Academic literature on the topic 'PLANT DISEASE DETECTION'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'PLANT DISEASE DETECTION.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "PLANT DISEASE DETECTION"
Manvi, Goutami G., Gayana K N, G. Ramya Sree, K. Divyanjali, and Dr Kirankumari Patil. "Plant Disease Detection." International Journal for Research in Applied Science and Engineering Technology 10, no. 5 (May 31, 2022): 4538–42. http://dx.doi.org/10.22214/ijraset.2022.43221.
Full textShelar, Nishant, Suraj Shinde, Shubham Sawant, Shreyash Dhumal, and Kausar Fakir. "Plant Disease Detection Using Cnn." ITM Web of Conferences 44 (2022): 03049. http://dx.doi.org/10.1051/itmconf/20224403049.
Full textMonigari, Vaishnavi. "Plant Leaf Disease Prediction." International Journal for Research in Applied Science and Engineering Technology 9, no. VII (July 15, 2021): 1295–305. http://dx.doi.org/10.22214/ijraset.2021.36582.
Full textS, Dr Baskaran, Sampath P, Sarathkumar P, Sivashankar S, and Vasanth Kumar K. "Advances in Image Processing for Detection of Plant Disease." SIJ Transactions on Computer Science Engineering & its Applications (CSEA) 05, no. 02 (April 14, 2017): 08–10. http://dx.doi.org/10.9756/sijcsea/v5i2/05010140101.
Full textHalder, Monishanker, Ananya Sarkar, and Habibullah Bahar. "PLANT DISEASE DETECTION BY IMAGE PROCESSING: A LITERATURE REVIEW." SDRP Journal of Food Science & Technology 3, no. 6 (2018): 534–38. http://dx.doi.org/10.25177/jfst.3.6.6.
Full textOo, Yin Min, and Nay Chi Htun. "Plant Leaf Disease Detection and Classification using Image Processing." International Journal of Research and Engineering 5, no. 9 (November 2018): 516–23. http://dx.doi.org/10.21276/ijre.2018.5.9.4.
Full textRani, S. V. Jansi. "Plant Disease Detection using Transfer Learning in Precision Agriculture." AMBIENT SCIENCE 9, no. 3 (November 2022): 34–39. http://dx.doi.org/10.21276/ambi.2022.09.3.ta02.
Full textSave, Apurva, Aksham Gupta, Sarthak Pruthi, Divyanjana Nikam, and Prof Dr Shilpa Paygude. "Plant Disease Detection and Fertilizer Suggestion." International Journal for Research in Applied Science and Engineering Technology 10, no. 2 (February 28, 2022): 351–56. http://dx.doi.org/10.22214/ijraset.2022.40275.
Full textSethi, Mohit. "Plant Disease Detection using Image Segmentation." International Journal of Ayurveda and Herbal Research (IJAHR) 1, no. 1 (2023): 15–18. http://dx.doi.org/10.54060/ijahr.v1i1.3.
Full textVerma, Shivam, Prashant Kumar Choudhary, Suraj Kumar, and Prof Dr Reena Gunjan. "Plant Disease Detection Using Deep Learning." International Journal for Research in Applied Science and Engineering Technology 10, no. 6 (June 30, 2022): 1009–13. http://dx.doi.org/10.22214/ijraset.2022.43700.
Full textDissertations / Theses on the topic "PLANT DISEASE DETECTION"
Heard, Stephanie. "Plant pathogen sensing for early disease control." Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/plant-pathogen-sensing-for-early-disease-control(48949f80-2596-4ce2-912a-6513e72f6a8d).html.
Full textMendel, Julian L. "Laurel Wilt Disease: Early Detection through Canine Olfaction and "Omics" Insights into Disease Progression." FIU Digital Commons, 2017. http://digitalcommons.fiu.edu/etd/3475.
Full textKaneshiro, Wendy S. "Detection and characterization of virulent, hypovirulent, and nonvirulent Clavibacter Michiganensis subsp. Michiganensis." Thesis, University of Hawaii at Manoa, 2003. http://hdl.handle.net/10125/7001.
Full textMewes, Thorsten [Verfasser]. "The impact of the spectral dimension of hyperspectral datasets on plant disease detection / Thorsten Mewes." Bonn : Universitäts- und Landesbibliothek Bonn, 2011. http://d-nb.info/101621667X/34.
Full textMohamed, Maizatul-Suriza. "Phytophthora palmivora, the causal agent of bud rot disease of oil palm (Elaeis guineensis Jacq.) : biology, detection and control." Thesis, University of Nottingham, 2017. http://eprints.nottingham.ac.uk/41678/.
Full textUnver, Turgay. "Detection And Characterization Of Plant Genes Involved In Various Biotic And Abiotic Stress Conditions Using Ddrt-pcr And Isolation Of Interacting Proteins." Phd thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/12609805/index.pdf.
Full textPatil, Neeraj. "Detection of Sclerotinia sclerotiorum using qPCR assay and comparison between three qPCR systems to check sensitivity." Thesis, Högskolan i Skövde, Institutionen för biovetenskap, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-20265.
Full textLardner, Richard. "Early diagnosis and detection of Eutypa dieback of grapevines." Title page, table of contents and abstract only, 2003. http://hdl.handle.net/2440/37969.
Full textThesis (Ph.D.) -- University of Adelaide, School of Agriculture and Wine, 2003.
Ghaffari, Reza. "Non-destructive detection of diseases using plant emitted volatiles." Thesis, University of Warwick, 2013. http://wrap.warwick.ac.uk/61777/.
Full textRetief, Estianne. "Molecular detection of Phaeomoniella chlamydospora in grapevine nurseries." Thesis, Stellenbosch : Stellenbosch University, 2005. http://hdl.handle.net/10019.1/20940.
Full textENGLISH ABSTRACT: Phaeomoniella chlamydospora is the main causal organism of Petri disease, which causes severe decline and dieback of young grapevines (1-7 years old) and also predisposes the wood for infection by other pathogens. Knowledge about the epidemiology and especially inoculum sources of this disease is imperative for subsequent development of management strategies. Through isolation studies it was shown that Pa. chlamydospora is mainly distributed through infected propagation material in South Africa. However, the infection pathways and inoculum sources in grapevine nurseries are still unclear. The only existing method to detect this pathogen in various media is by means of isolation onto artificial growth media. This has proven to be problematic since this fungus is extremely slow growing (up to 4 weeks from isolation to identification) and its cultures are often over-grown by co-isolated fungi and bacteria before it can be identified. The aim of this study was (i) to develop a protocol for the molecular detection of Pa. chlamydospora in grapevine wood, and (ii) to use this protocol along with others, to test different samples (water, soil, rootstock and scion cuttings and callusing medium) collected from nurseries in South Africa at different nursery stages for the presence of Pa. chlamydospora. A protocol was developed and validated for the molecular detection of Pa. chlamydospora in grapevine wood. Firstly, several previously published protocols were used to develop a cost-effective and time-efficient DNA extraction method from rootstock pieces of potted grapevines. Subsequently, PCR amplification using species-specific primers (Pch1 and Pch2) was found to be sensitive enough to detect as little as 1 pg of Pa. chlamydospora genomic DNA from grapevine wood. The protocol was validated using various grapevine material from 3 different rootstock cultivars (101-14 Mgt, Ramsey and Richter 99) collected from each of 3 different nurseries, including grapevines that were subjected to hot water treatment. The basal end of the rootstock was parallel analysed for Pa. chlamydospora using isolations onto artificial medium and molecular detection. The identity of PCR products obtained from a subset of samples, that only tested positive for Pa. chlamydospora based on molecular detection, was confirmed to be Pa. chlamydospora specific through restriction digestion with AatII. Molecular detection was found to be considerably more sensitive than isolations, detecting Pa. chlamydospora from samples with positive as well as negative isolations. On average, the molecular technique detected Pa. chlamydospora in 80.9% of the samples, whereas only 24.1% of the samples tested positive for Pa. chlamydospora by means of isolations. Pa. chlamydospora was not isolated from hot water treated samples. The results confirm the importance of hot water treatment for proactive management of Petri disease in grapevine nurseries. However, Pa. chlamydospora DNA was molecularly detected in hot water treated samples in frequencies similar to that detected in non-hot water treated samples. As expected, the DNA in hot water treated plants was not destroyed and could be detected by the developed molecular detection protocol. This is an important consideration when using molecular detection for disease diagnosis or pathogen detection and shows that these methods should be used in conjunction with other diagnostic tools. Most importantly, the DNA extraction protocol was shown to be 10 to 15 times cheaper than commercial DNA extraction kits. Preliminary studies showed that the aforementioned molecular detection technique was not specific and sensitive enough for detection of Pa. chlamydospora in soil and water (unpublished data). Therefore, a one-tube nested-PCR technique was optimised for detecting Pa. chlamydospora in DNA extracted from soil, water, callusing medium and grapevine wood. Rootstock cane sections and soil samples were taking from the mother blocks from several nurseries. Water samples were collected from hydration and fungicide tanks during pre-storage and grafting. Scion and rootstock cuttings were also collected during grafting and soil were collected from the nursery beds prior to planting. The one-tube nested-PCR was sensitive enough to detect as little as 1 fg of Pa. chlamydospora genomic DNA from water and 10 fg from wood, callusing medium and soil. PCR analyses of the different nursery samples revealed the presence of several putative Pa. chlamydospora specific bands (360 bp). Subsequent sequence analyses and/or restriction enzyme digestions of all 360 bp PCR bands confirmed that all bands were Pa. chlamydospora specific, except for five bands obtained from callusing media and one band from water. Considering only Pa. chlamydospora specific PCR bands, the molecular detection technique revealed the presence of Pa. chlamydospora in 25% of rootstock cane sections and 17% of the soil samples collected from mother blocks, 42% of rootstock cuttings collected during grafting, 16% of scion cuttings, 40% of water samples collected after the 12- hour pre-storage hydration period, 67% of water samples collected during grafting and 8% of the callusing medium samples. These media should therefore be considered as potential inoculum sources or infection points of the pathogen during the nursery stages. The results furthermore confirmed previous findings that Pa. chlamydospora is mainly distributed through infected rootstock canes and cuttings. Infected scion cuttings were also shown to be potential carriers of the pathogen. Management strategies should include wound protection of rootstock mother plants, eradicating this pathogen from rootstock-cuttings (e.g. hot water treatment), biological or chemical amendments in the hydration water and callusing medium and wound protection from soil borne infections.
AFRIKAANSE OPSOMMING: Phaeomoniella chlamydospora is die hoof veroorsakende organisme van Petri se siekte wat lei tot die agteruitgang en terugsterwing van jong wingerdplante (1-7 jaar oud) en veroorsaak verhoogde vatbaarheid van hout vir infeksie deur ander patogene. Kennis oor die epidemiologie en veral die inokulumbronne van die siekte is noodsaaklik vir die daaropvolgende ontwikkeling van beheerstrategieë. Isolasies het getoon dat Pa. chlamydospora meestal versprei deur middel van geïnfekteerde voortplantingsmateriaal in Suid-Afrika. Die infeksieweë en inokulumbronne in wingerdkwekerye is egter steeds onbekend. Die enigste bestaande metode vir die opsporing van die patogeen, in verskeie mediums, is deur middel van isolasie op kunsmatige groeimediums. Dit is egter gevind om problematies te wees aangesien die swam uiters stadig groei (dit vat tot 4 weke vanaf isolasie tot identifikasie) en die kulture is telkens oorgroei deur ander organismes voordat identifikasie kan plaasvind. Die doel van die studie was (i) om ‘n protokol te ontwikkel vir die molekulêre opsporing van Pa. chlamydospora in wingerdhout, en (ii) om die protokol te gebruik, saam met ander, om verskillende monsters (water, grond, onderstok- en bostok-ente en kallusmedium) te toets, wat versamel is van kwekerye in Suid- Afrika, tydens verskillende kwekerystadiums, vir die teenwoordigheid van Pa. chlamydospora. ‘n Protokol is ontwikkel en geverifieer vir die molekulêre opsporing van Pa. chlamydospora in wingerdhout. Eerstens is verskeie protokols wat voorheen gepubliseer is, is as grondslag gebruik vir die ontwikkeling van ‘n ekonomiese en tydbesparende DNA ekstraksie protokol. Hierna is PKR (polimerase ketting reaksie) amplifikasie met spesie-spesifieke inleiers (Pch1 en Pch2) gevind om sensitief genoeg te wees om so min as 1 pg van Pa. chlamydospora genomiese DNA van wingerdhout op te spoor. Die protokol is geverifieer deur verskeie wingerdhoutmateriaal van 3 verskillende onderstokkultivars (101-14 Mgt, Ramsey en Richter 99) te gebruik, wat elk versamel is van 3 verskillende kwekerye. ‘n Aantal van die wingerstokke is ook onderwerp aan warmwaterbehandeling. Die basale kant van die onderstok is parallel geanaliseer vir Pa. chlamydospora deur gebruik te maak van isolasies op kunsmatige groeimedium asook molekulêre opsporing. Die identiteit van ‘n submonster van PKR produkte van verskeie monsters, wat slegs positief getoets het vir Pa. chlamydospora met die molekulêre opsporing, is bevestig om Pa. chlamydospora spesifiek te wees. Dit is gedoen deur middel van restriksie ensiem analise met AatII. Molekulêre opsporing is gevind om aansienlik meer sensitief te wees as isolasies, deurdat Pa. chlamydospora opgespoor is van positiewe sowel as negatiewe isolasies. Die molekulêre tegniek het Pa. chlamydospora in ‘n gemiddeld van 80.9% van die monsters opgespoor, terwyl slegs ‘n gemiddeld van 24.1% van die monsters postief getoets het vir Pa. chlamydospora, deur middel van isolasies. Pa. chlamydospora is nie geïsoleer van die monsters wat warmwaterbehandeling ondergaan het nie. Die resultate bevestig hoe belangrik warmwaterbehandeling is vir die proaktiewe beheer van Petri se siekte in wingerdkwekerye. Pa. chlamydospora DNA is met die molekulêre tegniek opgespoor, in warmwaterbehandelde monsters, in getalle wat ooreenstemmend is met die van niewarmwaterbehandelde monsters. Soos verwag, is DNA in warmwaterbehandelde plante nie vernietig nie en kon dit telke male opgespoor word deur die ontwikkelde molekulêre opsporing protokol. Dit is ‘n belangrike feit wat in ag geneem moet word wanneer molekulêre opsporing gebruik word in siekte diagnose en opsporing van patogene en dit is ‘n aanduiding dat die metodes gebruik moet word in samewerking met ander diagnostiese tegnieke. Die DNA ekstraksie protokol het getoon om tot en met 10 tot 15 kere goedkoper te wees as kommersiële DNA ekstraksie pakkette. Voorlopige studies het getoon dat die bogenoemde molekulêre opsporings tegniek nie spesifiek en sensitief genoeg is vir die opsporing van Pa. chlamydospora uit grond en water nie (ongepubliseerde data). Daarom is ‘n enkel-buis geneste-PKR tegniek geoptimiseer vir die opsporing van Pa. chlamydospora DNA wat geëkstraheer is vanaf grond, water, kallusmedium en wingerdhout. Dele van onderstokke en grond monsters is geneem vanaf moederblokke van verskeie kwekerye. Gedurende die voor-opberging en enting periodes is watermonsters versamel vanaf hidrasie en fungisied tenke. Bostok- en onderstokente is ook versamel gedurende enting en grond is versamel vanaf kwekerybeddens net voor uitplanting. Die enkelbuis geneste-PKR was sensitief genoeg om so min as 1 fg van Pa. chlamydospora genomiese DNA vanaf water en 10 fg vanaf hout, kallusmedium en grond op te spoor. PKR analise van die verskillende kwekerymonsters het getoon dat daar ‘n teenwoordigheid is van verskeie putatiewe Pa. chlamydospora spesifieke bande (360 bp). Daaropvolgende analise deur middel van DNA volgordebepaling en restriksie ensiem analise het bevestig dat al die 360 bp PKR bande wel Pa. chlamydospora spesifiek is, behalwe vir vyf bande wat verkry is vanaf kallusmedium en een band verkry vanaf water. As slegs Pa. chlamydospora spesifieke bande in ag geneem word, is daar met molekulêre opsporing die teenwoordigheid van Pa. chlamydospora gevind in 25% van die onderstokke, 17 % van die grond versamel vanaf moederblokke, 42% van die onderstokente versamel tydens enting, 16% van die bostokente, 40% van die watermonsters versamel voor die 12-uur hidrasie periode, 67% van die watermonsters versamel gedurende enting en 8% van die kallusmediummonsters. Hierdie mediums moet dus beskou word as potensiële inokulumbronne of infeksiepunte van die patogeen gedurende die kwekerystadiums. Die resultate bevestig ook verdere bevindinge wat aandui dat Pa. chlamydospora meestal versprei word deur geïnfekteerde onderstokke en ente. Geïnfekteerde bostokente is ook aangedui om potensiële draers van die patogeen te wees. Beheerstrategieë moet dus wondbeskerming van onderstok moederplante insluit, asook uitwissing van die patogeen vanaf onderstokente (bv. warmwaterbehandeling), toediening van biologiese of chemiese stowwe in die hidrasie water en kallusmedium en wondbeskerming teen grondgedraagde infeksies.
Books on the topic "PLANT DISEASE DETECTION"
Narayanasamy, P. Plant pathogen detection and disease diagnosis. New York: Marcel Dekker, 1997.
Find full textNarayanasamy, P. Plant pathogen detection and disease diagnosis. 2nd ed. New York: M. Dekker, 2001.
Find full textNarayanasamy, P. Microbial Plant Pathogens-Detection and Disease Diagnosis:. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-9735-4.
Full textNarayanasamy, P. Microbial Plant Pathogens-Detection and Disease Diagnosis:. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-9754-5.
Full textNarayanasamy, P. Microbial Plant Pathogens-Detection and Disease Diagnosis:. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-9769-9.
Full textservice), SpringerLink (Online, ed. Microbial Plant Pathogens-Detection and Disease Diagnosis: Fungal Pathogens, Vol.1. Dordrecht: Springer Science+Business Media B.V., 2011.
Find full textNarayanasamy, P. Microbial Plant Pathogens-Detection and Disease Diagnosis: Viral and Viroid Pathogens, Vol.3. Dordrecht: Springer Science+Business Media B.V., 2011.
Find full textNarayanasamy, P. Microbial Plant Pathogens-Detection and Disease Diagnosis: Bacterial and Phytoplasmal Pathogens, Vol.2. Dordrecht: Springer Science+Business Media B.V., 2011.
Find full textP, Martelli G., International Council for the Study of Viruses and Virus Diseases of the Grapevine., and Food and Agriculture Organization of the United Nations., eds. Graft-transmissible diseases of grapevines: Handbook for detection and diagnosis. Rome: Food and Agriculture Organization of the United Nations, 1993.
Find full textM, Duncan J., and Torrance L, eds. Techniques for the rapid detection of plant pathogens. Oxford [England]: Published for the British Society of Plant Pathology by Blackwell Scientific Publications, 1992.
Find full textBook chapters on the topic "PLANT DISEASE DETECTION"
Shakeel, Qaiser, Rabia Tahir Bajwa, Ifrah Rashid, Hafiz Muhammad Usman Aslam, Yasir Iftikhar, Mustansar Mubeen, Guoqing Li, and Mingde Wu. "Immunotechnology for Plant Disease Detection." In Trends in Plant Disease Assessment, 145–65. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-5896-0_9.
Full textShah, Deshna, Nidhi Vora, Chansi Vora, and Bhakti Sonawane. "Image-Based Plant Disease Detection." In Data Intelligence and Cognitive Informatics, 651–66. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-6460-1_50.
Full textYahaya, S. M. "Plant Disease Detection and Management: An Overview." In Plant Pathogens, 157–77. Includes bibliographical references and index.: Apple Academic Press, 2020. http://dx.doi.org/10.1201/9780429057212-8.
Full textFletcher, Jacqueline, Francisco M. Ochoa Corona, and Mark Payton. "Plant Disease Diagnostics for Forensic Applications." In Detection and Diagnostics of Plant Pathogens, 103–15. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-9020-8_7.
Full textChakrabarti, Dilip Kumar, and Prabhat Mittal. "Disease Detection: Imaging Technology and Remote Sensing." In Plant Disease Forecasting Systems, 105–15. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1210-0_11.
Full textBhatia, Gresha S., Pankaj Ahuja, Devendra Chaudhari, Sanket Paratkar, and Akshaya Patil. "Plant Disease Detection Using Deep Learning." In Second International Conference on Computer Networks and Communication Technologies, 408–15. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37051-0_47.
Full textChhillar, Ankit, and Sanjeev Thakur. "Plant Disease Detection Using Image Classification." In Proceedings of International Conference on Big Data, Machine Learning and their Applications, 267–81. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-8377-3_23.
Full textTrisha, FarjanaYeasmin, and Mahmudul Hasan. "Rice Plant Disease Detection Using IoT." In Cybersecurity, 119–30. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003145042-8.
Full textGhesquiere, Matisse, and Mkhuseli Ngxande. "Deep Learning for Plant Disease Detection." In Advances in Computer Vision and Computational Biology, 69–84. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-71051-4_5.
Full textManjula, K., S. Spoorthi, R. Yashaswini, and Divyashree Sharma. "Plant Disease Detection Using Deep Learning." In Lecture Notes in Electrical Engineering, 1389–96. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-3690-5_133.
Full textConference papers on the topic "PLANT DISEASE DETECTION"
Alagesan, Mohanraj, Thangaraj Kesavan, Harshavardhan Murugesan, Mohanraj Thangavel, and Gowthaman Madesh. "Plant disease detection." In 24TH TOPICAL CONFERENCE ON RADIO-FREQUENCY POWER IN PLASMAS. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0164983.
Full textAmsavalli, Yogeswaran, P. S. Mayurappriyan, and M. Saravana Mohan. "Plant Disease Detection Robot." In 2021 International Conference on Advancements in Electrical, Electronics, Communication, Computing and Automation (ICAECA). IEEE, 2021. http://dx.doi.org/10.1109/icaeca52838.2021.9675776.
Full textShrestha, Garima, Deepsikha, Majolica Das, and Naiwrita Dey. "Plant Disease Detection Using CNN." In 2020 IEEE Applied Signal Processing Conference (ASPCON). IEEE, 2020. http://dx.doi.org/10.1109/aspcon49795.2020.9276722.
Full textArchana, U., Amanulla Khan, Appani Sudarshanam, C. Sathya, Ashok Kumar Koshariya, and R. Krishnamoorthy. "Plant Disease Detection using ResNet." In 2023 International Conference on Inventive Computation Technologies (ICICT). IEEE, 2023. http://dx.doi.org/10.1109/icict57646.2023.10133938.
Full textBeri, Dilip Chakravarthy, and B. V. A. N. S. S. Prabhakar Rao. "Intelligent plant disease detection system." In PROCEEDINGS OF THE TIM20-21 PHYSICS CONFERENCE. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0150097.
Full textP., Deepthi, Dhinakaran M., and Yoganapriya R. "Fruit Disease Detection Using Image Processing." In The International Conference on scientific innovations in Science, Technology, and Management. International Journal of Advanced Trends in Engineering and Management, 2023. http://dx.doi.org/10.59544/bfbm3617/ngcesi23p87.
Full textRamesh, Shima, Ramachandra Hebbar, Niveditha M., Pooja R., Prasad Bhat N., Shashank N., and Vinod P.V. "Plant Disease Detection Using Machine Learning." In 2018 International Conference on Design Innovations for 3Cs Compute Communicate Control (ICDI3C). IEEE, 2018. http://dx.doi.org/10.1109/icdi3c.2018.00017.
Full textSandhu, Gurleen Kaur, and Rajbir Kaur. "Plant Disease Detection Techniques: A Review." In 2019 International Conference on Automation, Computational and Technology Management (ICACTM). IEEE, 2019. http://dx.doi.org/10.1109/icactm.2019.8776827.
Full textKhirade, Sachin D., and A. B. Patil. "Plant Disease Detection Using Image Processing." In 2015 International Conference on Computing Communication Control and automation(ICCUBEA). IEEE, 2015. http://dx.doi.org/10.1109/iccubea.2015.153.
Full textChapaneri, Radhika, Maithili Desai, Anmolika Goyal, Shreya Ghose, and Sheona Das. "Plant Disease Detection: A Comprehensive Survey." In 2020 3rd International Conference on Communication System, Computing and IT Applications (CSCITA). IEEE, 2020. http://dx.doi.org/10.1109/cscita47329.2020.9137779.
Full textReports on the topic "PLANT DISEASE DETECTION"
Whitcomb, R. F., Shlomo Rottem, T. A. Chen, and C. J. Chang. Mollicutes that Cause Plant Disease: Detection, Cultivation, and Physiology. United States Department of Agriculture, September 1986. http://dx.doi.org/10.32747/1986.7566864.bard.
Full textSessa, Guido, and Gregory B. Martin. molecular link from PAMP perception to a MAPK cascade associated with tomato disease resistance. United States Department of Agriculture, January 2012. http://dx.doi.org/10.32747/2012.7597918.bard.
Full textJordan, Ramon L., Abed Gera, Hei-Ti Hsu, Andre Franck, and Gad Loebenstein. Detection and Diagnosis of Virus Diseases of Pelargonium. United States Department of Agriculture, July 1994. http://dx.doi.org/10.32747/1994.7568793.bard.
Full textDavis, Robert E., Edna Tanne, James P. Prince, and Meir Klein. Yellow Disease of Grapevines: Impact, Pathogen Molecular Detection and Identification, Epidemiology, and Potential for Control. United States Department of Agriculture, September 1994. http://dx.doi.org/10.32747/1994.7568792.bard.
Full textSessa, Guido, and Gregory Martin. role of FLS3 and BSK830 in pattern-triggered immunity in tomato. United States Department of Agriculture, January 2016. http://dx.doi.org/10.32747/2016.7604270.bard.
Full textBoyle, M., and Elizabeth Rico. Terrestrial vegetation monitoring at Fort Matanzas National Monument: 2019 data summary. National Park Service, May 2022. http://dx.doi.org/10.36967/nrds-2293409.
Full textGafny, Ron, A. L. N. Rao, and Edna Tanne. Etiology of the Rugose Wood Disease of Grapevine and Molecular Study of the Associated Trichoviruses. United States Department of Agriculture, September 2000. http://dx.doi.org/10.32747/2000.7575269.bard.
Full textChen, Yona, Jeffrey Buyer, and Yitzhak Hadar. Microbial Activity in the Rhizosphere in Relation to the Iron Nutrition of Plants. United States Department of Agriculture, October 1993. http://dx.doi.org/10.32747/1993.7613020.bard.
Full textSela, Hanan, Eduard Akhunov, and Brian J. Steffenson. Population genomics, linkage disequilibrium and association mapping of stripe rust resistance genes in wild emmer wheat, Triticum turgidum ssp. dicoccoides. United States Department of Agriculture, January 2014. http://dx.doi.org/10.32747/2014.7598170.bard.
Full textCohen, Yuval, Christopher A. Cullis, and Uri Lavi. Molecular Analyses of Soma-clonal Variation in Date Palm and Banana for Early Identification and Control of Off-types Generation. United States Department of Agriculture, October 2010. http://dx.doi.org/10.32747/2010.7592124.bard.
Full text