To see the other types of publications on this topic, follow the link: Plant autophagy.

Dissertations / Theses on the topic 'Plant autophagy'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 16 dissertations / theses for your research on the topic 'Plant autophagy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Ballhaus, Florentine. "Investigating plant autophagy with new chemical modulators." Thesis, Uppsala universitet, Institutionen för biologisk grundutbildning, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-428075.

Full text
Abstract:
Autophagy is a major catabolic pathway in which cell components get sequestered in a double membrane vesicle, transported to the vacuole, degraded by vacuolar hydrolases and recycled.  Through this process, cells ensure cell homeostasis and remobilise nutrients. The autophagic flux can be enhanced as an adaptive stress response, improving plants resistance against stress, reducing aging and ultimately increasing yield. However, autophagy regulation in plants remains poorly understood.  Novel plant-specific modulators can be used in a chemical genetic approach for identification of proteins involved in the autophagy pathway. Furthermore, autophagy enhancers can find their application in agriculture for improved plant fitness. Known autophagy modulators have severe off-target effects, affecting plant growth and development. A recent screening identified two potential autophagy modulators. We developed a novel method for photoaffinity labelling and pulldown assay in Arabidopsis thaliana to identify potential interactors of the modulators. The identification of autophagy-related proteins will help to further elucidate the autophagic pathway in plants. The effect of the new autophagy enhancers on plant growth and development was analysed by automated growth assays. In comparison with a currently available autophagy enhancer, treated plants showed higher viability, indicating possible further applications for the new autophagy modulators in planta.
APA, Harvard, Vancouver, ISO, and other styles
2

Gomez, Rodrigo Enrique. "Unravelling the contribution of lipids in plant autophagy : Identification and functional characterization of lipids implicated in the autophagic process in Arabidopsis." Thesis, Bordeaux, 2021. http://www.theses.fr/2021BORD0103.

Full text
Abstract:
Les plantes, étant des organismes sessiles, sont fréquemment confrontées à une grande variété de stress environnementaux. Ces conditions peuvent conduire à l'accumulation d'agrégats de protéines ou au disfonctionnement de multiples organites intracellulaires. Pour faire face à ces conditions, les plantes ont mis au point des mécanismes d'adaptation sophistiqués qui permettent le recyclage des composants intracellulaires. Ces mécanismes sont essentiels pour les remodelages métaboliques nécessaires à un recyclage efficace des nutriments ainsi qu'à l'élimination des composants nocifs pour la cellule comme des organites endommagés. L'un de ces mécanismes est l'autophagie, une voie de dégradation intracellulaire qui utilise des vésicules à double membrane qui encapsulent des portions du cytoplasme et le délivrent à la vacuole où elles sont dégradées. L'autophagie repose sur la formation de ces vésicules spécialisées, appelées autophagosomes (AP). Les AP sont des vésicules uniques dans le système endomembranaire, d'abord parce qu'elles sont constituées d'une double couche lipidique, et ensuite parce qu'elles ne bourgeonnent pas à partir d'un compartiment déjà existant. La biogenèse des AP est un processus en plusieurs étapes impliquant une machinerie centrale (protéines ATG) qui intervient dans la formation de novo d'une membrane initiale ; puis, par l'addition de lipides, cette membrane s’agrandit et devient une structure en forme de coupe avec des bords fortement incurvés lui permettant d’engloutir la cargaison autophagique. Une fois la cargaison engloutie, ses bords fusionnent afin de fermer la structure, qui circule ensuite vers la vacuole, où sa membrane externe fusionne avec la membrane de la vacuole ce qui libère la membrane interne et la cargaison à l'intérieur de la vacuole pour sa dégradation. Ainsi, la biogenèse des AP repose sur de nombreux événements de remodelage membranaire, d'abord pour initier la membrane initiale, puis pour maintenir sa forme très incurvée tout en assurant son expansion, et enfin pour sceller les structures matures et promouvoir sa fusion ultérieure à la vacuole. Dans les membranes biologiques, les lipides, grâce à leurs propriétés physico-chimiques, définissent des caractéristiques importantes telles que la fluidité, la courbure ainsi que les champs électrostatiques des membranes. Par conséquent, le rôle crucial des lipides dans l'autophagie a émergé ces dernières années. Chez les plantes, on ne connait encore que très peu de choses sur la composition lipidique des membranes autophagiques et les fonctions des lipides dans la formation des AP restent largement méconnu. Mon travail de thèse a consisté à identifier des acteurs lipidiques et protéiques impliquées dans l'autophagie chez les plantes dans le but de caractériser leur fonction dans le processus. En effectuant un criblage d'inhibiteurs enzymatiques nous avons analysé l'impact de l'inhibition de la synthèse de différentes espèces de lipides sur l'autophagie. En utilisant cette approche, nous avons identifié différents candidats lipidiques importants pour l'autophagie des plantes. Notamment, nous avons identifié le phosphatydilinositol-4-phosphate (PI4P) comme étant critique pour la formation des APs. En l'absence dePI4P, la formation des AP est stoppée à un stade très précoce, ce qui entraîne un blocage total dans le processus. De plus, nous avons obtenu des informations précieuses pour mieux comprendre la formation des APs chez les plantes. En particulier, nos résultats suggèrent que la membrane plasmique (PM) semble jouer un rôle important dans la formation de ces structures. Dans leur ensemble, nos résultats ont confirmé notre hypothèse initiale: les lipides ne sont pas seulement des éléments inertes qui constituent les membranes autophagiques ;ils semblent plutôt jouer des rôles distincts et avoir des fonctions spécifiques dans le processus
Plants, being sessile organisms, are frequently confronted to a plethora of environmental stresses and harsh conditions. Enduring these conditions can lead to the accumulation of protein aggregates or organelles that become dysfunctional. To withstand these conditions, plants have evolved sophisticated adaptation mechanisms for the recycling of intracellular components. These mechanisms are essential for the metabolic transitions required for efficient nutrient use, as well as proper disposal of protein aggregates or damaged organelles. One of these mechanisms is autophagy, an intracellular degradation pathway that employs specialized double membrane vesicles that encapsulate cytosolic material and delivers it to the vacuole for degradation. Autophagy relies on the formation of these specialized vesicles, called autophagosomes (APs). APs are unique vesicles in the endomembrane system, first because they are made of a double lipid bilayer, and second because they do not but from a pre-existing compartment. AP biogenesis is a multistep process implicating a core machinery (ATG proteins) that mediate the de novo formation of an initial membrane; then, by the addition of lipids, this membrane expands into a cup-shaped structure with highly curved edges to engulf autophagic cargo. Upon completion, the rims of the structure seal and form a mature AP that traffics to the vacuole, where its outer membrane fuses with the tonoplast releasingthe inner membrane and cargo inside the vacuole. Thus, AP biogenesis relies on numerous membrane remodeling events, first to initiate the initial membrane, then to maintain the highly curved shape of the structure while ensuring its expansion, and finally to seal the mature structures and its subsequent fusion to the vacuole. Lipids, thanks to their physicochemical properties define important membrane features such as its, fluidity, curvature and electrostatics. Hence, evidence showing the crucial role of lipids in autophagy has emerged in the recent years. In plants however, little is known about the lipid composition of autophagic membranes and thus, about the functional contribution of lipids in plant autophagy. My PhD thesis consisted on identifying crucial lipids for plant autophagy with an aim to characterize their function in the process. By performing a lipid-related enzymes inhibitor screen in which we assayed the impact of inhibiting the synthesis of specific lipids on autophagy, we identified different lipid candidates important for plant autophagy. Notably, we identified the phosphatydil-inositol-4-phosphate (PI4P) as being critical for the formation of APs. In the absence of PI4P, AP formation is stalled at a very early stage resulting in a block in the process. Furthermore, we have obtained valuable insights to better understand the AP formation. In plants, particularly, our results suggest that the plasma membrane (PM) plays important roles in the formation of these structures. Taken together, our results confirmed that lipids are more than just building blocks constituting the autophagic membranes; rather, they seem to play distinct and specific roles in the pathway. Finally, this thesis highlights how lipids are key actors for the autophagic process and thus for plants adaptations to adverse and stressful environmental conditions
APA, Harvard, Vancouver, ISO, and other styles
3

Testi, Serena. "L’effecteur Avh195 de Phytophthora parasitica : antagoniste de l’autophagie chez l’hôte et promoteur du processus infectieux." Thesis, Université Côte d'Azur (ComUE), 2018. http://www.theses.fr/2018AZUR4087/document.

Full text
Abstract:
L’agent pathogène Phytophthora parasitica est un oomycète qui a des effets dévastateurs sur l’agriculture et les écosystèmes naturels. En tant qu'organisme hémi-biotrophe, il infecte les racines des plantes en établissant d'abord un contact intime avec les cellules hôtes (biotrophie) avant de les tuer (nécrotrophie) et de terminer son cycle d'infection. Pour contrôler ces processus, les oomycètes sécrètent des protéines effectrices, qui sont internalisées dans les cellules végétales par un motif de translocation (appelé RxLR-EER) pour manipuler la physiologie et les réponses immunitaires de l'hôte. Les études des échanges moléculaires entre Phytophthora parasitica et la plante qui ont été menées par le laboratoire d'accueil ont permis d'identifier un effecteur RxLR, dénommé Avh195. La séquence en acides aminés de l'effecteur est caractérisée par la présence de cinq motifs AIM (« ATG8 Interacting Motive ») qui indiquent une interaction potentielle avec la protéine centrale de l’autophagie, ATG8. Avh195 co-localise avec la fraction membranaire de l'ATG8, et un système double-hybride en levure permettant la détermination d’interactions entre protéines membranaires, a confirmé une interaction non sélective entre Avh195 et plusieurs isoformes d'ATG8. La caractérisation de la perturbation de l'autophagie dépendante de Avh195 a été réalisée dans l'algue unicellulaire Chlamydomonas reinhardtii après génération de lignées transgéniques surexprimant l'effecteur. Les analyses par cytométrie de flux ont révélé que Avh195 ne modifie pas la physiologie et la « fitness » de l'algue dans des conditions de croissance normales et pendant l'autophagie induite par la rapamycine. La microscopie électronique à transmission a révélé que l'effecteur provoque dans les cellules de l’algue un retard dans le flux autophagique, se traduisant par une réduction de la coalescence et de la clairance des vacuoles et une forte accumulation d'amidon dans les chloroplastes. Cependant, ce phénotype est transitoire et seulement légèrement lié aux modifications de la régulation transcriptionnelle de la machinerie autophagique. L'analyse de la fonction effectrice chez les plantes a montré que Avh195 retarde le développement de la mort cellulaire hypersensible, déclenchée par un éliciteur d’oomycète. Cette activité dépend de trois AIM sur cinq, ce qui renforce encore l’importance de l’interaction Avh195-ATG8 pour la fonction de l’effecteur. La surexpression stable d'Avh195 chez A. thaliana a permis de déterminer que l'effecteur n'altère pas les réponses immunitaires des plantes, mais favorise globalement le développement de l'agent pathogène, accélérant le passage de la biotrophie à la nécrotrophie au cours de l'infection. À notre connaissance, le travail présenté dans cette thèse représente la première preuve qu'un effecteur d’oomycète possède une activité transitoire, ciblant de manière non sélective la protéine ATG8 dans différents organismes photosynthétiques pour ralentir le flux autophagique, favorisant ainsi le mode de vie hémi-biotrophe d'un agent pathogène
The plant pathogen Phytophthora parasitica is an oomycete with devastating impact on both agriculture and natural ecosystems. As a hemi-biotrophic organism it infects the roots of plants first establishing an intimate contact with host cells (biotrophy) before killing them (necrotrophy) and completing its infection cycle. To control these processes, oomycetes secrete effector proteins, which are internalized in plant cells by a translocation motif (called RxLR-EER) to manipulate the physiology and the immune responses of the host. Studies of the molecular exchanges between Phytophthora parasitica and the plant that were conducted by the hosting laboratory led to the identification of an RxLR effector, designed to as Avh195. The amino acid sequence of the effector is characterized by the presence of five AIMs (ATG8 interacting motifs), that indicate a potential interaction with the autophagic core protein, ATG8. Avh195 colocalizes with the membrane-bound fraction of ATG8, and a yeast two-hybrid system, which allows to determine interactions between membrane proteins, confirmed a non-selective interaction between Avh195 and several ATG8 isoforms. The characterization of Avh195-dependent autophagy perturbation was carried out in the unicellular alga Chlamydomonas reinhardtii after generation of transgenic lines overexpressing the effector. Analyses by flow cytometry revealed that Avh195 does not modify the physiology and fitness of the alga, both under normal growth conditions and during rapamycin-induced autophagy. Transmission electron microscopy of cells revealed that the effector provokes a delay in the autophagic flux, manifested as a reduced coalescence and clearance of autophagic vacuoles and a strong accumulation of starch in chloroplasts. However, this phenotype was transient and only slightly related to modifications in the transcriptional regulation of the autophagic machinery. The analysis of effector function in planta showed that Avh195 delays the development of hypersensitive cell death, which is triggered by an oomycete elicitor. This cell death-delaying activity is dependent on three out of five AIMs, further consolidating the importance of the Avh195-ATG8 interaction for the function of the effector. The stable overexpression of Avh195 in A. thaliana allowed to determine that the effector does not impair plant defense responses, but overall promotes the development of the pathogen, accelerating the switch from biotrophy to necrotrophy during infection. To our knowledge, the work presented in this thesis represents the first evidence for an oomycete effector to possess a transitory activity, which targets in a non-selective manner the protein ATG8 in different organisms from the green lineage to slow down autophagic flux, thus promoting the hemibiotrophic life style of a pathogen
APA, Harvard, Vancouver, ISO, and other styles
4

Fancy, Nurun Nahar. "Role of S-nitrosylation in plant salt stress." Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/29509.

Full text
Abstract:
Salinity stress is one of the main challenges for crop growth and production. The estimated loss of crop yield due to salinity stress is up to 20% worldwide each year. Plants have evolved an array of mechanisms to defend themselves against salinity stress. A key aspect of plant responses to salinity stress is the engagement of a nitrosative burst that results in nitric oxide (NO) accumulation. A major mechanism for the transfer of NO bioactivity is S-nitrosylation which is a modification of the reactive thiol group of a rare but highly active cysteine residue within a protein through the addition of a NO moiety to generate an S-nitrosothiol (SNO). S-nitrosylation can result in altered structure, function and cellular localisation of a protein. Our findings suggest that S-nitrosylation is a key regulator of plant responses to salinity stress. Glutathione (GSH), a tripeptide cellular antioxidant, is S-nitrosylated to form S-nitrosoglutathione (GSNO), which functions as a stable store of NO bioactivity. Cellular GSNO levels are directly controlled by S-nitrosoglutathione reductase (GSNOR), thereby, regulating global SNO levels indirectly. The absence of this gene results in high levels of SNOs. In Arabidopsis, previous research has shown that loss-of-function mutation in GSNOR1 results in pathogen susceptibility (Feechan et al., 2005). In our study, we investigated salt tolerance in gsnor1-3 plants. We have found that this line is salt sensitive at various stages of their life cycle. Interestingly, classical salt stress signalling pathways are fully functional in gsnor1-3 plants. We have also explored non-classical pathways involved in salt tolerance. Autophagy is a cellular catabolic process which is involved in the recycling and degradation of unwanted cellular materials under stressed and non-stressed conditions. We have demonstrated that gsnor1-3 plants have impaired autophagy during salt stress. An accumulation of the autophagy marker NBR1 supports the lack of autophagosome formation. We hypothesised that S-nitrosylation might regulate upstream nodes of autophagosome formation. Our study demonstrated that at least one key player involved in autophagosome biogenesis is regulated by S-nitrosylation. ATG7, an E1-like activating enzyme, which regulates ATG8-PE and ATG12-ATG5 ubiquitin like conjugation systems, is S-nitrosylated in vitro and in vivo. S-nitrosylation of ATG7 impairs its function in vitro. We showed that S-nitrosylation of ATG7 is mediated by GSNO. Interestingly, ATG7 is also transnitrosylated by thioredoxin (TRX), another important redox regulatory enzyme. We suggest that similar mechanisms might exist in planta. Finally, work in this study revealed that S-nitrosylation of Cys558 and Cys637 cause the inhibition of ATG7 function. In aggregate, this study revealed a novel mechanism for the redox-based regulation of autophagy during salt stress.
APA, Harvard, Vancouver, ISO, and other styles
5

Sumita, Takuya. "Studies on intracellular protein degradation pathways in plant fungal pathogens." Kyoto University, 2019. http://hdl.handle.net/2433/242706.

Full text
Abstract:
Kyoto University (京都大学)
0048
新制・課程博士
博士(農学)
甲第21829号
農博第2342号
新制||農||1068(附属図書館)
学位論文||H31||N5201(農学部図書室)
京都大学大学院農学研究科地域環境科学専攻
(主査)教授 田中 千尋, 教授 本田 与一, 准教授 刑部 正博
学位規則第4条第1項該当
APA, Harvard, Vancouver, ISO, and other styles
6

Puleston, Daniel. "The role of autophagy in CD8plus T cell immunity." Thesis, University of Oxford, 2015. http://ora.ox.ac.uk/objects/uuid:6cc5b853-4899-4de2-8924-71f7ee0659a1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhang, Zhu. "Exploration of the anticancer mechanisms of novel chemotherapeutic adjuvants involving autophagy and immune system reprogramming in the treatment of pancreatic cancer." HKBU Institutional Repository, 2020. https://repository.hkbu.edu.hk/etd_oa/755.

Full text
Abstract:
Pancreatic cancer is known to be one of the most life-threatening cancers characterized by aggressive local invasion and distant metastasis. The high basal level of autophagy in pancreatic cancer may be responsible for the low chemotherapeutic drug response rate and poor disease prognosis. However, the clinical application of autophagy inhibitors was unsatisfactory due to their toxicity and minimal single-agent anticancer efficacy. Hence, oncologists begin to consider the tumor microenvironment when exploring new drug targets. In the present study, the anti-tumorigenic mechanisms of two major phytochemicals derived from Chinese medicinal herbs had been investigated against pancreatic cancer development. Calycosin is a bioactive isoflavonoid of the medicinal plant Astragalus membranaceus. Our results have shown that calycosin inhibited the growth of various pancreatic cancer cells both in vitro and in vivo by inducing cell cycle arrest and apoptosis. Alternatively, calycosin also facilitated MIA PaCa-2 pancreatic cancer cell migration in vitro and increased the expression of epithelial-mesenchymal transition (EMT) biomarkers in vivo. Further mechanistic study suggests that induction of the Raf/MEK/ERK pathway and facilitated polarization of M2 tumor-associated macrophage in the tumor microenvironment both contribute to the pro-metastatic potential of calycosin in pancreatic cancer. These events appear to be associated with calycosin-evoked activation of TGF-β signaling, which may explain the paradoxical drug actions due to the dual roles of TGF-β as both tumor suppressor and tumor promoter in pancreatic cancer development under different conditions. Isoliquiritigenin (ISL) is a chalcone obtained from the medicinal plant Glycyrrhiza glabra, which can be a precursor for chemical conversion to form calycosin. Results have shown that ISL decreased the growth and EMT of pancreatic cancer cells in vitro, probably due to modulation of autophagy. ISL-induced inhibition of autophagy subsequently promoted reactive oxygen species (ROS) production, leading to induction of apoptosis in pancreatic cancer cells. Such phenomenon also contributed to the synergistic growth-inhibitory effect in combined treatment with the orthodox chemotherapeutic drug 5-fluorouracil. In addition, ISL-induced tumor growth inhibition in vivo was further demonstrated in a tumor xenograft mice model of pancreatic cancer. ISL promoted apoptosis and inhibited autophagy in the tumor tissues. Study on immune cells indicates that ISL could reduce the number of myeloid-derived suppressor cells (MDSCs) both in tumor tissue and in peripheral blood, while CD4+ and CD8+ T cells were increased correspondingly. In vitro test has revealed that ISL inhibited the polarization of M2 macrophage along with its inhibition of autophagy in M2 macrophage. These immunomodulating effects of ISL had reversed the pro-invasive role of M2 macrophage in pancreatic cancer.In conclusion, calycosin acts as a "double-edged sword" on the growth and metastasis of pancreatic cancer, which may be related to the dual roles of TGF-β and its influence on the tumor microenvironment. Alternatively, ISL consistently inhibited the growth and metastatic drive of pancreatic cancer through regulation of autophagy and reprogramming of the immune system. The differential modes of action of these compounds have provided new insights in the development of effective pancreatic cancer treatment adjuvants.
APA, Harvard, Vancouver, ISO, and other styles
8

Milani, Manuela. "Cell stress response and hypoxia in breast cancer." Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:74d3bf91-9888-4e9e-b5e1-7d5d2d476174.

Full text
Abstract:
During severe hypoxia (<0.01% oxygen) the protein folding machinery becomes dysfunctional, resulting in the accumulation of unfolded proteins with consequent endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR) and autophagy, a process involved in the physiological turnover of cytoplasmic components. The link between the UPR and autophagy is not clearly defined. The aim of this thesis is to investigate the role of the induction of UPR under severe hypoxia in tumour survival and resistance to therapy. The results of this research suggest that the activating transcription factor 4 (ATF4), a component of the PKR-like ER kinase (PERK) pathway, fundamental in the UPR, is required for the ER-stress induced upregulation of autophagy. Mechanisms other than hypoxia for UPR induction were investigated, using the proteasome inhibitor bortezomib (BZ). BZ treatment increased ATF4 protein levels in MCF7 cells, even transfected with short-interference RNA (siRNA) against the classical UPR activator PERK, suggesting that the proteasomal stabilization is likely the main mechanism for ATF4 protein accumulation. The induction of autophagy by BZ is dependent upon the upregulation of the microtubule-associated protein 1 light chain 3B (LC3B), an autophagy marker, by ATF4 and acts as a survival mechanism. Hypoxia, UPR and autophagy markers (such as Pimonidazole, carbonic anhydrases IX (CAIX), C/EBP homologous protein (CHOP) and LC3B) were evaluated by immunohistochemical approach in spheroids, xenografts models and breast cancer samples. CHOP immunohistochemical staining was performed in breast cancer sections from a series of patients. CHOP was expressed in cells surrounding necrotic areas. No correlation were found with clinical outcome and further studies are needed.
APA, Harvard, Vancouver, ISO, and other styles
9

Escamez, Sacha. "Xylem cells cooperate in the control of lignification and cell death during plant vascular development." Doctoral thesis, Umeå universitet, Institutionen för fysiologisk botanik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-115787.

Full text
Abstract:
The evolutionary success of land plants was fostered by the acquisition of the xylem vascular tissue which conducts water and minerals upwards from the roots. The xylem tissue of flowering plants is composed of three main types of cells: the sap-conducting tracheary elements (TE), the fibres which provide mechanical support and the parenchyma cells which provide metabolic support to the tissue. Both the TEs and the fibres deposit thick polysaccharidic secondary cell walls (SCWs), reinforced by a rigid phenolic polymer called lignin. The cell walls of TEs form efficient water conducting hollow tubes after the TEs have undergone programmed cell death (PCD) and complete protoplast degradation as a part of their differentiation. The work presented in this thesis studied the regulation of TE PCD by characterizing the function of the candidate PCD regulator METACASPASE 9 (MC9) in Arabidopsis thaliana xylogenic cell suspensions. These cell suspensions can be externally induced to differentiate into a mix of TEs and parenchymatic non-TE cells, thus representing an ideal system to study the cellular processes of TE PCD. In this system, TEs with reduced expression of MC9 were shown to have increased levels of autophagy and to trigger the ectopic death of the non-TE cells. The viability of the non-TE cells could be restored by down-regulating autophagy specifically in the TEs with reduced MC9 expression. Therefore, this work showed that MC9 must tightly regulate the level of autophagy during TE PCD in order to prevent the TEs from becoming harmful to the non-TEs. Hence, this work demonstrated the existence of a cellular cooperation between the TEs and the surrounding parenchymatic cells during TE PCD. The potential cooperation between the TEs and the neighbouring parenchyma during the biosynthesis of lignin was also investigated. The cupin domain containing protein PIRIN2 was found to regulate TE lignification in a non-cell autonomous manner in Arabidopsis thaliana. More precisely, PIRIN2 was shown to function as an antagonist of positive transcriptional regulators of lignin biosynthetic genes in xylem parenchyma cells. Part of the transcriptional regulation by PIRIN2 involves chromatin modifications, which represent a new type of regulation of lignin biosynthesis. Because xylem constitutes the wood in tree species, this newly discovered regulation of non-cell autonomous lignification represents a potential target to modify lignin biosynthesis in order to overcome the recalcitrance of the woody biomass for the production of biofuels.
APA, Harvard, Vancouver, ISO, and other styles
10

Zayer, Adam. "Cellular models for characterisation of MINA53, a 2-oxoglutarate-dependent dioxygenase." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:ebd1dfcd-0c8e-4c87-9644-8ddfd9208456.

Full text
Abstract:
2-0xoglutarate/Fe(II)-dependent dioxygenases (ZOG Oxygenases) are a relatively poorly characterised enzyme family that hydroxylate biological macromolecules to regulate a variety of essential cellular processes in mammals, including; chromatin remodeling, extra-cellular matrix formation and oxygen sensing. The work in this th esis focuses on a ZOG Oxygenase termed Myc-Induced Nuclear Antigen (MINAS3). This enzyme has been implicated in ribosome biogenesis and cell proliferation, and observed overexpressed in several tumour types, yet the identity afits substrate(s) and their role in cancer is unknown. The aims of the resea rch that has resulted in this thesis were to; (i) develop a cell model of MINAS3 enzyme activity, (ii) apply this model to study the role of MINAS3 activity in cell transformation and cancer, and (iii) discover novel cellular processes regulated by MINA53 activity. As such, I have created an isogenic cell model consisting of K-Ras-transformed MINAS3 knockout mouse embryonic fibroblasts (MEFs) reconstituted with either wildtype or enzyme-inactive MINAS3. Using this model I have shown that MINAS3 activity maintains normal levels of the large ribosomal subunit (60S), and suppresses anchorage-independent growth, autophagy and gene expression. These observations suggest the existence and involvement of one or more substrates. Indeed, proteomic and biochemical analyses in collaboration with the Schofield laboratory (Chemistry, Oxford) confirmed the identity of a MINA53 substrate, the 60S ribosomal protein Rp127a. Together we have shown that Rpl27a is abundantly hydroxylated, and that MINA53 is a histidinyJ hydroxylase; this represents the first discovery of a ribosomal oxygenase. The model developed here did not support a positive role for MINA53 in the transformation of MEFs. Rather it suggested that MINA53 can suppress transformation in some contexts, This prompted a wider investigation that demonstrated underexpression of MINA53 in several tumour types, and the presence of inactivating mutations in breast. ovarian and colon cancer. This thesis provides data supporting further research to understand the role of Rpl27a hydroxylation in the regulation of 60S biogenesis, autophagy and cancer. 2
APA, Harvard, Vancouver, ISO, and other styles
11

Broderick, Shaun Robert. "Pollination-Induced Gene Changes That Lead to Senescence in Petunia × hybrida." The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1408958432.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Chen, Qinwu. "Role of autophagy in nitrogen remobilization and adaptation to environment in plants." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS230.

Full text
Abstract:
L'autophagie est importante pour le recyclage et la mobilisation des éléments nutritifs dans les plantes. Plusieurs lignées sur-exprimant les gènes AtATG8a-i d’Arabidopsis ont été sélectionnées afin de déterminer l'effet de l'augmentation de l'activité autophagique sur l'efficacité de la remobilisation de l'azote. Les lignées sur-expresseur ont présenté une meilleure remobilisation de l'azote des feuilles de la rosette jusqu'aux graines qque le contrôle, mais uniquement dans des conditions de culture en nitrate pléthorique. Les lignées sur-exprimant ATG8a et ATG8g ont été les plus performantes. Une vaste collection de mutants atg, comprenant les mutants atg8a-i, a ensuite été utilisée pour mesurer la remobilisation de l’azote des rosettes, aux tiges et aux semences, afin de déterminer quels gènes ATG sont essentiels pour la remobilisation. Une attention particulière a été accordée à la famille de gènes ATG8a-i afin de déterminer si un membre de la famille ATG8 pourrait être plus spécifiquement dédié au recyclage de l'azote lors de la sénescence des feuilles pour la remobilisation. Bien que les divers mutants atg8 n’aient pas présenté de différence majeure par rapport au sauvage, l'un d'entre eux a montré un léger phénotype de sénescence précoce, suggérant que cette isoforme pourrait être plus spécialisée dans la remobilisation de l'azote. Afin d'améliorer l'activité de l'autophagie chez l'orge, nous avons surexprimé HvATG5 chez l'orge et testé la sensibilité des sur-expresseurs à plusieurs conditions de stress. Nous avons constaté que les sur-expresseurs de HvATG5 étaient plus tolérants à une faible alimentation en nitrate, à une faible teneur en soufre, et surtout moins sensibles aux effets de l'obscurité prolongée. Afin d'estimer les rôles respectifs des protéases induites par la sénescence et de l'autophagie, plusieurs mutants de protéase (sag12, rd21A, cathB3) ont été croisés avec des mutants d'autophagie (atg5, atg7. Leur contribution à la remobilisation de l'azote a été mesurée par marquage 15N
Autophagy is important for nutrient recycling and mobilization in plants. Several Arabidopsis AtATG8a-i overexpressing lines were selected in order to determine the effect of increasing autophagy on nitrogen remobilization efficiency. The overexpressing lines remobilized more nitrogen from the rosette leaves to the seeds but only when cultivated under high nitrate conditions. The lines overexpressing ATG8a and ATG8g were the most performant. A large collection of atg mutants including the atg8a-i mutants was then used to monitor N-remobilization from the rosettes to the stems and seeds in order to determine which ATG genes are essential for N remobilization. A special focus was dedicated to the ATG8a-i gene family in order to determine whether a member of the ATG8 family could be more specifically dedicated to N-recycling during leaf senescence for remobilization. Although the various atg8 mutants were not different from wild-type, one of them presented slight early senescence phenotype, suggesting this isoform could be more specialized in N remobilization. In order to enhance autophagy activity in barley, we overexpressed HvATG5 in barley and tested sensitivity of over-expressors to several stress conditions. We found that barley HvATG5 over-expressors were more tolerant to low nitrate supply, to low sulfur, and especially less sensitive to dark-stress effects. In order to estimate the respective roles of autophagy and senescence induced proteases, several protease mutants (sag12, rd21A, cathB3) were crossed with autophagy mutants (atg5, atg7) in order to monitor their respective contributions to nitrogen remobilization
APA, Harvard, Vancouver, ISO, and other styles
13

Chen, Leilei. "The molecular mechanism of Chinese medicine Uncaria Rhynchophylla (gouteng) for inducing autophagy and protecting neurons in Parkinson's disease." HKBU Institutional Repository, 2015. https://repository.hkbu.edu.hk/etd_oa/204.

Full text
Abstract:
Parkinson’s disease (PD) is the second most common neurodegenerative disorder characterized by the accumulation of protein aggregates (namely Lewy bodies) in dopaminergic neurons in the substantia nigra region of the brain. Alpha-synuclein (α- syn) is the major component of Lewy bodies (LBs) in PD, and impairment of the autophagy-lysosomal pathway has been linked to its accumulation. In our previous study, we identified corynoxine B (Cory B), an oxindole alkaloid isolated from Uncaria rhynchophylla (Miq.) Jacks (Gouteng in Chinese), as a Beclin-1-dependent autophagy enhancer. In this work, we continued to screen autophagy enhancers from Gouteng alkaloids, and found corynoxine (Cory), an isomer of Cory B, also induces autophagy in different neuronal cell lines and primary neurons. Meanwhile, Cory promotes the formation of autophagosomes in the fat bodies of Drosophila. By inducing autophagy, Cory promotes the clearance of wild-type and A53T α-syn in inducible PC12 cells. Interestingly, different from its enantiomer Cory B, Cory induces autophagy through the Akt/mTOR pathway as evidenced by the reduced levels of phospho-TSC2, phospho-Akt, phospho-mTOR and phospho-p70 S6 Kinase. To identify the different pathway between Cory and Cory B, we performed phosphoproteomic study on N2a cells. With the help of iGPS (In vivo Group-based Prediction System), protein kinases which were significantly regulated by Cory or Cory B were predicted. Based on these kinases, we drew the detailed kinasesubstrates network regulated by Cory or Cory B. The structures of Cory and Cory B differ only in the stereochemistry at the spiro carbon; however, Cory has more effect on the CAMK, Trb and TSSK families, while CDK and CDKL families are more sensitive to Cory B. Furthermore, we established a rotenone rat model of PD via injecting rotenone into the substantia nigra pars compacta (SNc) and ventral tegmental area (VTA), and evaluated the neuroprotection of Cory and Cory B on this rat model. Motor dysfunction, decreased TH level, impairment of autophagy, aggregation of α-syn and activation of microglia were all found on this PD model, which were consistent with previous reports. After the treatment of Cory or Cory B, we found that both Cory and Cory B improve motor dysfunction, increase the TH level, and inhibit microglial activation. Both Cory and Cory B decrease the puncta number of aggregated α-syn, likely due to the induction of autophagy. All these results indicate the neuroprotection of Cory and Cory B against PD. Collectively, our findings (1) provide the original finding of Coy to be an autophagy enhancer with experimental evidences that Cory inhibited the pathway of Akt/mTOR; (2) provide cellular and animal experimental evidences for developing Cory or Cory B as anti-PD agent, by inducing autophagy in neurons; and (3) provide candidate pathways to identify the primary molecular target of Cory or Cory B, which may turn out to be potential therapeutic targets for treating PD. Keywords: Parkinson’s disease, Cory, Cory B, autophagy, phosphoproteomic, neuroprotection.
APA, Harvard, Vancouver, ISO, and other styles
14

Krupař, Pavel. "Úloha lipidů a enzymů metabolizujících lipidy v procesu autofagie u rostlin." Master's thesis, 2021. http://www.nusl.cz/ntk/nusl-446015.

Full text
Abstract:
Plant autophagy is a crucial evolutionary conserved process for recycling cytoplasmic material under stress conditions or during development. The autophagic pathway is negatively regulated by TOR kinase, a versatile molecule modulating a wide range of cellular processes. In mammals, TOR kinase may be activated by phosphatidic acid, a vital signalling lipid. This thesis aims to prove the possible involvement of phospholipids in plant autophagy. I analysed the rate of primary root inhibition in knock-out mutants coding phospholipases in A. thaliana with induced autophagy, measured activity of lipid metabolising enzymes in wild type and atg10 mutant and observed autophagosome formation in selected mutants. Autophagosomes were labelled by fluorescent protein in vivo and by indirect immunolabelling in fixed samples. Using advanced stereological approach, I optimized a method for obtaining an unbiased estimate of autophagosome number in plant root cells.
APA, Harvard, Vancouver, ISO, and other styles
15

Nadal, Marina. "Exploring the role of autophagy and cell wall degrading enzymes in the life cycle and pathogenic development of the basidiomycete fungal plant pathogen Ustilago maydis." 2009. http://purl.galileo.usg.edu/uga%5Fetd/nadal%5Fmarina%5F200912%5Fphd.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Chang, Chia-Ting, and 張嘉婷. "Study on the Death Mechanism of Natural Plants on Gastric Cancer and Breast CancerPart IExploration of Mechanism on Flavokawain B-induced Autophagyin Human Gastric Adenocarcinoma;Part IIExploration of Mechanisms on Antrodia salmonea-inducedAutophagy and Apoptosis in Human Triple-negative Breast Cancer(MDA-MB-231) Cells." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/m3526v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography