, the Ariane V rocket passes through microgravity periods and solar radiation can induce boiling in its cryogenics tanks. Experiments were performed during 6 parabolic flights and in a sounding rocket to study pool boiling in microgravity. In the parabolic flight experiments, the influence of pressure, subcooling and surface roughness was studied. It is showed that subcooling has a weak effect on microgravity boiling heat transfer, and that roughness is an important factor also in microgravity. Detailed results on the behavior of bubbles and on the superheated liquid layer show that the heat transfer mechanisms can be divided in two groups : the primary mechanisms which directly take energy from the wall and the secondary mechanisms which transport the energy stored in the fluid by the primary mechanisms, from the vicinity of the wall to the bulk liquid. The secondary mechanisms appear not to limit primary mechanism heat transfer which explains the weak influence of gravity on heat transfer. From the study of equations governing primary mechanisms and the definition of new scales, a correlation is built to predict heat transfer in microgravity for a wide variety of fluids. In the sounding rocket experiment, the influence of non-condensable gases was studied. The existence of two regimes of boiling heat transfer with non-condensable gas is established. The temperature in the primary bubble is directly measured and the influences of both Marangoni convection and non-condensable gas on both heat transfer and bubble growth are also considered
APA, Harvard, Vancouver, ISO, and other styles
4

Rouvreau, Sébastien. "Etude numérique d'une flamme de diffusion de gaz en microgravité sur une plaque plane soumise à un écoulement d'air parallèle à sa surface." Poitiers, 2002. http://www.theses.fr/2002POIT2257.

Full text
Abstract:
L'étude numérique d'une flamme laminaire de diffusion de gaz sur une plaque plane soumise à un écoulement d'air parallèle à sa surface est développée. La configuration choisie est celle d'un écoulement d'air à vitesse représentative des systèmes de ventilation des stations spatiales, dans un environnement en microgravité. Les écoulements sont calculés en simulation numérique directe et un modèle de fraction de mélange est utilisé pour la simulation de la réaction de combustion. Deux régimes distincts ont été identifiés en fonction de la vitesse d'injection du combustible : le régime de type couche limite et le régime de type décollé. Une étude détaillée de l'influence de l'injection seule et du dégagement de chaleur du à la flamme sur l'écoulement est présentée. Une explication sur l'origine des survitesses observées en premier lieu par Hirano est alors donnée ainsi que les limites d'utilisation du modèle d'Emmons pour ce genre de problème
A numerical study of a laminar gas diffusion flame on a flat plate in a flow of air parallel to its surface is performed. The configuration is that of a low velocity flow of air, characteristic of ventilation systems in space stations, in a microgravity environment. Flows are calculated in Direct Numerical Simulation (DNS) and a mixture fraction model is used to simulate the combustion reaction. Two different regimes have been identified during this study: a boundary layer regime and a separated flow regime. A detailed study of the influence of both injection and heat release on the main stream flow is presented for flows representative of each regime. An explanation for the velocity overshoot first observed by Hirano is then given as well as a domain of validity for Emmons model for such flows
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Plant microgravity"

1

United States. National Aeronautics and Space Administration., ed. Plant metabolism and cell wall formation in space (microgravity) and on earth. [Washington, DC: National Aeronautics and Space Administration, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

N, Reddy A. S., and United States. National Aeronautics and Space Administration., eds. 16, calcium and gravitropism. [Washington, DC: National Aeronautics and Space Administration, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lyndon B. Johnson Space Center. and United States. National Aeronautics and Space Administration., eds. Plant growth and development in the ASTROCULTURE[trademark] space-based growth unit--ground based experiments: Final report for research grant NAG 9-851, Lyndon B. Johnson Space Center. [Washington, DC: National Aeronautics and Space Administration, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

United States. National Aeronautics and Space Administration., ed. Microgravity combustion science: Progress, plans, and opportunities. [Washington, DC]: National Aeronautics and Space Administration, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

United States. National Aeronautics and Space Administration., ed. Microgravity combustion science: Progress, plans, and opportunities. [Washington, DC]: National Aeronautics and Space Administration, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Laboratories, Wyle, and Lewis Research Center, eds. Equipment concept design and development plans for microgravity science and applications research on space station: Combustion tunnel, laser diagnostic system, advanced modular furnace, integrated electronics laboratory. [Huntsville, AL]: Wyle Laboratories, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Symposium, COSPAR Scientific Commission E. F1 4. Life sciences : microgravity research II: Proceedings of the F1.4, F1.5 and F1.6 Symposia of COSPAR Scientific Commission E which was held during the Thirty-Second COSPAR Scientific Assembly, Nagoya, Japan, 12-19 July, 1998. Oxford: Published for the Committee on Space Research [by] Pergamon, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Shaw, John M. Research and competition--best partners. [Cleveland, Ohio: National Aeronautics and Space Administration, Lewis Research Center, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Shaw, John M. Research and competition--best partners. [Cleveland, Ohio: National Aeronautics and Space Administration, Lewis Research Center, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Assembly, COSPAR Scientific. Life sciences : microgravity research: Proceedings of the F1.2, F1.3, F1.4, F1.5 and F1.7 symposia of COSPAR Scientific Commission F which was held during the thirty-first COSPAR scientific assembly, Birmingham, U.K., 14-21 July 1996. Kidlington, Oxford: Published for the Committee on Space Research [by] Pergamon, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Plant microgravity"

1

Perbal, Gérald. "Plant Development in Microgravity." In Fundamentals of Space Biology, 227–90. New York, NY: Springer New York, 2006. http://dx.doi.org/10.1007/0-387-37940-1_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Perbal, Gérald. "Plant Development in Space or in Simulated Microgravity." In Plant Biotechnology 2002 and Beyond, 351–57. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-2679-5_73.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Herranz, Raúl, Miguel A. Valbuena, Aránzazu Manzano, Khaled Y. Kamal, and F. Javier Medina. "Use of Microgravity Simulators for Plant Biological Studies." In Methods in Molecular Biology, 239–54. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2697-8_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Takahashi, Hideyuki, Motoshi Kamada, Yuko Saito, Aakie Kobayashi, Atsushi Higashitani, and Nobuharu Fujii. "Morphogenesis, Hydrotropism, and Distribution of Auxin Signals in Cucumber Seedlings Grown in Microgravity." In Plant Biotechnology 2002 and Beyond, 359–62. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-2679-5_74.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cai, Weiming, Haiying Chen, Jing Jin, Peipei Xu, Ting Bi, Qijun Xie, Xiaochen Pang, and Jinbo Hu. "Plant Adaptation to Microgravity Environment and Growth of Plant Cells in Altered Gravity Conditions." In Life Science in Space: Experiments on Board the SJ-10 Recoverable Satellite, 131–66. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6325-2_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nhut, Duong Tan, Hoang Dac Khai, Nguyen Xuan Tuan, Le The Bien, and Hoang Thanh Tung. "In Vitro Growth and Development of Plants Under Stimulated Microgravity Condition." In Plant Tissue Culture: New Techniques and Application in Horticultural Species of Tropical Region, 343–81. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-6498-4_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Clarke, Andrew H. "Listing’s Plane and the 3D-VOR in Microgravity." In Vestibulo-Oculomotor Research in Space, 37–49. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59933-5_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Imadi, Sameen Ruqia, Tayyaba Yasmin, and Alvina Gul. "Microgravity—Simulation, Acceleration, and Effects on Plants: Case Study on Globally Important Agricultural Crop Rice." In Biodiversity, Conservation and Sustainability in Asia, 619–36. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-73943-0_34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Masuda, Yoshio, Seiichiro Kamisaka, Ryoichi Yamamoto, Takayuki Hoson, and Kazuhiko Nishitani. "Chapter 5 Plant Responses to Simulated Microgravity." In Advances in Space Biology and Medicine, 111–26. Elsevier, 1994. http://dx.doi.org/10.1016/s1569-2574(08)60137-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kordyum, Elizabeth L. "Biology of Plant Cells in Microgravity and under Clinostating." In International Review of Cytology, 1–78. Elsevier, 1997. http://dx.doi.org/10.1016/s0074-7696(08)62585-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Plant microgravity"

1

Carlson, Carol W., Edward Reott, Bill Wells, and Don Wiegrefe. "Microgravity Plant Nutrient Experiment Middeck Payload." In International Conference on Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1995. http://dx.doi.org/10.4271/951625.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bingham, Gail E., T. Shane Topham, John M. Mulholland, and Igor G. Podolsky. "Lada: The ISS Plant Substrate Microgravity Testbed." In International Conference On Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2002. http://dx.doi.org/10.4271/2002-01-2388.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Carlson, Carol, Edward Reott, Bill Wells, and Don Wiegrefe. "Microgravity plant Nutrient Experiment water availability sensor." In Life Sciences and Space Medicine Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1995. http://dx.doi.org/10.2514/6.1995-1054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

"A hydroponic method for plant growth in microgravity." In 23rd Aerospace Sciences Meeting. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1985. http://dx.doi.org/10.2514/6.1985-163.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Blachowicz, Tomasz, Andrea Ehrmann, Maciej Malczyk, Adam Stasiak, Rafal Osadnik, Radoslaw Paluch, Michal Koruszowic, Jacek Pawlyta, Krzysztof Lis, and Krzysztof Lehrich. "Plant growth in microgravity and defined magnetic field." In 2021 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME). IEEE, 2021. http://dx.doi.org/10.1109/iceccme52200.2021.9591034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yule, Donald E., Michael K. Sharp, and Dwain K. Butler. "Foundation investigation of a poer plant switchyard using microgravity." In SEG Technical Program Expanded Abstracts 1990. Society of Exploration Geophysicists, 1990. http://dx.doi.org/10.1190/1.1890285.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Draeger, Norman A. "Commercial products developed from plant oils produced in microgravity." In Space technology and applications international forum - 1998. AIP, 1998. http://dx.doi.org/10.1063/1.54850.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pochai, Muay, Pornchanok Sirijaturaporn, Napasorn Jongjittanon, and Ammarin Pimnoo. "An Aeroponic Technology for Microgravity Plant Experiments on Earth." In 2018 15th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON). IEEE, 2018. http://dx.doi.org/10.1109/ecticon.2018.8619918.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhou, Weijia. "State-of-the-art plant growth chamber for conducting commercial plant research in microgravity." In HADRONS AND NUCLEI: First International Symposium. AIP, 2000. http://dx.doi.org/10.1063/1.1302507.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

"Transcriptome of the Arabidopsis thaliana Chernobyl ecotype seedlings: simulating of the space radiation action and microgravity." In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography