To see the other types of publications on this topic, follow the link: Plant fibers Mechanical properties.

Dissertations / Theses on the topic 'Plant fibers Mechanical properties'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Plant fibers Mechanical properties.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Han, Hongchang. "Study of agro-composite hemp/polypropylene : treatment of fibers, morphological and mechanical characterization." Thesis, Troyes, 2015. http://www.theses.fr/2015TROY0002/document.

Full text
Abstract:
L’utilisation des fibres végétales dans les polymères composites suscite de nombreuses investigations. Avant de mélanger les fibres végétales dans le polymère, un traitement chimique peut être effectué permettant de réduire l’hydrophilicité des fibres et d’améliorer l'adhérence à l’interface fibre/matrice. Dans cette thèse, l'eau et l'alcali sont utilisés d'abord pour traiter les fibres de chanvre, puis trois agents silane : 3-(triméthoxysilyl)propyl méthacrylate (MPS), N-[3- (triméthoxysilyl)propyl] aniline (PAPS) et (3-Aminopropyl)-triéthoxysilane (APS), sont utilisés pour modifier plus ou moins la surface des fibres de chanvre. Ces fibres traitées ou modifiées sont ensuite mélangées avec le polypropylène (PP) pour la fabrication des composites. Les effets de ces différents traitements sur la structure, les composants et l’hydrophilicité des fibres, et les propriétés mécaniques de ces composites sont mis en évidence. Nous avons étudié ensuite l’effet de vieillissement sur leurs comportements mécaniques, notamment l'humidité, la température et le rayonnement ultraviolet. Les résultats ont montré que le traitement de fibres par l'eau et l’alcali a des effets considérables sur la structure de fibres, les propriétés mécaniques et la durabilité des composites renforcés. La modification par l'agent de silane a une influence moins importante sur la structure des fibres, pourtant son groupe fonctionnel a une influence significative sur les propriétés mécaniques et la résistance au vieillissement des composites renforcés
Using agro fiber as reinforcement of polymer com-posites attracts numerous investigations due to the good mechanical properties and environmental benefits. Prior to blend agro fiber with polymer, chemical treatment can be employed to treat agro fiber for the purpose of reducing the hydrophilicity of fiber and improving the interfacial adhesion fi-ber/polymer matrix. In this thesis, water and alkali are utilized to treat hemp fiber firstly and then three silane agent as 3-(Trimethoxysilyl)propyl methacry-late (MPS), N-[3-(Trimethoxysilyl)propyl]aniline (PAPS) and (3-Aminopropyl)-triethoxysilane (APS) are employed to modify the hemp fiber surface. These treated or modified fibers are blended respectively with polypropylene (PP) to fabricate the hemp fiber/PP composites. The effects of these different treatments on the structure, components and hydro-philicity of fiber, and the mechanical properties of the reinforced PP composites are studied. Moreover, the accelerated ageing experiments including humidity, temperature and ultraviolet of the reinforced PP composites are conducted. The results showed that the fiber treatment of water and alkali has a considerable effect on fiber structure, mechanical properties and durability of the reinforced compo-sites. The silane agent modification of fiber has less influence on the fiber structure but its functional group has great influence on the mechanical proper-ties and ageing resistance of the reinforced compo-sites
APA, Harvard, Vancouver, ISO, and other styles
2

Yang, Haomiao. "Study of a unidirectional flax reinforcement for biobased composite." Thesis, Normandie, 2017. http://www.theses.fr/2017NORMC226/document.

Full text
Abstract:
Dans cette thèse, un composite unidirectionnel à renfort lin (composite UD biosourcé) a été développé et élaboré par la technique de presse à chaud. Le comportement en traction des composites à renfort végétal montre en général deux domaines, mais un troisième domaine est identifié dans ce travail. Un modèle phénoménologique développé précédemment pour décrire le comportement en traction d'un composite à renfort en fils torsadés a été testé avec le composite UD biosourcé. Nous montrons que l'ajout d'un phénomène de consolidation au modèle précédent est nécessaire pour simuler correctement le troisième domaine. Un second modèle mécanique a été par ailleurs développé pour identifier expérimentalement les propriétés mécaniques effectives du renfort en lin lorsqu'il est piégé dans la matrice. La distribution statistique de l'orientation locale du renfort a été mesurée pour pouvoir prendre en compte l'orientation des fibres. Pour cela, la technique du tenseur de structure a été appliquée sur des images optiques du pli de lin. Par ailleurs, ce modèle permet d'étudier l'influence des porosités sur les propriétés mécaniques. Les deux modèles permettent d'effectuer des prévisions efficaces du comportement mécanique du composite de fibre de lin unidirectionnel. En complément des modèles de mécanique, le comportement en sorption du composite de lin UD a également été analysé. Le modèle de Langmuir et le modèle de Fick ont été appliqués sur nos composites UD. Les résultats montrent que la configuration unidirectionnelle du renfort de lin favorise la sorption d'eau des composites associés.Résumé en anglais
In this Ph.D work, unidirectional flax fiber composite (UD biobased composite) has been designed and manufactured based on the hot platen press process. Plant fiber composites usually exhibit two regions under tensile load, but three regions have been identified in this work. A phenomenological model, previously developed to describe the tensile mechanical behavior of twisted plant yarn composites, has been tested with the UD biobased composite. We show that the addition of a strengthening phenomenon to the previous model is necessary to simulate correctly the third region. A second mechanical model has also been developed for experimental identification of the effective mechanical properties of flax reinforcement when embeded in matrix. A statistical distribution of local orientation of UD reinforcement was obtained allowing taking the fiber orientation into account. To that end, structure tensor method was applied to optical images of flax ply. Furthermore, this model allows the effect of porosity on mechanical properties to be studied. Both models provide effective forecast of the mechanical behavior of unidirectional flax fiber composite. Besides the mechanic models, sorption behavior of UD flax composite also has been analyzed. Langmuir's model and Fick's model were applied on our UD composite. The results show that the unidirectional configuration of the flax reinforcement promotes the water sorption from the associated composites
APA, Harvard, Vancouver, ISO, and other styles
3

Wretfors, Christer. "Hemp fibre and reinforcements of wheat gluten plastics /." Alnarp : Dept. of Agriculture - Farming Systems, Technology and Product Quality, Swedish University of Agricultural Sciences, 2008. http://epsilon.slu.se/11236319.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Borchani, Karama. "Développement d'un composite à base d'un polymère biodégradable et de fibres extraites de la plante d'Alfa." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSES010/document.

Full text
Abstract:
Cette étude constitue une contribution à la recherche de nouveau matériau composite originaire des ressources naturelles végétales. Elle vise alors à l’exploitation des fibres naturelles extraites de la plante d’Alfa avec une matrice biopolymère thermoplastique de type Mater-Bi® afin d’élaborer des biocomposites. Trois types de fibres courtes extraites de la plante d’Alfa sont préparés ; non traitées et traitées par un traitement alcalin à 1 et 5%. Les diverses techniques utilisées pour la caractérisation des fibres ont révélé une augmentation de la rugosité, du taux de cellulose, de l’indice de cristallinité ainsi de la stabilité thermique après le traitement alcalin. Les matériaux composites sont préparés par extrusion bivis suivi d’une opération d’injection en faisant varier le pourcentage des fibres de 0 à 25%. Les analyses thermiques des biocomposites ont montré un accroissement significatif de la vitesse de cristallisation suite à l'incorporation des fibres d’Alfa ainsi une amélioration de la stabilité thermique pour les matériaux à base de fibres traitées. La résistance à la traction et le module de Young des biocomposites ont augmenté alors que la ténacité et l’allongement à la rupture ont diminué avec l'augmentation du taux de fibres. Les micrographies MEB des surfaces fracturées indiquent une bonne adhésion entre la matrice et les fibres d’Alfa traitées ou non. L’étude de la cinétique de cristallisation des différents biocomposites a prouvé le fort effet nucléant des fibres d’Alfa traitées ou non
This study is a contribution to the search for new composite material from vegetable natural resources. It aims at the exploitation of natural fibers extracted from the Alfa plant with a bioplastic of the Mater-Bi® type in order to develop biocomposites. Three kinds of short fibers extracted from Alfa plant were prepared; untreated, 1% and 5% alkali treated. The various techniques used for fibers characterization showed an increase in the roughness, cellulose level, crystallinity index and thermal stability after the alkali treatment. The composite materials were prepared by twin screw extrusion flowed by an injection operation by varying the fiber contents of 0 to 25%. Thermal analysis showed significant increase of the crystallization rate with the incorporation of Alfa fibers and enhancement of thermal stability by alkali treatment. Modulus and tensile strength of biocomposites also improved whereas toughness and elongation at break decreased upon increasing the fibers fraction. Scanning electron microscopy (SEM) on fractured surfaces indicated good adhesion between the matrix and the treated or untreated Alfa fibers. The study of crystallization kinetics of biocomposites showed strong nucleating effect of treated or untreated Alfa fibers
APA, Harvard, Vancouver, ISO, and other styles
5

Zhang, Xiaohui. "Manufacturing of hemp/PP composites and study of its residual stress and aging behavior." Thesis, Troyes, 2016. http://www.theses.fr/2016TROY0015/document.

Full text
Abstract:
Depuis quelques années les matériaux composites à base de fibres naturelles sont de plus en plus utilisés pour les nouvelles performances qu’ils proposent. C’est surtout au niveau des fibres naturelles que de nouvelles propriétés sont proposées. Dans ce travail, nous nous sommes essentiellement intéressés aux fibres naturelles de chanvre. Ces fibres sont déjà fortement utilisées dans l’automobile et la construction. En Europe, ces fibres sont produites principalement en France et plus particulièrement dans l’Aube. Pour développer des agro-composites hautes performances, c’est sous la forme de fibres longues et de tissus que nous avons choisi d’orienter ce travail de thèse. Nous avons choisi la thermocompression pour élaborer des plaques avec des tissus de chanvre et une matrice en polypropylène (PP). Ce travail permet de voir l’influence des conditions d’élaboration sur le comportement mécaniques de ces agro-composites. Cette thèse permet aussi de voir l’effet du vieillissement aux UV et à l’Humidité sur les performances de ces matériaux. Enfin une analyse des contraintes résiduelles par la méthode du trou incrémental permet de voir leurs effets sur ces agro-matériaux
In recent years composite materials based on natural fibers are more and more used for their new performances. Natural fibers propose attractive environmental, mechanical and thermal properties.In this work, we are firstly interested in hemp fibers. These fibers are already used in the automotive and construction industry. In Europe, these fibers are produced mainly in France and especially in Aube. To develop agro-composites with high performances, we have focused this thesis on hemp woven. We chose to elaborate the plates with hemp woven and a polypropylene matrix (PP) by compression molding. This work allows us to see the influence of elaboration conditions on the mechanical behavior of these agro-composites. This thesis also allows us to see the effect of aging conditions UV and humidity on the performance of these materials. Finally an analysis of residual stresses determined by the hole drilling method is proposed to see their effects on the agro-materials
APA, Harvard, Vancouver, ISO, and other styles
6

Betene, Ebanda Fabien. "Etude des propriétés mécaniques et thermiques du plâtre renforcé de fibres végétales tropicales." Thesis, Clermont-Ferrand 2, 2012. http://www.theses.fr/2012CLF22298/document.

Full text
Abstract:
Le plâtre est un matériau de grande disponibilité et très connu pour ses qualités : il est favorable à la protection de l’environnement, assez malléable, de faible densité, aux propriétés fonctionnelles remarquables (coupe-feu, isolant thermique, régulateur de l’hygrométrie des enceintes), décoratif, ... Ce qui justifie l’intérêt accordé à ce matériau pour les constructions. Sa grande fragilité préoccupante est à l’origine des travaux de recherches dans le monde entier en vue de son renforcement. Les fibres de verre et de sisal sont les renforts les plus utilisés à ce jour. Le renforcement par des fibres végétales est de plus en plus recherché. La texture micro structurale poreuse du plâtre favorise son caractère d’isolant thermique. Les textures mises en œuvre jusqu’à présent sont limitées à des porosités comprises entre 30 et 55%. La réduction du coût de ce matériau pour une large utilisation est encore possible et souhaitée. Deux leviers sont exploités dans ce travail, notamment un allègement de la masse de plâtre pour augmenter le taux de porosité et un renforcement de la tenue mécanique par incorporation de fibres végétales produites localement. L’objectif de ce travail est d’évaluer les caractéristiques mécaniques, thermiques et hygrométriques d’un matériau constitué de plâtre pris, à grande porosité, renforcé d’une nouvelle fibre végétale : le Rhecktophyllum Camerunense (RC), une fibre des forêts humides équatoriales. La fibre de sisal, d’utilisation connue pour le renforcement du plâtre, sert de référence à des fins de comparaison. Une série d’expérimentations est menée à cet effet. Une caractérisation physico-chimique des constituants est effectuée, des essais mécaniques de traction et de flexion sont effectués sur les constituants et les matériaux composites plâtre/fibres résultants, la cinétique d’adsorption d’humidité par les constituants et le matériau fibreux est suivie. Le comportement thermique des matériaux plâtre et plâtre/fibres est aussi mesuré. Les fibres utilisées, le sisal et le RC, sont à fort taux de cellulose (entre 49 et 78,8%), la fibre de RC est tubulaire avec 35,5% de porosité. Le plâtre est gâché à l’eau déminéralisée à un rapport massique E/P égal à 1 à partir de la poudre de semihydrate β. Sa microstructure cristalline est constituée de cristaux de gypse sous forme d’aiguilles enchevêtrées avec des vides intercristallins. Sur le plan du comportement mécanique, les résultats obtenus révèlent que le plâtre se montre fragile et présente un module d’élasticité en traction de 1,72 GPa, une résistance à la traction de 0,86 MPa et un allongement à la rupture de 1,16%. En flexion trois points, son module d’élasticité est de 0,64 GPa et sa contrainte à la rupture, de 0,13 MPa. La fibre de sisal est raide et fragile. Son module d’élasticité est compris entre 9 et 21 GPa, elle admet un allongement à rupture de 3 à 7%. Par contre, la fibre de RC est assez ductile avec un module d’Young moyen de 0,7 GPa et un allongement à rupture de 24,2%. L’adhésion du plâtre sur les fibres est faible : il adhère plus sur le sisal que sur le RC. Le sisal renforce mieux le plâtre par une augmentation plus sensible du module d’élasticité de 42,5%, contre 16,3% pour le RC, ce dernier lui apportant plutôt une grande ductilité élastique. Les fibres de RC apportent le maximum de renforcement en traction au plâtre lorsqu’elles sont tissées en unidirectionnel et en flexion lorsqu’elles sont uniformément réparties dans le volume suivant la direction longitudinale de la structure. (...)
The plaster is a material of high availability and very known for its qualities : it is favourable to the protection of the environment, quite malleable, of low density, its functional properties are remarkable (firewall, thermal insulation, regulator of the hygroscopy of enclosures), decorative, ... What justifies the interest attached to this material for constructions. Its great alarming brittleness is at the origin of the research tasks in the whole world for its strengthening. The glass fibers and sisal are the more used reinforcements to this day. The strengthening by plant fibers is more and more researched. The microstructure of the plaster is porous ; that promotes its heat insulation character. The textures implemented so far are limited to porosities ranging between 30 and 55%. The reduction of cost of this material for a wide use is still possible and desired. Two levers are exploited in this work, in particular a lightening of the plaster weight to increase the proportion of air voids and a reinforcement of the mechanical resistance with locally produced fibers. The objective of this work is to evaluate the mechanical, thermal and hygrometrical characteristics of a material made up of harden plaster, with high porosity, strengthened by a new plant fiber : the Rhecktophyllum Camerunense (RC), a fiber of humid equatorial forests. The sisal fiber, of known use for the strengthening of the plaster, serves as a reference for comparison purposes. A serie of experiments is conducted to this effect. A physicochemical characterization of constituents is performed. Mechanical tests of tensile and of bending are performed on the constituents and the resulting plaster/fiber composite materials. The kinetic adsorption of moisture by the constituents is followed. The thermal behaviour of plaster and plaster/fiber is also measured. The fibers used, sisal and RC are with high rates of cellulose (between 49 and 78.8% ), the fiber of RC is tubular with 35.5 % of porosity. The plaster is dissolved in demineralized water to a mass ratio W/P equals to 1 from the powder of semihydrate β. Its crystalline microstructure is composed of gypsum crystals in the form of needles tangled with the empty intercristallins. As far as the mechanical behavior is concerne, the result reveals that the plaster is weak, its Young’s modulus in tensile is 1.72 GPa, its tensile strength is 0.86 MPa and its elongation at break is 1.16 %. In three points bending test, its modulus of elasticity is 0.64 GPa and its constraint at break is 0.13 MPa. The sisal fiber is stiff and fragile. Its Young’s modulus is between 9 and 21 GPa, it admits an elongation at break of 3 to 7 %. On the other side, the fiber of RC is quite ductile : the means of Young’s module is 7 GPa and the elongation at break is 24.2 %. The adhesion of the plaster on the fiber surface is low : it adheres more on the sisal than on the RC. The sisal strengthened better the plaster with a sensitive increase of the Young’s modulus of 42.5 %, against 16.3 % for the RC. But the RC fiber gives rather high elastic ductility. The fibers of RC deliver maximum capacity in tensile to the plaster when they are woven into unidirectional. They offer high capacity in bending when they are uniformly distributed inside the volume according to the longitudinal direction of the structure. (...)
APA, Harvard, Vancouver, ISO, and other styles
7

Seghini, Maria Carolina. "Mechanical Analysis and Fibre/Matrix Interface Optimization for Next Generation of Basalt-Plant Fibre Hybrid Composites." Electronic Thesis or Diss., Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique, 2020. http://www.theses.fr/2020ESMA0003.

Full text
Abstract:
La prise de conscience mondiale des enjeux environnementaux a conduit à l’émergence de composites«verts», dans lesquels les fibres naturelles sont amenées à remplacer les fibres synthétiques. Ces nouveaux matériaux offrent des alternatives écologiques aux composites synthétiques traditionnels mais sont difficilement utilisables pour des applications semi-structurales ou structurales. Une solution possible à ce problème est le développement des composites hybrides, en combinant ensemble fibres naturelles et synthétiques. Dans ce cadre, l'objectif de cette étude était de développer des composites hybrides à base de fibres de basalte et de lin. Les composites hybrides ont été élaborés par moulage par infusion sous vide avec une matrice époxy. À des fins de comparaison,des composites 100% à fibres de lin et100%à fibres de basalte ont également été produits. Une caractérisation mécanique quasi-statique et dynamique amontré que l'hybridation permet d’obtenir un composite avec des propriétés mécaniques intermédiaires comparées à celles des composites à fibres de lin ou de basalte. Cependant, l’analyse approfondie des dommages a montré la nécessité d'optimiser la qualité d'adhésion de l'interface fibre/matrice afin d'accroître les performances mécaniques des composites hybrides obtenus. Pour cette raison, différents traitements de modification de surface ont été développés et étudiés pour les fibres de lin et de basalte. Un traitement physique par plasma (Plasma Enhanced Chemical Vapor Deposition) a été appliqué aux fibres de lin et de basalte. Les fibres de lin ont également été soumises à deux traitements chimiques utilisant des espèces enzymatiques et du CO2supercritique. Les effets des traitements sur la stabilité thermique, la morphologie et les propriétés mécaniques des fibres de lin et de basalte ont été étudiés. L’adhérence fibre/matrice a été analysée en réalisant des tests de fragmentation sur des composites monofilamentaires. La qualité de l'adhésion entre les fibres et les matrices époxy et vinylester a été évaluée en termes de longueur critique de fragment, de longueur de décohésion interfaciale et de résistance au cisaillement interfacial. La micto-tomographie haute résolution a été utilisée pour analyser les mécanismes d'endommagement lors des tests de fragmentation. Pour les deux types de fibres, les meilleurs résultat sont été obtenus grâce au traitement par plasma. Ce traitement a consisté à déposer un revêtement homogène de tétravinylsilane à la surface des fibres de basalte et de lin, ce qui a permis une augmentation significative de l’adhérence fibre/matrice, ouvrant ainsi la voie à la prochaine génération de composites hybrides plus respectueux de l’environnement et utilisables pour des applications semi-structurales
Global awareness of environmental issues has resulted in the emergence of “green” composites, in which natural fibres are used to replace synthetic ones. However, in semi-or structural applications, it can be inconvenient to use composites based on natural fibres. A possible solution to this problem is the development of hybrid composite materials, combining together plies of natural and synthetic fibres. In this framework, the aim of this research project was to develop basalt-flax fibre hybrid composites with a view to obtaining more environmentally friendly composites for semi-structural applications. Hybrid composites were produced through vacuum infusion molding with epoxy matrix.For comparison purposes, 100% flax fibre composites and 100% basalt fibre composites were also manufactured. A quasi-static and dynamic mechanical characterization showed that the hybridization allows the production of a composite with intermediate mechanical performances compared to those possessed by flax and basalt composites. However, the damage analysis has revealed the need to optimize the fibre/matrix interface adhesion quality, in order to increase the mechanical properties of the resulting hybrid composites. For this reason, different surface modification treatments have been specifically designed and investigated for flax and basalt fibres. Flax and basalt fibres were treated by the physical process of Plasma Enhanced Chemical Vapor Deposition. Flax fibres were also subjected to two chemical treatments using enzymatic species and supercritical CO2. The effects of the surface modification treatments on the thermal stability, morphology and mechanical properties of flax and basalt fibres have been investigated. The degree and extent of fibre/matrix adhesion were analyzed by micromechanical fragmentation tests on monofilament composites. The adhesion quality between fibres and both epoxy and vinylester matrices has been assessed in terms of critical fragment length, debonding length and interfacial shear strength. High-resolution μ-CT has been used to support the analysis of the damage mechanisms during fragmentation tests. For both flax and basalt fibres, the best results were obtained after the plasma polymer deposition process. This process was able to produce a homogeneous tetravinylsilane coating on the surface of basalt and flax fibres, which resulted in a significant increase in the fibre/matrix adhesion, thus paving the way for the next generation of more environmentally friendly hybrid composites for semi-structural applications
APA, Harvard, Vancouver, ISO, and other styles
8

Réquilé, Samuel. "De la plante aux biocomposites : caractérisation des interfaces multiples et étude des paramètres pertinents Exploring the link between flexural behaviour of hemp and flax stems and fiber stiffness Peeling experiments for hemp retting characterization targeting biocomposites Deeper insight into the moisture-induced hygroscopic and mechanical properties of hemp-reinforced biocomposites. Interfacial properties of hemp fiber/epoxy: effect of moisture sorption and induced hygroscopic stresses Propriétés hygroscopiques et mécaniques d'un biocomposite renforcé par des fibres de chanvre." Thesis, Lorient, 2019. http://www.theses.fr/2019LORIS529.

Full text
Abstract:
Les préoccupations environnementales de l'industrie et les stratégies visant à développer un système économique plus durable suscitent un intérêt croissant pour la recherche dans le domaine des biocomposites. Le fort caractère polaire et hydrophile des fibres végétales entraîne, lors de leur utilisation comme renfort, une complexité de mise en œuvre et des limites en termes de transfert de charge à l’interface fibre/matrice. Ces verrous pour le développement des biocomposites sont les lignes directrices de ce travail de thèse s'inspirant de la présence des interfaces au sein des tiges de chanvre. L’évolution progressive de la microstructure et des propriétés mécaniques est cruciale pour l'intégrité et le fonctionnement de la tige à travers des régions de transition. Ces interfaces, potentiels maillons faibles de la structure, sont étudiées en appliquant un processus de rouissage impactant la microstructure interne et la cohésion tissulaire. Des tiges aux fibres élémentaires, l'étude du comportement mécanique des systèmes naturels est une source d’inspiration pour un transfert des principes fondamentaux des biocomposites. Visant à accroître la compréhension de l'effet de l'humidité présente dans l’environnement lors des utilisations composites, l’analyse des propriétés hygro-mécanique permet de mettre en évidence des performances optimales de composites unidirectionnels de part un effet bénéfique de la sorption d’eau. Des études à l'échelle microscopique ont permis d’attribuer une contribution importante du comportement hygroscopique aux performances de l'interface fibre/matrice par la création de contraintes résiduelles et de mécanismes d'adhésion capillaire. Généralement décrite comme un inconvénient, ce travail de recherche montre que la sensibilité à l'eau des fibres végétales ainsi que la sorption de vapeur d’eau dans un biocomposite pourraient favoriser le transfert de charge et être bénéfiques pour leurs performances mécaniques
Industry environmental concerns and strategies to become part of a more sustainable economic system, leads to a growing interest in research on biocomposite. The strong polar and hydrophilic nature of plant fibers leads, when used as a reinforcement, to a complexity of biocomposite manufacturing and limits in terms of load transfer at the fiber/matrix interface. These major locks (fiber polarity and moisture sensitivity) for biocomposites development are the guidelines of this thesis work taking its inspiration in the design of hemp stem tissue interfaces. The multi-scale evolution of gradient microstructure and internal mechanics is crucial for the integrity and functioning of the stem through smooth transitions regions. These potential weak interfaces are investigated by applying a retting process that affect the stem internal microstructure and tissue cohesion. From the stems of agricultural crops to the hierarchical elementary fibers, studying the mechanical behavior of natural systems may serve as inspiration for a biomimetic transfer of the fundamental principles to fiber-reinforced composites. Aimed at increasing the understanding of the effect of moisture present during composite use, hygro-mechanical coupling highlights an optimum in hemp fibre-based unidirectional composites performances from a beneficial effect of moisture sorption. Deeper analysis at the micro-scale attributed a significant contribution of this hygroscopic behavior to fiber/matrix interface performances through the creation of residual stresses and capillary adhesion mechanisms. Generally described in the literature as a drawback, this research demonstrates that water sensitivity of plant fibers and moisture sorption in biocomposite could promote load transfer and be beneficial for their performance
APA, Harvard, Vancouver, ISO, and other styles
9

Cho, Baik-Soon. "The in-plane shear properties of pultruded materials." Diss., Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/21291.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sparnins, Edgars. "Mechanical properties of flax fibers and their composites." Doctoral thesis, Luleå, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-26640.

Full text
Abstract:
Flax fibers, along with a number of other natural fibers, are being considered as an environmentally friendlier alternative of synthetic fibers in fiber-reinforced polymer composites. A common feature of natural fibers is a much higher variability of mechanical properties. This necessitates study of the flax fiber strength distribution and efficient experimental methods for its determination. Elementary flax fibers of different gauge lengths are tested by single fiber tension in order to obtain the stress-strain response and strength and failure strain distributions. The applicability of single fiber fragmentation test for flax fiber failure strain and strength characterization is considered. It is shown that fiber fragmentation test can be used to determine the fiber length effect on mean fiber strength and limit strain. The effect of mechanical damage in the form of kink bands and of diameter variability on the strength of elementary flax fibers is considered. Stiffness and strength under uniaxial tension of flax fiber composites with thermoset and thermoplastic polymer matrices are studied. The applicability of rule of mixtures and orientational averaging based models, developed for short fiber composites, to flax reinforced polymers are evaluated. Both the quasi-static and time dependent mechanical properties of flax fiber/thermoplastic starch based composites are analyzed. The effect of temperature and relative humidity is investigated. It is found that microdamage accumulation in this type of composites is not significant. Results show that the composite elastic modulus and failure stress are linearly related to the maximum stress reached by the matrix in tensile tests. Simple material models are suggested to account for the observed nonlinear viscoelasticity and viscoplasticity.
Godkänd; 2009; 20091029 (edgspa); DISPUTATION Ämnesområde: Polymera konstruktionsmaterial/Polymeric Composite Materials Opponent: Docent Kristofer Gamstedt, Kungliga Tekniska Högskolan, Stockholm Ordförande: Docent Roberts Joffe, Luleå tekniska universitet Tid: Onsdag den 9 december 2009, kl 10.00 Plats: E 231, Luleå tekniska universitet
APA, Harvard, Vancouver, ISO, and other styles
11

Sparnins, Edgars. "Mechanical properties of flax fibers and their composites." Licentiate thesis, Luleå tekniska universitet, Materialvetenskap, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-16871.

Full text
Abstract:
Flax fibers, along with a number of other natural fibers, are being considered as an environmentally friendly alternative of synthetic fibers in fiber-reinforced polymer composites. A common feature of natural fibers is a much higher variability of mechanical properties. This necessitates study of the flax fiber strength distribution and efficient experimental methods for its determination. Elementary flax fibers of different gauge lengths are tested by single fiber tension in order to obtain the stress-strain response and strength and failure strain distributions. The applicability of single fiber fragmentation test for flax fiber failure strain and strength characterization is considered. It is shown that fiber fragmentation test can be used to determine the fiber length effect on mean fiber strength and limit strain. Stiffness and strength under uniaxial tension of flax fiber composites with thermoset and thermoplastic polymer matrices are considered. The applicability of rule of mixtures and orientational averaging based models, developed for short fiber composites, to flax reinforced polymers is evaluated.

Godkänd; 2006; 20061206 (pafi)

APA, Harvard, Vancouver, ISO, and other styles
12

Spārniņš, Edgars. "Mechanical properties of flax fibers and their composites." Luleå : Luleå tekniska universitet,Tillämpad fysik, maskin- och materialteknik, Polymerteknik, 2006. http://epubl.ltu.se/1402-1757/2006/60/LTU-LIC-0660-SE.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Spārniņš, Edgars. "Mechanical properties of flax fibers and their composites /." Luleå : Division of Polymer Engineering, Luleå University of Technology, 2009. http://pure.ltu.se/ws/fbspretrieve/3353745.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Ruys, David Julian Materials Science &amp Engineering Faculty of Science UNSW. "The influence of bast fibre structure on the mechanical properties of natural fibre composites." Awarded by:University of New South Wales. Materials Science & Engineering, 2007. http://handle.unsw.edu.au/1959.4/40688.

Full text
Abstract:
Composite materials based on natural bast fibres offer potential commercial and environmental benefits due to the low cost, availiability, and biodegradability of the fibres. However, such benefits cannot be realised without a comprehensive evaluation of processing and properties. This thesis involved a comprehensive evaluation of composites based on two types of natural bast fibre (hemp and flax), and two types of matrix - synthetic (epoxy), and biodegradable (Novamont Mater-Si). The experimental work involved four strands: the effects of growing conditions and fibre processing on the properties of raw bast fibres; the optimisation of a pultrusion process for epoxy-matrix composites; development of a film stacking process for Mater-Bi composites, and a detailed evaluation of the mechanical properties of the composites themselves. Fibre bundles and individual fibre cells were investigated to characterise their structure, with particular focus on compressive kink defects. The kink bands were sectioned using a novel technique of focused ion beam milling, and kinking was found to induce delamination and voiding of the lamellar fibre structure. The defect concentration per unit length was assessed for conventionally-processed fibres and for hemp fibres from plants grown under controlled conditions to assess the effect of wind shear and stem flexure on fibre defect concentration. No effect was found for plant flexure, while industrially processed fibre was found to have increased defect concentration. The loading behaviour of both types of composite was seen to be initially linear with a yield point at 20 - 30 MPa and a transition to nonlinear deformation dominated by damage mechanisms as a result of fibre kinks. Epoxy composites possessed an inital modulus of 30 GPa with a 30 - 60% reduction in modulus after yield. Flax reinforcement was found to increase the modulus of Mater-Bi from 0.1 to 20 GPa and strength from 24 to 169 MPa. Fibre addition was also found to significantly embrittle the polymers.
APA, Harvard, Vancouver, ISO, and other styles
15

Blewett, Jennifer M. "Micromanipulation of plant cell mechanical properties." Thesis, University of Birmingham, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.520730.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Conley, Jill Anne. "Hygro-thermo-mechanical behavior of fiber optic apparatus." Thesis, Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/17308.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Yang, Lanti. "Mechanical properties of collagen fibrils and elastic fibers explored by AFM." Enschede : University of Twente [Host], 2008. http://doc.utwente.nl/58870.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Li, Qian. "Study on Microstructure and Mechanical Properties of High Temperature Electrospun Polyethylene Fibers." University of Akron / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=akron1344014866.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Hastings, William Chad. "CRYOGENIC TEMPERATURE EFFECTS ON THE MECHANICAL PROPERTIES OF CARBON, ARAMID, AND PBO FIBERS." MSSTATE, 2008. http://sun.library.msstate.edu/ETD-db/theses/available/etd-04032008-203657/.

Full text
Abstract:
This study examines the effects of cryogenic temperatures on the mechanical properties of carbon, aramid, and poly(p-phenylene-2, 6-benzobisoxazole) (PBO) fibers. Although the mechanical properties are documented for these fibers at ambient and elevated temperatures, there is an absence of data in the open literature for how these fibers behave at very low temperatures. To evaluate the mechanical properties, the ASTM standard method for testing at ambient temperature was used as a baseline. The low temperature tests were conducted inside a double walled cryogenic chamber to evaluate the fiber performance at 100K. Fiber properties at low temperatures displayed differences from room temperature properties in the form of increased ultimate tensile strength (UTS), decreased in elongation to failure, and increased Youngs Modulus. The change in properties due to the effect of temperature was more pronounced in fibers with a higher degree of crystallinity.
APA, Harvard, Vancouver, ISO, and other styles
20

Pai, Chia-Ling. "Morphology and mechanical properties of electrospun polymeric fibers and their nonwoven fabrics." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/65763.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemical Engineering, 2011.
Cataloged from student submitted PDF version of thesis.
Includes bibliographical references.
Electrospinning is a straight forward method to produce fibers with diameter on the order of a few tens of nanometers to the size approaching commercial fibers (on the order of 10 prm or larger). Recently, the length scale effect on physical properties has attracted great attention because of the potential to produce new materials with unique behavior. In general, the behavior of commercial fibers can be investigated by traditional experiments, and that of nanofibers can be studied by molecular dynamics simulation or Monte Carlo technique. However, the transition of their properties from the bulk to the nanoscale materials is not well understood. Electrospinning provides us a bridge to understand the properties of fibers transiting from the behavior of the bulk material to that of the nanofibers. Among these areas, I am interested in the possible remarkable changes in mechanical properties that may occur in electrospun fibers due to the size effect, where the comprehensive understanding is still lacking. My research objectives are to understand mechanical properties of electrospun polymeric fibers as a function of their size, structure and morphology. The first part of my research is to study internal structures and external topographies of electrospun fibers, and to understand their effect on mechanical properties. Amorphous polystyrene (PS) and semicrystalline polyacrylonitrile (PAN) were dissolved in a high boiling point solvent, dimethylformamide (DMF), for electrospinning. When electrospun in a high-humidity environment, the interior of these fibers was found to be highly porous rather than consolidated, despite the smooth and nonporous appearance of the fiber surfaces. The formation of interior porosity is attributed to the miscibility of water, a nonsolvent for the polymers in solution, with DMF. The resulting morphology is a consequence of the relatively rapid diffusion of water into the jet, leading to a liquid-liquid phase separation that precedes solidification due to evaporation of DMF from the jet. When electrospun in a low humidity environment, the fibers exhibit a wrinkled morphology that can be explained by a buckling instability. Understanding which structures and morphology form under a given set of conditions is achieved through the comparison of three characteristic times: the drying time, the buckling time and the phase separation time. The structures and morphology have important consequences for the properties of the fibers such as their mechanical strength and stiffness.
(cont.) Secondly, we studied the size effects of single electrospun fibers on their stiffness and strength. The Young's modulus and yield strength of individual electrospun fibers of amorphous poly(trimethyl hexamethylene terephthalamide) (PA 6(3)T) have been obtained in uniaxial extension. The Young's modulus is found to exhibit values in excess of the isotropic bulk value, and to increase with decreasing fiber diameter for fibers with diameter less than roughly 500 nm. The yield stress is also found to increase with decreasing fiber diameter. These trends are shown to correlate with increasing molecular level orientation within the fibers with decreasing fiber diameter. Using Ward's aggregate model, the correlation between molecular orientation and fiber modulus can be explained, and reasonable determinations of the elastic constants of the molecular unit are obtained. Finally, we identified a relation of stiffness between single electrospun fibers and their nonwoven fabrics. This is of interest because adequate mechanical integrity of nonwoven fabrics is generally a prerequisite for their practical usage. The Young's modulus of electrospun PA 6(3)T nonwoven fabrics were investigated as a function of the diameter of fibers that constitute the fabric. Two quantitative microstructure-based models that relate the Young's modulus of these fabrics to that of the fibers are considered, one assuming straight fibers and the other allowing for sinuous fibers. This study is particularly important for meshes comprising fibers because of our recent discovery of an enhanced size effect on their Young's modulus as well as the tendency towards a curved fiber topology between fiber junctions. The governing factors that affect the mechanical properties of nonwoven mats are the fiber network, fiber curvature, intrinsic fiber properties, and fiber-fiber junctions. Especially for small fibers, both the intrinsic fiber properties and fiber curvature dominate the mechanical behavior of their nonwoven fabrics. This thesis helps us to understand the mechanism behind the enhanced mechanical behavior of small fibers, and to identify determining parameters that can be used to tailor their mechanical performance.
by Chia-Ling Pai.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
21

Pfau, Michaela R. "Toward High Performance Nanocarbon Fibers." DigitalCommons@CalPoly, 2016. https://digitalcommons.calpoly.edu/theses/1578.

Full text
Abstract:
High performance carbon fibers (CFs) have been a commercially available since their commercial boom in the 1970s, and are generally produced via carbonization of poly (acrylonitrile) (PAN). More recently, carbon nanomaterials like graphene and carbon nanotubes (CNTs) have been discovered and have shown excellent mechanical, thermal, and electrical properties due to their sp2 carbon repeating structure. Graphene and CNTs can both be organized into macroscopic fibers using a number of different techniques, resulting in fibers with promising mechanical performance that can be readily multifunctionalized. In some cases, the two materials have been combined, and the resulting hybrid fibers have been shown to display synergistically enhanced mechanical properties. The incredible intrinsic properties of graphene and CNTs has never been fully realized in their fiber assemblies, so part of the aim of this work is to discover methods to improve upon the performance of nanocarbon based fibers. Carbon nanomaterials can be difficult to work with because of the difficulty in processing them into commercially viable materials, and the challenges associated with scalable production techniques. So, the main goal of this work is to prepare hybrid graphene and CNT based fibers with optimal mechanical performance using simple, cost-effective methods.
APA, Harvard, Vancouver, ISO, and other styles
22

Shukla, Jay G. "Effect of processing parameters on morphology and mechanical properties of carbon/PEEK (APC2) composite." Thesis, Georgia Institute of Technology, 1988. http://hdl.handle.net/1853/8276.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Knaul, Jonathan Zvi. "Improved mechanical properties of chitosan fibers with applications to degradable radar countermeasure chaff." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0016/NQ44831.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Li, Junqiu. "Physical and Mechanical Properties of Medite® MDF Exterior from Acetylated Wood Fibers." Thesis, Linnéuniversitetet, Institutionen för maskinteknik (MT), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-76444.

Full text
Abstract:
Currently, the demand for wood-based panels has been growing solidly in European countries. Medium density fibreboard (MDF) manifests the potentialities for outstanding physical and mechanical properties. However, MDF from different fiber sources is normally designed for internal applications due to the poor moisture resistant capability. This study was conducted on acetylated MDF (Medite® MDF Exterior) to evaluate how physical (i.e. density, moisture content, dimensional stability, thickness swelling) and mechanical (i.e. modulus of elasticity, internal bonding strength before and after accelerated aging, bending stiffness and bending strength) properties behave at different relative humidity (i.e. 35 %, 65 % and 85 % RH at constant temperature of 20 ℃) levels. Bending stiffness was measured non-destructively by means of resonance method. The material used for control samples was commercial MDF. The size, quantity, conditioning and test method were followed in accordance with respective standards. The results showed that physical and mechanical properties were less influenced by Medite® MDF Exterior compared to commercial MDF. Medite® MDF Exterior were superior to commercial MDF in moisture resistance. Medite® MDF Exterior had more stable mechanical properties than commercial MDF with the changes of relative humidity.
APA, Harvard, Vancouver, ISO, and other styles
25

Lundgren, Christina Persson Bengt. "Wood and fibre properties of fertilized Norway spruce /." Uppsala : Swedish University of Agricultural Sciences, 2003. http://diss-epsilon.slu.se/archive/00000360/.

Full text
Abstract:
Thesis (doctoral)--Swedish University of Agricultural Sciences, 2003.
Thesis documentation sheet inserted. Appendix reprints four papers and manuscripts, one co-authored with Bengt Persson. Includes bibliographical references. Also issued electronically via World Wide Web in PDF format; online version lacks appendix.
APA, Harvard, Vancouver, ISO, and other styles
26

Sharma, Varunesh. "Mechanical properties of high performance fibers vis-a-vis applications in flexible structural composites." Diss., Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/9188.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Leal, Ayala Angel Andres. "Effect of intermolecular hydrogen bonding on the micro-mechanical properties of high performance organic fibers." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 307 p, 2008. http://proquest.umi.com/pqdweb?did=1597616621&sid=11&Fmt=2&clientId=8331&RQT=309&VName=PQD.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Vohra, Sanjay. "A mechanics framework for modeling fiber deformation on draw rollers and freespans." Diss., Available online, Georgia Institute of Technology, 2006, 2006. http://etd.gatech.edu/theses/available/etd-05172006-141347/.

Full text
Abstract:
Thesis (Ph. D.)--Polymer, Textile & Fiber Engineering, Georgia Institute of Technology, 2007.
Karl I. Jacob, Committee Chair ; Youjiang Wang, Committee Member ; Mary Lynn Realff, Committee Member ; Arun Gokhale, Committee Member ; Rami Haj-Ali, Committee Member.
APA, Harvard, Vancouver, ISO, and other styles
29

Damodaran, Sundaravel. "Evolution of structure and mechanical properties during carbonization of polyacrylonitrile-based precursor fibers by Sundaravel Damodaran." Diss., Georgia Institute of Technology, 1991. http://hdl.handle.net/1853/8505.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Bucher, Thomas M. Jr. "CAPILLARITY AND TWO-PHASE FLUID TRANSPORT IN MEDIA WITH FIBERS OF DISSIMILAR PROPERTIES." VCU Scholars Compass, 2014. http://scholarscompass.vcu.edu/etd/3653.

Full text
Abstract:
Capillarity is a physical phenomenon that acts as a driving force in the displacement of one fluid by another within a porous medium. This mechanism operates on the micro and nanoscale, and is responsible for countless observable events. This can include applications such as absorption in various hygiene products, self-cleaning surfaces such as water beading up and rolling off a specially-coated windshield, anti-icing, and water management in fuel cells, among many others. The most significant research into capillarity has occurred within the last century or so. Traditional formulations for fluid absorption include the Lucas–Washburn model for porous media, which is a 1-D model that reduces a porous medium to a series of capillary tubes of some educated equivalent radius. The Richards equation allows for modeling fluid saturation as a function of time and space, but requires additional information on capillary pressure as a function of saturation (pc(S)) in order to solve for absorption. In both approaches, the surface can only possess one fluid affinity. This thesis focuses on developing capillary models necessary for predicting fluid absorption and repulsion in fibrous media. Some of the work entails utilizing approximations based on pore space available to the fluid, which allows for capillary pressure simulation in media with arbitrary fiber orientation. This thesis also presents models for tracking the fluid interface in fibrous media and coatings with simpler geometries such as horizontally and vertically aligned fibers and orthogonal fiber layers. This method hinges on solving for the true fluid interface shape between the fibers based on the balance of forces across it, ensuring the accurate location and total content of fluid in the medium, and therefore accurate pc(S). Using this approach also allows, for the first time, fibers of different fluid affinities to exist in the same structure, to examine their combined influence on fluid behavior. The models in this thesis focus mainly on absorbent fabrics and superhydrophobic coatings, but can be easily expanded for use in other applications such as water filtration from fuel, fluid transport and storage in microchannels, polymer impregnation in fiber-reinforced composite materials, among countless others.
APA, Harvard, Vancouver, ISO, and other styles
31

Chaudhuri, Rehnooma I. "Effect of low profile additives on thermo-mechanical properties of fibreUP composites." Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=99752.

Full text
Abstract:
Low profile additives (LPA) are thermoplastics that are incorporated to unsaturated polyester (UP) resins in order to improve the surface finish of UP/fibreglass composites, widely used in automotive applications. The effect of using LPA on the thermo-mechanical properties of resin transfer moulded UP/fibreglass composites is investigated. The flexural and shear properties are measured by three-point bending tests. The trend of these mechanical properties is identified for 0% to 40% LPA content. All the mechanical properties like flexural strength, flexural modulus and short beam strength reduce upon addition of LPA. The specimens fail by tension in the flexural test and show a mixed shear/tension failure mode in case of short beam tests. From scanning electron microscopy, morphological change of the fractured surface is observed with an LPA-rich phase. Glass transition temperature (Tg) measured by thermal mechanical analysis (TMA) and dynamic mechanical analysis (DMA) show reproducible data and compare well with each other. Tg is improved by LPA addition due to the development of a more compatible system compared to neat resin. Differential scanning calorimetry (DSC) is also performed to detect Tg, which gives unreliable results.
APA, Harvard, Vancouver, ISO, and other styles
32

Tzou, Der-Lii M. "Solid state 13C NMR studies of the Morphology and orientational order of polymer fibers." Diss., Georgia Institute of Technology, 1991. http://hdl.handle.net/1853/30276.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Litchfield, David W. "The Manufacture and Mechanical Properties of Poly(ethylene terephthalate) Fibers Filled with Organically-Modified Montmorillonite." Diss., Virginia Tech, 2008. http://hdl.handle.net/10919/27175.

Full text
Abstract:
This work is concerned with mechanical property improvements to poly(ethylene terephthalate), PET, fibers by the addition of layered silicate nanoparticles and by drawing the un-oriented nanocomposite filaments in a second step. No previous studies on PET fibers filled with montmorillonite (MMT) nanoclay examined fiber drawability at temperatures above the glass transition. Therefore, the primary objective of this research was to determine 1) if PET nanocomposite fibers could be drawn to finer diameters and 2) whether drawing imparted improved Young's modulus and tenacity (i.e. strength) relative to un-filled PET fibers. Of equal importance to this work, the subsequent objective was to discern and understand the role of nanoclay in 1) the production of improved or reduced mechanical properties and 2) the ability to draw PET to lower or higher than normal draw ratios. In the first part of this thesis, the improvements in Young's modulus and tenacity of PET fibers filled with various types of organically modified montmorillonite is shown and the method to produce them is discussed. Greater improvements in mechanical properties occurred when the MMT stacks were intercalated with PET. A nominal 1 wt% loading of dimethyl-dehydrogenated tallow quaternary ammonium surface modified MMT in drawn PET fiber showed a 28% and 63% increase in Young's modulus and strength, respectively. Relative to an un-filled PET fiber, these results exceeded the upper-bound of the rule of mixtures estimate. Therefore, both the type of surface modification and concentration of MMT were shown to affect the degree of PET orientation and crystallinity. Furthermore, drawability above Tg and elongation-at-break increased upon the addition of organically modified MMT to un-oriented PET fibers, which was a key distinction of this work from others examining similar systems. Interestingly, the mechanical properties of modulus and tenacity showed a maximum with concentration of alkyl modified clay, but drawability did not show significant variation with increasing nanoclay content. Thermal analysis and Raman spectroscopy was used to examine the role of nanoclay in creating this maximum in mechanical properties. At low loadings, nanoclay was shown to intercalate with PET and enhance amorphous orientation. At higher concentrations of nanoclay the presence of large agglomerates prevented efficient orientation to the fiber axis and acted as stress concentrators to aid in cavitation and failure during testing. Raman spectroscopy showed that the as-spun unfilled PET fibers possessed significantly more trans conformer content of the ethylene glycol moiety than the nanocomposite fibers. The greater gauche content of the nanocomposite fibers delayed crystalline development during non-isothermal DSC scans to higher temperatures was associated with the increased drawability.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
34

Ohta, Yasuo. "Structural development and related mechanical properties of ultrahigh strength polyethylene fibers during gel-spinning process." 京都大学 (Kyoto University), 2005. http://hdl.handle.net/2433/145381.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Goudenhooft, Camille. "Multi-scale characterization of flax stems and fibers : structure and mechanical performances." Thesis, Lorient, 2018. http://www.theses.fr/2018LORIS500/document.

Full text
Abstract:
Le lin (Linum usitatissimum L.) est une plante aux intérêts multiples. Sa tige est source de fibres, depuis longtemps utilisées dans le domaine du textile. Ce potentiel économique justifie la sélection variétale du lin en vue de développer des variétés plus riches en fibres et offrant une meilleure résistance aux maladies et la verse. Plus récemment, les fibres de lin ont vu leur utilisation s’étendre au renfort de matériaux composites grâce à leurs étonnantes propriétés mécaniques et morphologiques. Ces propriétés singulières s’expliquent grâce à leur développement et à leurs fonctions dans la tige. Ainsi, ce travail de thèse propose une caractérisation multi-échelle du lin, de la tige jusqu’à la paroi cellulaire de la fibre, afin de comprendre le lien entre les paramètres de croissance de la plante, le développement des fibres et leurs propriétés. L’architecture générale d’une tige de lin est explorée, ainsi que les conséquences de la sélection variétale sur cette structure et sur les propriétés des fibres. De plus, l’évolution des propriétés mécaniques des parois de fibres au cours de la croissance de la plante et de la phase de rouissage est caractérisée. En complément, la contribution des fibres à la rigidité en flexion d’une tige est mise en évidence, de même que leur rôle dans la résistance des tiges au flambage. Enfin, l’influence des conditions de culture sur les architectures des tiges et propriétés des fibres est étudiée par le biais de cultures en serre ou encore en simulant un phénomène de verse. Cette approche originale met en valeur les caractéristiques remarquables du lin qui en font un modèle de bioinspiration pour les matériaux composites de demain
Flax (Linum usitatissimum L.) is a plant with multiple interests. Its stem provides fibers, which have long been used in the textile industry. The economic potential of flax explains its varietal selection, aiming at developing varieties exhibiting higher fiber yields as well as greater resistance toward diseases and lodging. More recently, flax fibers have been dedicated to the reinforcement of composite materials due to their outstanding mechanical and morphological properties. These singular characteristics are related to fiber development and functions within the stem. Thus, the present work offers a multi-scale characterization of flax, from the stem to the fiber cell wall, in order to understand the link between plant growth parameters, the development of its fibers and their properties. The general architecture of a flax stem is investigated, as well as the impact of the varietal selection on this structure and on fiber performances. Moreover, changes in mechanical properties of fiber cell walls over plant growth and retting process are characterized. In addition, the fiber contribution to the stem stiffness is highlighted, as well as the fiber role in the resistance of the stem to buckling. The influence of culture conditions on stem architecture and fiber features is also studied through cultivations in greenhouse and by simulating a lodging event. This original approach emphasizes the uncommon characteristics of flax, which make this plant an instructive model toward future bioinspired composite materials
APA, Harvard, Vancouver, ISO, and other styles
36

Prasad, Ajit. "Influence of processing variables on the mechanical properties of SiC fibers prepared by chemical vapor deposition." Thesis, Georgia Institute of Technology, 1993. http://hdl.handle.net/1853/19651.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Abada, Maria, Elin Fossum, Louise Brandt, and Anton Åkesson. "Property prediction of super-strong nanocellulose fibers." Thesis, KTH, Skolan för kemi, bioteknologi och hälsa (CBH), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-277118.

Full text
Abstract:
The innovative technology behind production of strong biofilaments involves the process of spinning filaments from nanoparticles extracted from wood. These nanoparticles are called cellulose nanofibrils (CNFs). The spun filaments can have high mechanical properties, rivaling many other plant based materials, and could be an environmentally friendly replacement for many materials in the future such as fabrics and composites. Before mass production might be possible, the optimal dispersion properties must be determined for the intended use, with regard to concentration, method of oxidation (TEMPO-oxidation or carboxymethylation) and pretreatment through sonication and centrifugation. In this bachelor’s thesis attributes of spun filaments were investigated in order to find a correlation between mechanical properties and the effects of concentration, method of oxidation as well as sonication and centrifugation of the dispersions. The mechanical properties were also compared to the fibrils’ ability to entangle and align during flow-focusing. A variety of analytical methods: flow-stop, tensile testing, scanning electron microscopy (SEM) and wide angle X-ray scattering (WAXS) were implemented for the dispersions and filaments. The results from this study show that flow-stop analysis could be used to determine which CNF dispersions are spinnable and which are non-spinnable, along with which spinnable dispersion would yield the strongest filament. It was also concluded that crystallinity of fibrils affects the mechanical properties of filaments and that TCNFs are generally more crystalline than CMCs. Pretreatment through sonication and centrifugation seems to have a negative impact on spinnability and sonication in combination with low concentration seems to lead to non-spinnable conditions. On the other hand, sonicated dispersions seem to yield a greater number of samples without aggregates than non-sonicated ones. Aggregates, however, seem to only affect ultimate stress out of the measured mechanical properties. Furthermore, concentration and viscosity affect spinnability and CMC dispersions seem to yield thicker filaments than TCNF dispersions. However, due to lack of statistically validated data any definitive conclusions could not be drawn.
APA, Harvard, Vancouver, ISO, and other styles
38

Jenkins, Shawn Eric. "Effects of covalent crosslinking and hydrogen bonding on the physical and mechanical properties of rigid-rod polymeric fibers." Diss., Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/10117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Smith, Tyler Lincoln. "Investigation of wet paper viscoelastic structural properties." Thesis, Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/10421.

Full text
Abstract:
The thesis studies the relationship between inter-fiber forces present within a cellulose fiber web under varying external conditions. It particularly concentrates on the degree of fiber to fiber bonding and fiber entanglement as a function of moisture content. Finite element analysis of the fiber bonding is used in conjunction with the experimental results to analyze and explain the inter-fiber behaviors taking place within a sheet.
APA, Harvard, Vancouver, ISO, and other styles
40

Thomson, Cameron Ian. "Probing the Nature of Cellulosic Fibre Interfaces with Fluorescence Resonance Energy Transfer." Diss., Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/16277.

Full text
Abstract:
The material properties of fibre networks and fibre reinforced composites are strongly influenced by fibre-fibre interactions. Stress transfer between load bearing elements in such materials is often dictated by the nature of the fibre-fibre interface. Inter-fibre bonding is solely responsible for internal cohesion in paper, because all stresses transferred between fibres operate through fibre-fibre bonds. . The future development of cellulosic fibre materials will require an improved understanding of the fibre-fibre interface. Fluorescence resonance energy transfer (FRET) was proposed as a new tool for the study of fibre interfaces. A protocol for covalent linkage of fluorophores to natural and regenerated cellulosic fibres was developed and the absorptive and emissive properties of these dyes were characterized. The fluorescent response of these dyed fibres in paper sheets was studied using steady-state fluorescence spectroscopy. Fluorescence micrographs of fibre crossings on glass slides were analyzed using the FRETN correction algorithm. Energy transfer from coumarin dyed fibres to fluorescein dyed fibres at the interface was observed. The FRETN surfaces for spruce and viscose rayon fibre crossings were distinctly different. The FRET microscopy method was able to detect statistically significant differences in spruce fibre interface development when fibre fraction and wet pressing were varied. The coalescence of natural cellulosic fibre interfaces during drying was also observed with the technique. Polysaccharide films were employed as model systems for the natural and regenerated cellulose fibre interfaces. It was found that pressing cellulose films did not result in significantly increased FRETN either due to resistance to deformation or the inability to participate in interdiffusion. Conversely, xylan films demonstrated a drastic increase in the FRETN signal with increased wet pressing. These results support the previously observed differences between regenerated cellulose fibres and natural wood fibres. The results of the FRETN analysis of the polysaccharide film model systems suggest that lower molecular weight amorphous carbohydrates are likely to be significant contributors to fibre interface development.
APA, Harvard, Vancouver, ISO, and other styles
41

Smulski, Stephen John. "Flexural behavior of a glass fiber reinforced wood fiber composite." Diss., Virginia Polytechnic Institute and State University, 1985. http://hdl.handle.net/10919/53596.

Full text
Abstract:
The static and dynamic flexural properties of a wood fiber matrix internally reinforced with continuous glass fibers were investigated. When modelled as a sandwich composite, the static flexural modulus of elasticity (MOE) of glass fiber reinforced hardboard could be successfully predicted from the static flexural MOE of the wood fiber matrix, and the tensile MOE and effective volume fraction of the glass fiber reinforcement. Under the same assumption, the composite modulus of rupture (MOR) is a function of the reinforcement tensile MOE and effective volume fraction, and the matrix stress at failure. The composite MOR was predicted on this basis with limited success. The static flexural modulus of elasticity, dynamic modulus of elasticity, and modulus of rupture of glass fiber reinforced hardboard increased with increasing effective reinforcement volume fraction. The logarithmic decrement of the composite decreased with increasing effective reinforcement volume fraction. Excellent linear correlation found among flexural properties determined in destructive static tests and nondestructive dynamic tests demonstrated the usefulness of dynamic test methods for flexural property evaluation. The short-term flexural creep behavior of glass fiber reinforced hardboard was accurately described by a 4-element linear viscoelastic model. Excellent agreement existed between predicted and observed creep deflections based on nonlinear regression estimates of model parameters.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
42

Boldrin, David. "Understanding plant water relations and root biomechanics for hydro-mechanical reinforcement of slopes." Thesis, University of Dundee, 2018. https://discovery.dundee.ac.uk/en/studentTheses/a6fda4a3-48b1-469b-ace7-655dda5d7c86.

Full text
Abstract:
Vegetation stabilises slopes via both mechanical reinforcement (through root anchorage) and hydrologic reinforcement (through transpiration-induced soil matric suction). However, relatively little is known about the effectiveness of different plant species in stabilising soil slopes via the two reinforcing mechanisms, and so decisions on species selection are seldom made with optimisation of slope reinforcement in mind. In this thesis, a comprehensive testing programme including laboratory, glasshouse and field experiments is designed and implemented, with the aim to quantify and investigate the transpiration-induced hydrologic reinforcement and root biomechanical properties during the early plant establishment of selected woody species, widespread under European temperate climate. Ten species native to Europe (Buxus sempervirens L.; Corylus avellana L.; Crataegus monogyna Jacq.; Cytisus scoparius (L.) Link; Euonymus europaeus L.; Ilex aquifolium L.; Ligustrum vulgare L.; Prunus spinosa L.; Salix viminalis L. and Ulex europaeus L.) were investigated in a glasshouse experiment to understand any relation of transpiration induced hydrologic reinforcement with above- and below-ground plant traits (e.g. specific leaf area; root length density). The ten species showed large differences in terms of water uptake, which translated to significant differences in matric suction and soil strength. Species with the largest water uptake increased soil strength more than ten times that in fallow soil. Specific leaf area, root length density and root:shoot ratio were best correlated with the induced hydrologic reinforcement provided by the ten tested species. These results supplied essential species information for designing the subsequent experiments. Based on the previous findings, three representative yet contrasting species (Corylus avellana, Ilex aquifolim and Ulex europaeus) were selected and planted in 1-m soil columns to investigate the effects of season (i.e. summer vs winter), plant functional type (i.e. deciduous vs evergreen) and soil depth on the magnitude and distribution of transpiration-induced matric suction and the associated soil strength gain. Evergreens could slowly induce matric suction and hence potentially stabilise soil during winter. However, there were very large differences between the tested evergreens (I. aquifolium and U. europaeus). Indeed, only U. europaeus provided matric suction and soil strength gain along the entire depth-profile because of its fast growth (above- and below-ground). A full-scale field experiment was also performed to provide ground-truth data on the extent of variation in hydrologic reinforcement among species, hence validating the glasshouse results obtained in the first two studies. The two-year field experiment yielded a similar ranking to the glasshouse experiments in terms of the species ability to rapidly develop matric suction and soil strength. In particular, the evergreen U. europaeus induced large matric suction (e.g. ≥ 70 kPa at 0.5 m depth) even during the early establishment period. Furthermore, this field research highlighted the greater (compared to other tested species) temporal effectiveness of U. europaeus, which was able to provide matric suction on the slope from early spring to late autumn. The greater ability of U. europaeus in inducing and preserving matric suction can be attributed to its large water uptake, which supports its fast growth, as well as to the notable interception loss provided by its canopy. Therefore, U. europaeus can represent a very suitable species for slope stabilisation under the temperate climate context. Root biomechanical properties, including tensile strength and Young's modulus, were investigated in the laboratory for the same ten species. The results highlighted a large variability in the tensile strength-diameter relations during the early stage establishment of plants, especially in thin roots with diameter ranging from 0.4 to 2.0 mm. The root tensile strength-diameter relationships highlighted three different trends. The common negative power relation between root tensile strength and diameter existed only for two out of the ten tested species (i.e. E. europaeus and U. europaeus). B. sempervirens, I. aquifolium and P. spinosa showed a slight increase in tensile strength with increasing root diameter. C. avellana, C. monogyna and L. vulgare consistently showed an initial increase in root tensile strength with increasing root diameter, reaching peak strength between 1.0 and 2.5 mm diameter. Beyond the peak strength, a reduction in strength was observed with increasing root dimeter. These bimodal trends might be partially explained by the differences in the development stage of root primary and secondary structures. Root moisture content can be one of the factors inducing the observed large variability in root tensile strength. Therefore, the last part of this thesis assessed the effects of root drying on the root biomechanical properties of U. europaeus. Root strength and stiffness showed an abrupt increase when root water content dropped below 0.5 g g-1. The strength increase can be explained by the reduction in root diameter and by changes in root properties induced by the root water potential drop. Moreover, root water loss and root strength gain were diameter-dependent because of the relatively larger evaporative surface per volume of thin roots.
APA, Harvard, Vancouver, ISO, and other styles
43

Subramanian, Suresh. "Effect of fiber/Matrix Interphase on the Long Term Behavior of Cross-Ply Laminates." Diss., This resource online, 1994. http://scholar.lib.vt.edu/theses/available/etd-01252008-165523/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Najem, Johnny Fares. "Study of Take-Up Velocity in Enhancing Tensile Properties of Aligned Electrospun Nylon 6 Fibers." University of Akron / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=akron1258556944.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Lyons, Kevin Mark. "Tensile testing and stabilization/carbonization studies of polyacrylonitrile/carbon nanotube composite fibers." Thesis, Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/45915.

Full text
Abstract:
This study focuses on the processing, structure and properties of polyacrylonitrile (PAN)/ carbon nanotube (CNT) composite carbon fibers. Small diameter PAN/CNT based carbon fibers have been processed using sheath-core and islands-in-a-sea (INS) fiber spinning technology. These methods resulted in carbon fibers with diameters of ~3.5 μm and ~1 μm (for sheath-core and INS respectively). Poly (methyl methacrylate) has been used as the sheath or the sea component, which has been removed prior to carbonization. These fibers have been stabilized and carbonized using a batch process. The effect of stabilization has been characterized by Fourier Transform Infrared Spectroscopy (FTIR), wide-angle X-ray diffraction (WAXD), and differential scanning calorimetry (DSC). A non-isothermal extent of cyclization (Mcyc) from the DSC kinetics study was developed in order to obtain an unbiased method for determining the optimal stabilization condition. The results of Mcyc were found to be in good agreement with the experimental FTIR and WAXD observations. The carbon fiber fracture surfaces have been examined using SEM. Various test parameters that affect the tensile properties of the precursor fiber (both PAN and PAN/CNT), as well as carbon fiber have been studied. In an attempt to validate single filament tests, fiber tow testing has also been done using standard test methods. Batch processed carbon fibers obtained via sheath-core geometry exhibited tensile strengths as high as 6.5 GPa, while fibers processed by islands-in-a-sea geometry exhibited strength values as high as 7.7 GPa.
APA, Harvard, Vancouver, ISO, and other styles
46

Rodrigues, Leonardo Pereira Sarmento. "Efeitos do envelhecimento ambiental acelerado em comp?sitos polim?ricos." Universidade Federal do Rio Grande do Norte, 2007. http://repositorio.ufrn.br:8080/jspui/handle/123456789/15538.

Full text
Abstract:
Made available in DSpace on 2014-12-17T14:57:44Z (GMT). No. of bitstreams: 1 LeonardoPSR.pdf: 5835314 bytes, checksum: 12deb1964ac794f5dcc1b8fb3ba5e4c9 (MD5) Previous issue date: 2007-12-26
The advantages of the use of vegetable fibers on the synthetic fibers, such as glass fibers, in the reinforcements in composites are: low cost, low density, good tenacity, good thermal properties and reduced use of instruments for their treatment or processing. However, problems related to poor performance of some mechanical natural fibers, have hindered its direct use in structural elements. In this sense, the emergence of alternative materials such as hybrids composites, involving natural and synthetic fibers, has been encouraged by seeking to improve the performance of structural composites based only on natural fibers. The differences between the physical, chemical and mechanical properties of these fibers, especially facing the adverse environmental conditions such as the presence of moisture and ultraviolet radiation, is also becoming a concern in the final response of these composites. This piece of research presents a comparative study of the strength and stiffness between two composite, both of ortoftalic polyester matrix, one reinforced with fibers of glass-E (CV) and other hybrid reinforced with natural fibers of curau? and fiberglass-E (CH). All the comparative study is based on the influence of exposure to UV rays and steam heated water in composites, simulating the aging environment. The conditions for the tests are accelerated through the use of the aging chamber. The composites will be evaluated through tests of uniaxial static mechanical traction and bending on three points. The composite of glass fiber and hybrid manufacturing industry are using the rolling manual (hand lay-up) and have been developed in the form of composites. All were designed to meet possible structural applications such as tanks and pipes. The reinforcements used in composites were in the forms of short fiber glass-E quilts (450g/m2 - 5cm) of continuous wires and fuses (whose title was of 0.9 dtex) for the curau? fibers. The results clearly show the influence of aging on the environmental mechanical performance of the composite CV and CH. The issues concerning the final characteristics of the fracture for all types of cargoes studied were also analyzed
As vantagens do uso de fibras vegetais sobre as fibras sint?ticas, como as fibras de vidro, no refor?o de comp?sitos s?o: baixo custo, baixa densidade, boa tenacidade, boas propriedades t?rmicas e uso reduzido de instrumentos para o seu tratamento ou processamento. Por?m, problemas relacionados com o baixo desempenho mec?nico de algumas fibras vegetais, t?m dificultado seu uso direto em elementos estruturais. Neste sentido, o aparecimento de materiais alternativos, como os comp?sitos h?bridos, envolvendo fibras sint?ticas e naturais, vem sendo incentivado buscando-se melhorar o desempenho estrutural dos comp?sitos a base s? de fibras vegetais. As diferen?as entre as propriedades f?sicas, qu?micas e mec?nicas dessas fibras, principalmente frente ?s condi??es ambientais adversas, como a presen?a de umidade e radia??o ultravioleta, vem se tornando uma preocupa??o a mais na resposta final desses comp?sitos. No presente trabalho de investiga??o apresenta-se um estudo comparativo da resist?ncia e rigidez entre dois comp?sitos, ambos de matriz poli?ster ortoft?lica, sendo um refor?ado com fibras de vidro-E (CV) e o outro h?brido refor?ado com fibras vegetais de curau? e fibra de vidro-E (CH). Todo o estudo comparativo teve como base a influ?ncia da exposi??o ? raios UV e vapor d ?gua aquecido nos comp?sitos, simulando o envelhecimento ambiental. As condi??es de ensaios s?o aceleradas atrav?s do uso da c?mara de envelhecimento. Os comp?sitos ser?o avaliados atrav?s de ensaios mec?nicos est?ticos de tra??o uniaxial e flex?o em tr?s pontos. Os comp?sitos de fibra de vidro e h?bridos s?o de fabrica??o industrial utilizando o processo de lamina??o manual (hand lay-up) e foram desenvolvidos na forma de comp?sitos. Todos foram projetados para atender poss?veis aplica??es estruturais, como reservat?rios e tubula??es. Os refor?os utilizados nos comp?sitos foram na formas de mantas de fibras vidro-E curtas (450g/m2 5cm) e mechas de fios cont?nuos (cujo t?tulo foi de 0,9 dtex) para as fibras de curau?. Os resultados obtidos mostram claramente a influ?ncia do envelhecimento ambiental no desempenho mec?nico dos comp?sitos CV e CH. Tamb?m foram analisados aspectos referentes ?s caracter?sticas finais da fratura para todos os tipos de carregamentos estudados
APA, Harvard, Vancouver, ISO, and other styles
47

Borodulina, Svetlana. "Micromechanical Behavior of Fiber Networks." Licentiate thesis, KTH, Hållfasthetslära (Avd.), 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-123223.

Full text
Abstract:
Paper is used in a wide range of applications, each of which has specific requirements on mechanical and surface properties. The role of paper strength on paper performance is still not well understood. This work addresses the mechanical properties of paper by utilizing fiber network simulation and consists of two parts.In the first part, we use a three-dimensional model of a network of fibers to describe the fracture process of paper accounting for nonlinearities at the fiber level (material model and geometry) and bond failures. A stress-strain curve of paper in tensile loading is described with the help of the network of dry fibers; the parameters that dominate the shape of this curve are discussed. The evolution of network damage is simulated, the results of which are compared with digital speckle photography experiments on laboratory sheets. It is concluded that the original strain inhomogeneities due to the structure are transferred to the local bond failure dynamics. The effects of different conventional and unconventional bond parameters are analyzed. It has been shown that the number of bonds in paper is important and that the changes in bond strength influence paper mechanical properties significantly.In the second part, we proposed a constitutive model for a fiber suitable for cyclic loading applications. We based the development of the available literature data and on the detailed finite-element model of pulp fibers. The model provided insights into the effects of various parameters on the mechanical response of the pulp fibers. The study showed that the change in the microfibril orientation upon axial straining is mainly a geometrical effect and is independent of material properties of the fiber as long as the deformations are elastic. Plastic strains accelerate the change in microfibril orientation. The results also showed that the elastic modulus of the fiber has a non-linear dependency on a microfibril angle,with elastic modulus being more sensitive to the change of microfibril angle around small initial values of microfibril angles. These effects were incorporated into a non-linear isotropic hardening plasticity model for beams and tested in a fiber network in cycling loading application model, using the model we estimated the level of strains that fiber segments accumulate at the failure point in a fiber network.The main goal of this work is to create a tool that would act as a bridge between microscopic characterization of fiber and fiber bonds and the mechanical properties that are important in the papermaking industry. The results of this work provide a fundamental insight on mechanics of paper constituents in tensile as well as cyclic loading. This would eventually lead to a rational choice of raw materials in paper manufacturing and thus utilizing the environment in a balanced way.

QC 20130605

APA, Harvard, Vancouver, ISO, and other styles
48

CARDOSO, SERGIO G. "Estudo das propriedades mecanicas e dos mecanismos de fratura de fibras sinteticas do tipo nailon e poliester em tecidos de engenharia." reponame:Repositório Institucional do IPEN, 2009. http://repositorio.ipen.br:8080/xmlui/handle/123456789/9504.

Full text
Abstract:
Made available in DSpace on 2014-10-09T12:27:24Z (GMT). No. of bitstreams: 0
Made available in DSpace on 2014-10-09T14:06:51Z (GMT). No. of bitstreams: 0
Tese (Doutoramento)
IPEN/T
Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
APA, Harvard, Vancouver, ISO, and other styles
49

SILVA, NELSON M. da. "Obtencao e comportamento mecanodinamico de compositos com matriz polimerica reforcada com fibras de carbono." reponame:Repositório Institucional do IPEN, 2001. http://repositorio.ipen.br:8080/xmlui/handle/123456789/10888.

Full text
Abstract:
Made available in DSpace on 2014-10-09T12:45:09Z (GMT). No. of bitstreams: 0
Made available in DSpace on 2014-10-09T13:59:31Z (GMT). No. of bitstreams: 1 07017.pdf: 4719502 bytes, checksum: 28a724854a3b5a54707b7678f9280cb2 (MD5)
Dissertacao (Mestrado)
IPEN/D
Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
APA, Harvard, Vancouver, ISO, and other styles
50

Acera, Fernandez José. "Modification of flax fibres for the development of epoxy-based biocomposites : Role of cell wall components and surface treatments on the microstructure and mechanical properties." Thesis, Montpellier, 2015. http://www.theses.fr/2015MONTS218.

Full text
Abstract:
Les fibres végétales peuvent être considérées comme une alternative intéressante aux fibres de verre pour la fabrication de matériaux composites. En effet, elles présentent des caractéristiques physiques intéressantes, telles que leur faible densité et leurs bonnes propriétés mécaniques spécifiques, qui peuvent rivaliser avec les composites renforcés de fibres de verre. En outre, les fibres végétales sont obtenues à partir de ressources renouvelables, et présentent généralement moins d'impacts environnementaux lors de leurs phases de production, d’utilisation et en fin de vie. Contrairement aux fibres de verre, les fibres végétales, telles que des fibres de lin, présentent des structures hiérarchiques complexes composées essentiellement de cellulose, hémicellulose, lignine, ciments peptiques et extractibles lipophiliques (cires, acides gras, etc.). Cette composition varie selon les espèces, le lieu et les conditions de croissance, la maturité de la plante, etc. De la même façon, la composition biochimique et la structure des produits et des sous-produits issus du lin sont soumis à de grandes variations selon les étapes successives de transformation réalisées à partir des tiges de lin jusqu’aux fils et tissus. Cela influence fortement les propriétés finales des fibres de lin et de leurs biocomposites. La première partie de cette étude se concentre sur la caractérisation de fibres de lin au cours de leurs étapes successives de transformation. Une homogénéisation de la composition chimique est observée dans les étapes finales de transformation, ainsi qu’une augmentation des propriétés en traction longitudinale des mèches de fibres de lin. La deuxième partie traite de l'utilisation de différents traitements de lavage appliqués sur des tissus d’étoupes de lin et leur influence sur l'extraction des composants de la paroi cellulaire des fibres, ainsi que sur la microstructure et les propriétés mécaniques de biocomposites époxy/lin. Il est montré que les composants de la paroi cellulaire jouent un rôle clé dans la dispersion des mèches et des fibres élémentaires de lin et sur le comportement mécanique transversal de leurs biocomposites. Enfin, l'application de différents traitements de fonctionnalisation sur des tissus de fibre de lin est étudiée afin d'améliorer l'adhérence interfaciale entre les fibres et la matrice. L'utilisation de molécules de type organosilanes (aminosilane, époxysilanes) et de molécules biosourcés (acides aminés et polysaccharides) est étudiée. Une augmentation de la rigidité en traction longitudinale et de la rigidité et de la contrainte maximale en traction transverse est observée en raison de l'amélioration de l'adhésion interfaciale par la fonctionnalisation de surface des fibres avec des molécules d'origine biosourcé et non-biosourcé
Natural fibres can be considered as a relevant alternative to glass fibres in the manufacture of composite materials. Indeed, they present interesting physical characteristics, such as low density and good specific mechanical properties, which can compete with glass fibre reinforced composites. Moreover, natural fibres are obtained from renewable resources, and generally present lower environmental impacts during their production and use phases and their end of life. Unlike glass fibres, natural fibres, such as flax fibres, are complex hierarchical materials composed essentially of cellulose, hemicellulose, lignin, peptics cements and lipophilic extractives (waxes, fatty acids, etc.). This composition varies among species, collection site, plant maturity, batches, etc. Besides, the biochemical composition and structure of flax products and sub-products undergo wide variations according to the transformation steps from stems to yarns and fabrics. This influences greatly the final properties of flax fibres and their biocomposites. The first part of this study is focused on the characterization of flax fibres during their successive transformation steps. A homogenization of the chemical composition is observed at the final transformation steps, as well as an increment of the longitudinal tensile properties of flax yarns. The second part deals with the use of different washing treatments applied on flax tow fabrics and their influence on the extraction of flax cell wall components and the resulting microstructure and mechanical properties of epoxy/flax fibres reinforced biocomposites. It is shown that cell wall components play a key role in the flax yarns and elementary fibres dispersion and transverse mechanical behaviour of biocomposites. Finally, the application of different functionalization treatments onto flax fibres fabrics is investigated in order to improve the interfacial adhesion between fibres and matrix. The use of non-bio-based organosilane molecules (aminosilane, epoxysilane) and bio-based molecules (amino-acids and polysaccharides) is studied. Improvedstiffness in longitudinal tension test and stiffness and tensile strength in transverse tension test are observed due to the improvement of interfacial adhesion by surface functionalization of the fibres with both bio-based and non-bio-based molecules
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography